
Apple® IIGs™ Programmer's Workshop
Assembler Reference

APDA Draft
August 6 1987

Apple Technical Publications

This document does not include

• final art work
• an index.

Apple Technical Publications

8/6/87

Engineering Part Number: 030-3131
Marketing Part Number: A2L600 I

Copyright @ 1984-1985 The Byte Works, Inc. All rights reserved.

Copyright @ 1986, 1987 Apple Computer, Inc. All rights reserved.

• APPLE COMPUTER, INC.

This manual is copyrighted by Apple or by Apple's suppliers, with all rights reserved. Under the
copyright laws, this manual may not be copied, in whole or in part, without the written consent of
Apple Computer, Inc. "!his exception does not allow copies to be made for others, whether or not
sold, but all of the material purchased may be sold, given, or lent to another person. Under the
law, copying includes translating irito another language.

© Apple Computer, Inc., 1986
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, and ProDOS are registered trademarks of Apple Computer, Inc.

Apple JIGS and SANE are trademarks of Apple Computer, Inc.

ORCAiM is a trademark of The Byte Works, Inc.

Simultaneously published in the United States and Canada.

APW Assembler Reference

Preface-I
Preface-l
Preface-3
Preface-3
Preface-3
Preface-3
Preface-3
Preface-4
Preface-4
Preface-4
Preface-5
Preface-5
Preface-5
Preface-6
Preface-6
Preface-7
Preface-8
Prefice-8
Preface-9

Contents

Preface
Roadmap to the Apple llGS Technical Manuals
Introductory Manuals

The Technical Introduction
The Programmer's Introduction

Machine Reference Manuals
The Hardware Reference Manual
The Firmware Reference Manual

The Toolbox Manuals
The Programmer's Workshop Manual
Progranuning Language Manuals
Operating System Manuals
All-Apple Manuals
How to Use This Book

What This Manual Contains
What To Read When

Visual Cues
Language Notation
Conventions

PART I: PROGRAMMING GUIDE

1-1 Chapter 1: Overview
1-1 The Apple llGS Programmer's Workshop
1-1 About The APW Shell
1-2 About the APW Editor
1-2 About the APW Assembler
1-2 InstrUction Sets
1-3 Directives
1-3 ~s
1-3 Standard Apple Numeric Environment
1-4 APW Assembler Concepts
1-4 Source, Object, and Load Files
1-4 Symbolic References
1-4 Absolute and Relocatable Load Files
1-5 Converting Source Code into Executable Code
1-6 Program Segments
1-7 File Segments and Partial Assemblies
1-7 OMF File Format
1-7 Static and Dynamic Segments
1-7 Library Files
1-8 Backing Up Your APW Disk

2-1
2-1
2-2
2-3
2-4
2-4

APDA Draft

Chapter 2: Using The APW Assembler
Writing and Running A Sample Program
The Assembly Process

The Assembly Listing
Pausing The Assembly
Stopping The Assembly

COnlenls - i

Table of Contents

816187

Table of Contents APW Assembler Reference

2-4 Assembler Error Messages
2-4 Printer Listings
2-5 APW Shell Commands
2-5 Editing Files
2-5 Assembling, Linking, and Running Programs
2-6 ASSEMBLE
2-6 ASML
2-7 ASMLG
2-7 LINK
2-7 RUN
2-7 Command Parameters
2-10 Appending Files
2-10 Partial Assemblies
2-11 The APW Linker
2-11 Making Library Files
2-13 The Apple nos Debugger and DumpOBJ

PART II: LANGUAGE REFERENCE

3 -I Chapter 3: APW Assembly Statements
3-1 Assembly Statement Formats
3-1 Labels
3-2 Label Scope
3-2 Case Sensitivity in Labels
3-3 Atttibutes and Labels
3-3 Count Atttibute
3-3 Length Atttibute
3-3 Type Atttibute
3-4 Operation Code
3-4 65816 Instruction Set
3-11 APW Assembler Directives
3-11 APW Assembler Macro Calls
3-12 ()perands
3-12 Instruction ()perand Formats
3-16 Expressions
3-22 Comments
3-22 The Comment Field
3-22 Comment Lines

4 -I Chapter 4: APW Assembler Directives
4-1 Directive Formats
4-1 Directive Functions
4-1 Program Control Directives
4-2 Data Defmition Directives
4-2 Symbol Definition Directives
4-2 Code Location Directives
4-2 File Control Directives
4-3 APW Assembler Option Directives
4-3 Listing Option Directives
4-3 The Comment Field and APW Assembler Directives
4-4 Settings Atttibute and APW Assembler Directives
4-4 APW Assembler Directives
4-4 ABSADDR
4-6 ALIGN

APDA Draft Contents - ii 816187

APW Assembler Reference

4-6
4-6
4-7
4-8
4-8
4-9
4-9
4-10
4-11
4-11
4-11
4-12
4-12
4-13
4-14
4-14
4-14
4-14
4-15
4-15
4-16
4-16

. 4-17
4-18
4-18
4-19
4-19
4-20
4-20
4-21
4-21
4-22
4-23
4-23
4-24
4-24
4-25
4-25
4-26
4-26
4-26
4-27
4-28
4-28
4-29
4-29
4-30
4-30
4-30
4-31
4-32
4-32
4-34

APDA Draft

ANOP
APPEND
CASE
CODECHK
COPY
DATA
DATACHK
DC

Address (Ax)
Binary (B)
Character (C)
Hexadecimal (H)
Integers (h)
Floating Point (p, D, E)
Reference an Address (R)
Soft Reference (5%)

DIRECT
OS
DYNCHK
EJECT
END
ENTRY
EQU
ERR
EXPAND
GEN
GEQU
IEEE
INSTIME
KEEP
KIND
LIST
LONGA
LONGI
MERR
MSB
NUMSEX
OBI
OBICASE
OBIEND
ORG
PRINTER
PRIVATE
PRlVDATA
RENAME
SETCOM
65C02
65816
START
SYMBOL
1ITLE
TRACE
USING

Contents - iii

Table of Contents

816187

Table of Contents APW Assembler Reference

5-1
5-1
5-1
5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-5
5-5
5-7
5-7
5-8
5-9
5-9
5-9
5-10
5-10
5-10
5-11
5-11
5-12
5-12
5-13
5-15
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-21
5-21
5-21
5-22
5-23
5-23
5-24
5-25
5-25
5-26
5-27

6-1
6-1
6-2
6-3
6-3
6-4
6-5
6-6

APDA Draft

Chapter 5: Using Macros in Assemhly-Language Programs
Macro Defmition
Macro Formats
Macro Expansions
Assembler Directives Used With Macros

MCOPY
MDROP
MLOAD

Macro and Equate Directory
Predefined Macro Files
Predefmed Equates

M16.UTIL Macros
ADD
ADD4
ASIA
DEC4
DP
EMULATION
INC4
LONG
LONGM
LONGX
LSR4
NATIVE
PULLLONG
PULLl
PULL3
PULLWORD
PUSHLONG
PUSH1
PUSH3
PUSHWORD
READCH
SHORT
SHORTM
SHORTX
STR
SUB
SUB4
WRITECH
WRITELN
WRITESTR

Building Your Own Macro Library
Assembling a Program That Contains Library Macros
Listing Options

Chapter 6: Writing Macros
Macro Definition
Conditional Assembly Directives

Symbolic Parameters
Set Symbols

Using Symbolic Parameters
Symbolic Parameter Substitution
Symbolic Parameter Scope

Contents - iv , 816187

.-...

APW Assembler Reference

6-6 Assigning Values to Symbolic Parameters
6-6 Positional Parameters
6-6 Keyword Parameters
6-7 Character Type Symbolic Parameters
6-7 Subscripted Symbolic Parameters
6-8 Conditional Assembly and Macro Directives
6-8 ACIR
6-9 AGO
6-10 AIF
6-10 AINPUT
6-11 AMID
6-12 ASEARCH
6-12 GBLA
6-13 GBLB
6-14 GBLC
6-14 LCLA
6-15 LCLB
6-15 LCLC
6-16 MACRO
6-16 MEND
6-16 MEXIT
6-17 ~()11!
6-18 SETA
~18 SETB
~19 SETC
6-20 &SYSCNT
6-21 &SYSDATE
6-22 &SYSNAME
6-22 &SYSTIME
~22 Attributes and Symbolic Parameters
6-23 Count Attribute
6-24 Length Attribute
6-24 Type Attribute

PART III: Appendixes

Appendix A: 65816 Instruction Mnemonics and Addressing Modes

Appendix B: The ASCII Character Set

Appendix C: Error Messages

Glossary

APDA Draft Contents - v

Table of Contents

816187

Table of Contents APW.Assembler Reference

c'

List of Figures

P-l. Roadmap to the Technical Manuals
1-1. Creating and Assembling an Executable Program on the Apple ITGS
3-1. Syntax of a Compound Expression
3-2. Syntax of a Simple Expression
3-3. Syntax of a Tenn
3-4. Syntax of a Factor
3-5. Syntax of a Constant
3-6. Syntax of a Binary Number
3-7. Syntax of an Octal Number
3-8. Syntax of a Decimal Number
3-9. Syntax of a Hexadecimal Number
3-10. Syntax of a Character Constant

List of Tables

P-l. The Apple ITGS Technical Manuals
3-1. Operand Symbol Types
3-2. The 65816 Addressing Mode Operand Syntax
5-1. Predefmed Macro Files in the AINCLUDE Directory
5-2. Equate Files in the AINCLUDE Directcry .

APDA Draft Contents - vi 7/9/87

APW Assembler Reference Preface

Preface

The Apple® IIGsr" Programmer's Workshop Assembler Reference manual is intended for
all programmers writing Apple lIGS assembly-language programs. You should be familiar
with assembly-language programming and the Apple IIGS Programmer's Workshop
Reference manual before reading this manual.

This manual assumes that you are familiar with the 6502 and 65816 assembly language
instructions and addressing modes. Three commercially available reference sources for this
information are the following:

• David Eyes and Ron Lichty, Programming the 65816. Simon and Schuster. 1986
• Michael Fisher, 65816165802 Assembly Language Programming. Osborne

McGraw-Hill. 1986

• William Labiak. Programming the 65816. Sybex. 1986

Roadmap to the Apple IIGS Technical Manuals

The Apple IIGS computer has many advanced features. making it more complex than earlier
models of the Apple II. To describe it fully. Apple has produced a suite of technical

--__ manuals. Depending on the way you intend to use the Apple IIGS. you may need to refer to
a select few of the manuals, or you may need to refer to most of them.

The technical manuals are listed in Table P-l. Figure P-l is a diagram showing the
relationships among the different manuals.

Table P·I
The Apple IIGS Technical Manuals
Title
Technical InlToduction 10 lhe Apple IIGS
Apple IIGS Hardware Reference
Apple IIGS Firmware Reference
Programmer's Introduction 10 the Apple IIGS
Apple IIGS Toolbox Reference, Volume I

Apple IIGS Toolbox Reference, Volume 2
Apple IIGS Programmer s Workshop Reference
Apple IIGS Programmer's Workshop Assembler Reference
Apple IIGS Programmer's Workshop C Reference .
ProDOS 8 Technical Reference Manual
Apple IIGS ProDOS 16 Reference
Human Inteiface Guidelines
Apple Numerics Manual

APDADraft Preface -1

Subject
What the Apple nOs is
Machine internal£-bardware
Machine intemals-finnware
Concepts and a sample program
How the tools work and some toolbox
specifications
More toolbox specifications
The development environment
Using the APW Assembler
Using C on the Apple lIaS
Standard Apple II operating system
Apple nos operating system and loader
Guidelines for the desktop interface
Numerics for all Apple computers

816187

Preface APW Assembler Reference

Figure pol. Roadmap to the Technical Manuals

~~~~~:~~~~I~:Gs,~lr, .. : ':' ::::::":"":'""'"_ "~A~lr~~~ II ~.~""~~ ...... --: .. ," .... ' .............. ' ..... ' ..... ..., .... .,"""""'"""""''''''''''''''''''''''''''l,@" 

Technical Introduction t 
to the Appe IIGS ~ 

~ I 
i~~~~~I:~~S works -+-__ ~,::iif-ii1/-'-' ~---l '"-I I I i 

Apple IIGS Hardware Apple IIGS Rrmware I 
Reference Reference ~ 

To start learning 
to program !he Appe II S- Programmer's Introduction to 

"-_ .. ..II !he Apple IIGS 

To use the Toolbox 

To use the development 
envlronment---+i 

.. ~ 
vol. 1 

1If-.--.. vol. 2 
{Y' 

Apple IIGS Programmer's 
Workshop Reference 

Apple IIGS Toolbox Reference 

" " " "'0;. . • , .. ' ·LH' 3>,. 

To operate on flles---i--+ --------j -------II I ~ 
I; 
~1 
!~ 
~~ 

~A""pp~I"e~IIG~S ~proDOS 16 ProDOS 8 Technical I' 
Reference Reference Manual 

I To program In C---t--it-~--__i 

Appe IIGS Programmer's 
Workshop C Reference 

I 
I 
~ 

I 

To program In 
assembly language 

APDADraft 

t 

I 
~ 
~ 

I 
OJ APW Assembler Toolbox ~,;; 

, Quick Reference I 
... _ .... ""'.,~:::: i(j;::cm ;,p $ s;amms~ ................. """,,,,,,, • .,p,,,n,,,,"_~-!!~WtH.t£ 

t 

I 
I rn ~~kCR:~~I~~~e . 'OJ 1 Apple IIGS Programmer's Workshop 

Assembler Reference 

Preface -2 816187 



APW Assembler Reference Preface 

Introductory Manuals 
These books are introductory manuals for developers, computer enthusiasts, and other 
Apple IIGS owners who need technical information. As introductory manuals, their 
purpose is to help the technical reader understand the features of the Apple IIGS, 
particularly the features that are different from other Apple computers. Having read the 
introductory manuals, you may refer to specific reference manuals for details about a 
particular aspect of the Apple IIGs. 

The Technical Introduction 

The Technical Introduction to the Apple IIGS is the [lISt book in the suite of technical 
manuals about the Apple fiGS. It describes all aspects of the Apple IIGS, including its 
features and general design, the program environments, the toolbox, and the development 
environment. 

Where the Apple IIGS Owner's Guide is an introduction from the point of view of the 
user, the Technical Introduction describes the Apple IIGS from the point of view of the 
program. In other words, it describes the things the programmer has to consider while 
designing a program, such as the operating fearures the program uses and the environment 
in which the program runs. 

The Programmer's Introduction 

When you start writing Apple fiGS programs, the Programmer's Introduction to the 
Apple IIGS provides the concepts and guidelines you need. It is not a complete course in 
programming, only a starting point for programmers writing applications that use the Apple 
desktop interface (with windows, menus, and the mouse). It introduces the routines in the 
Apple fiGS Toolbox and the program environment they run under. It includes a sample 
event-driven program that demonstrates how a program uses the toolbox and the 
operating system. 

Machine Reference Manuals 
There are two reference manuals for the machine itself: the Apple IIGS Hardware 
Reference and the Apple IIGS Firmware Reference. These books contain detailed 
specifications for people who want to know exactly what's inside the machine. 

The Hardware Reference Manual 

The Apple IIGS Hardware Reference is required reading for hardware developers, and it 
will also be of interest to anyone else who wants to know how the machine works. 
Information for developers includes the mechanical and electrical specifications of all 

APDADraft Preface -3 816187 



Preface APW Assembler Reference 

connectors, both internal and external. Information of general interest includes descriptions 
of the internal hardware, which provide a better understanding of the machine's features. 

The Firmware Reference Manual 

The Apple llGS Firmware Reference describes the programs and subroutines that are 
stored in the machine's read-only memory (ROM), with two significant exceptions: 
Applesoft BASIC and the toolbox, which have their own manuals. The Firmware 
Reference includes information about interrupt routines and low-level I/O subroutines for 
the serial ports, the disk port, and for the Desktop Bus interface, which controls the 
keyboard and the mouse. The Firmware Reference also describes the Monitor, a low-level 
programming and debugging aid for assembly-language programs. 

The Toolbox Manuals 
Like the Macintosh, the Apple IIGS has a built-in toolbox. The Apple IlGS Toolbox 
Reference, Volume 1, introduces concepts and terminology and tells how to use some of 
the tools. The Apple IIGS Toolbox Reference, Volume 2, contains information about the 
rest of the tools and also tells how to write and install your own tool set. 

Of course, you don't have to use the toolbox at all. If you only want to write simple 
programs that don't use the mouse, or windows, or menus, or other parts of the desktop 
user interface, then you can get along without the toolbox. However, if you are 
developing an application that uses the desktop interface, or if you want to use the Super 
Hi-Res graphics display, you'll find the toolbox to be indispensable. 

The Programmer's Workshop Manual 
The Apple IIGS Programmer's Workshop (APW) is the development environment for the 
Apple IIGS computer. APW is a set of programs that enables developers to create and 
debug application programs on the Apple IIGS. The Apple fIGS Programmer's Workshop 
Reference (APW Reference) includes information about the APW Shell, Editor, Linker, 
Debugger, and utility programs; these are the parts of the workshop that all developers 
need, regardless of which programming language they use. 

The APW Reference manual desCribes the way you use the workshop to create an 
appHcation and includes a sample program to show how this is done. In addition, this 
manual documents the APW Shell to provide the information necessary to write an APW 
utility or a language compiler for the workshop. 

Included in the APW Reference manual are complete descriptions of two standard Apple 
IIGS fIle formats: the text file format and the object module format. The text file format is 
used for all files written or read as "standard ASCII files" by Apple IIGS programs running 
under ProDOS 16. The object module format is used for the output of all APW compilers 
and for all flies loadable by the Apple IIGS System Loader. 

APDADraft Preface-4 816187 

-- . 



APW Assembler Reference Preface 

Programming Language Manuals 
Apple currently provides a 65816 assembler and a C compiler. Other compilers can be used 
with the workshop, provided that they follow the standards defined in the Apple IIGS 
Programmer's Workshop Reference. 

There is a separate reference manual for each programming language on the Apple IIGS. 
Each manual includes the specifications of the language and of the Apple IIGS libraries for 
the language, and describes how to use the assembler or compiler for that language.'The 
manuals for the languages Apple provides are the Apple IIGS Programmer's Workshop 
Assembler Reference (this book) and the Apple IIGS Programmer's Workslwp C 
Reference. 

Note: The Apple IIGS Programmer's Workshop Reference and the two programming 
language manuals are available through the Apple Programmer's and Developer's 
Association. 

Operating System Manuals 
There are two operating systems that run on the Apple IIGS: ProDOS ®16 and ProDOS 8. 
Each operating system is described in its own manual: ProDOS 8 Technical Reference 
Manual and Apple IIGS ProD OS 16 Reference. ProDOS 16 uses the full power of the 
Apple IIGS. The ProDOS 16 manual describes its features and includes information about 
the System Loader, which works closely with ProDOS 16. If you are writing programs for 
the Apple IIGS, whether as an application programmer or a system programmer, you are 
almost certain to need the ProDOS 16 Reference. 

ProDOS 8, previously just called ProD OS, is the standard operating system for most 
Apple II computers with 8-bit centrol processors. It also runs on the Apple IIGS. As a 
developer of Apple IIGS programs, you need the ProDOS 8 Technical Reference Manual 
only if you are developing programs to run on 8-bit Apple II's as well as on the 
Apple IIGS. 

All-Apple Manuals 
In addition to the Apple IIGS manuals mentioned above, there are two manuals that apply 
to all Apple computers: Humanlnteiface Guidelines: The Apple Desktop Inteiface and 
Apple Numerics Manual. If you develop programs for any Apple computer, you should 
know about those manuals. 

The Human I nteiface Guidelines describes Apple's standards for the desktop interface of 
any program that runs on Apple computers. If you are writing a commercial application for 
the Apple IIGS, you should be familiar with the contents of this manual. 

The Apple Numerics Manual is the reference for the Standard Apple Numeric Environment 
(SANETM), a full implementation of the IEEE Standardfor Binary Floating-Point 
Arithmetic (IEEE Std 754-1985). The functions of the Apple IIGS SANE tool set match 
those of the Macintosh SANE package and of the 6502 assembly-language SANE 
software. If your application requires accurate or robust arithmetic, you'll probably want to 
use the SANE routines in the Apple IIGS. The Apple IIGS Toolbox Reference tells how to 

APDADra/t Preface -5 8/6/87 



Preface APW Assembler Reference 

use the SANE routines in your programs. The Apple Numerics Manual is the 
comprehensive reference for the SANE numerics routines. 

How to Use This Book 

This section describes the contents of the Apple IIGS Programmer's Workshop Assembler 
Reference manual. Following a brief chapter-by-chapter description of this book's 
contents, the section "What to Read When" gives you guidelines about which sections you 
should read for specific purposes. Finally, the section called "Visual Cues" describes the 
notations used in this book to alert you to important material, or material with special 
significance. 

What This Manual Contains 

This manual is divided into three parts: an introduction to the APW Assembler containing 
two chapters; a four-chapter reference section to the APW directives and macros; and three 
appendixes with more reference material that you will need occasionally. There is also a 
glossary and an index. 

Part I, "Programming Guide," gives you the minimum information that you need to be able 
to use the APW Assembler. 

• Chapter 1, "Overview," introduces the environment in which youll use the APW 
Assembler. It discusses the Apple IIOS Programmer's Workshop (APW), ProDOS 
16, the Apple IIOS Toolbox, and lists the hardware and software you need. 

• Chapter 2, "Using The APW Assembler," steps through a sample session with the 
assembler, describes the assembly process, lists the shell commands you need to 
work with the assembler, and discusses the linker and other utilities. 

Part II, "Language Reference," is a detailed description of the Apple IIOS Programmer's 
Workshop Assembler directives and macros. 

• Chapter 3, "APW Assembly Statements," describes the syntax of APW Assembler 
labels, operation codes, operands, and comments. 

• Chapter 4, " Assembler Directives," describes each of the APW Assembler directives, 
with their syntax and some examples of how they are used. 

• Chapter 5, "Using Macros in Assembly Language Programs," tells you how to use 
macros provided with APW in your assembly-language programs; how to use the 
MacGen utility to build your own macro library; and how to use the macro directives: 
MCOPY, MDROP, and MLOAD. 

• Chapter 6, "Writing Macros," tells you how to write your own macros and include 
them in your source text. 

Part ill includes three appendixes of reference material. 

APDADraft Preface - 6 816187 



APW Assembler Reference Preface 

• Appendix A is a summary of the 65816 mnemonics and addressing modes. This 
appendix also gives you the number of bytes that each mnemonic requires for each 
addressing mode. 

• Appendix B is a table of ASCII characters. 

• Appendix C a list of the error messages that can be generated by the APW Assembler. 
The appendix includes a brief description of the most probable cause for the error and 
some hints about what you can do to correct the problem. 

The Glossary defines all of the technical tenns listed in boldface type throughout this 
manual. 

What To Read When 

To get the most out of the APW Assembler, you should use this manual as efficiently as 
possible. Here are some suggestions on how to proceed. 

I. Whatever your background and experience, start with the next section, "Other 
Materials You Will Need" and Chapter 1. The Apple IIOS is not quite like any other 
computer, so you need to become familiar with the peculiarities of the Apple IIOS 
and the APW concepts that the assembler uses before you proceed. 

2. Read through Chapter 2 to get an idea of the assembly process and the APW Shell 
commands that you want to use, then go to Chapter 4 for complete descriptions of 
the APW Assembler directives. 

3. If this is your fIrst experience with assembly language programming, go to Chapter 
I first for the concepts and a description of how it all fits together. Then look at one 
of the commercially available texts on the instruction sets. Chapter 3 of this manual 
contains a summary of the instructions that you can use as a reference once you 
understand how they work. When you understand the instruction set, go to Chapter 
2 for the assembly process and then to Chapter 4 for the APW Assembler directives. 

4. If you are doing complex programming and writing your own macros, read Chapter 
6, "Writing Macros." This chapter contains information on macro formats, 
addressing modes, and data formats. For routine programming, the material in 
Chapter 5, "Using Macros in Assembly Language Programs," is all that you need to 
read about macros. 

APDADraft Preface -7 8/6/87 



Preface APW Assembler Reference 

Visual Cues . 
Certain conventions in th is manual provide visual cues that alert you to special material, for 
example the introduction of a new term or especially important infoI1Ilation. Look for these 
visual cues throughout the manual: 

Note: Text set off in this manner presents sidelights or interesting points of 
information. 

Important: This heading tells you that there is important information that you 
should read before proceeding. 

Warning: A message such as this directs your attention to something that could 
cause loss of data or damage to the software. 

When a new term is introduced, it is printed in boldface the first time it is used. This lets 
you know that the term has not been defined previously and that there is an entry for it in 
the glossary. 

Language Notation 

A special typeface is used for characters that you type, or that can appear on the screen, 
such as commands, instructions, directives, and macro calls. . 

IT LOOKS LIKE THIS. 

Note: APW Assembler directives and macros are presented in upper case in this 
manual. This is only so that you can find them easily; the APW Assembler is not 
sensitive to case unless you use the CASE directive described in Chapter 4. 
Otherwise, PARMBLOCK and ParmBlock mean the same thing. 

Italics are used in commands to indicate parameters that must be replaced with a value; for 
example, in the command 

copy filename 

The word filename refers to any valid APW Assembler filename. 

Apple lIas Upgrade: The Apple IlOS Apple key, indicated by the open Apple icon 
(0), corresponds to the Open-Apple key on the Apple ne keyboard. The Apple nOS 
Option key corresponds to the Solid-Apple key (4il) on the Apple Ile keyboard. The Clear 
and Enter keys on the Apple nOS keyboard have no Apple Ile equivalents. 

Important: The Apple IlOS keyboard Reset key has a triangle on it rather than the 
word reset. 

APDADraft Preface - 8 8/6/87 



APW Assembler Reference Preface 

Conventions 

The following additional conventions are observed in this manual: 

[] 

APDADraJt 

Square brackets indicate that the enclosed item is optional. 

A vertical bar indicates a choice. For example, + L I - L indicates that a 
command can be entered as either +L or as -L. 

A horizontal ellipsis indicates that the preceding item(s) can be repeated 
as necessary. 

A vertical ellipsis, or a pair of horizontal ellipses, indicate that not all of 
the statements in an example or figure are shown. 

Preface - 9 8/6/87 





Part I 

Programming Guide 





APW Assembler Reference Chapter 1: Overview 

Chapter 1 

Overview 

This chapter introduces you to the APW Assembler and describes a variety of features and 
concepts that you must understand in order to write application programs for the Apple 
IIGS computer. The material that follows 

• introduces the Apple IIGS Programmer's Workshop 

• tells you about some of the features of the APW Assembler 

• describes how important concepts are implemented on the Apple IIGS 

• shows you how the programs in the workshop interact 

• lists system requirements 

• tells you how to back up your system 

• tells you how to begin running APW 

The Apple IIGS Programmer's Workshop 
The Apple IIGS Programmer's Workshop (APW) is the development environment in which 
you write your Apple IIGS application programs. This development environment includes 
the APW Shell, APW editor, APW linker, and a set of utilities. APW supports both 
assembly language and C. Additional development support is provided by a 
comprehensive set of routines known as the Apple IIGS Toolbox. These routines can 
be accessed by a program running under APW; however, the Toolbox is not considered 
part of APW. For a comprehensive description of APW, refer to the Apple lIGS 
Programmer's Workshop Reference manual. For more information on the Apple IIGS 
Toolbox, refer to the Apple lIGS Toolbox Reference: Volumes 1 and 2. 

About The APW Shell 

The APW Shell provides the interface that allows you to execute commands and call 
programs. It does the file management tasks of copying and deleting files and listing 
directories. You can use shell commands to perform the following functions: 

• call the APW Editor to create new files or edit your source code 

• call the APW Assembler 

• override some APW Assembler source code directives 

• call the APW Linker 

• call APW utility programs 

• call the Apple IIGS Debugger program 

APDADraft 1 -1 816187 



Chapter 1.' Overview APW Assembler Reference 

The most important shell commands to assembly-language programmers are summarized in 
Chapter 2 of this manual. Complete descriptions of all the APW Shell commands are 
contained in the Apple IIGS Programmer's WorksJwp Reference manual. 

About the APW Editor 

The Apple IIOS Programmer's Workshop Editor is a full screen text editor that can perfo= 
such tasks as 

• deleting, copying, and moving text 

• searching for a text string 

• jumping from one position in the file to another 

• scrolling the screen up or down 

• setting and clearing tab stops 

• restoring accidentally deleted text 

The Apple IIOS Programmer's Workshop Editor is fully described in the Apple IIGS 
Programmer's WorksJwp Reference. 

About the APW Assembler 

The APW Assembler is a powerful macro assembler. Among the features of this 
assembler are 

• support for source code in 65816, 65C02, and 6502 instruction sets 

• an extensive group of assembler directives 

• a comprehensive set of macros to access the Apple IIOS Toolbox, interface with 
ProDOS and the shell, and perfo= I/O 

• support for user defined libraries and macros 

• full compatibility with the Standard Apple Numeric Environment (SANE). 

• conformity with the Apple IIos object module format, which allows you to link a 
program segment written in assembly language with segments written in high-level 
languages 

• support for partial assemblies 

• backward compatibility with ORCA/M for 8-bit Apple II computers 

Because of these features, the APW Assembler gives you the means to write relocatable 
code, divide your assembly-language programs into segments, link your assembly
language segments to segments written in high-level languages, and use macros. 

Instruction Sets 

The 65C816 processor of the Apple IIOS computer can operate in either native or emulation 
mode. The full instruction set of the 65C816 processor is available in native mode. The 
91 instructions combined with 25 addressing modes make 255 operation codes available to 

APDADraft 1 - 2 8/6/87 



APW Assembler Reference Chapter 1: Overview 

programs. The register set can be used for either 8-bit or 16-bit operations. The 
accumulator can be set to eilher a 16-bit or 8-bit register. The advantage of using a 
processor with 16-bit registers over a processor with 8-bit register.; is shorter programs that 
run faster. Such programs cannot be run on 8-bit Apple II computer.;, however. This 
book assumes that you are writing programs to be run in native mode Wlder ProDOS 16 on 
the Apple IIas computer. 

In emulation mode, the 65C816 processor behaves exactly like a 6502 processor, 
including register configurations, stack location, and instruction timing. TIris means that 
you can run programs written for 8-bit Apple computers (such as the Apple IIe and Apple 
IIc) on the Apple lIas computer. Native and emulation modes are discussed in the 
Technical Introduction to the Apple l/GS, and described in detail in the Apple l/GS 
Hardware Reference manual. 

Directives 

The APW Assembler directives allow you to perform a variety of functions. These 
include 

• data definition 

• symbol definition 

• space allocation 

• output listing options 

• conditional assemblies 

• macro expansion listings 

Macros 

The Apple IIas Programmer's Workshop provides a comprehensive set of macros that 
you can use to access the Apple lIas Toolbox, make calls to ProDOS 16 and the shell, and 
perform I/O. The Apple lIas Toolbox includes routines to handle memory management, 
menu management, QuickDraw II routines, support for the Standard Apple Numeric 
Environment, and more. The Apple IIas Programmer's Workshop also provides full 
support for user-defined libraries and macros. 

Standard Apple Numeric Environment 

The APW Assembler supports the Standard Apple Numeric Environment (SANE). SANE 
is based on the IEEE Standard 754 for Binary Floating-Point Arithmetic, which specifies 
data types, arithmetic, and conver.;ions, as well as tools for handling exceptions such as 
overflow and division by zero. SANE supports all requirements of the IEEE standard, and 
goes beyond the specifications oCthe standard by including a library of high quality 
scientific and fmancial functions. 

APDADrajt 1-3 8/6/87 



Chapter 1: Overview APW Assembler Reference 

APW Assembler Concepts 
Many of the concepts described here will seem familiar to you from work with other 
computers, but be careful: the way in which they are implemented on the Apple IIGS may 
be different. To get the most out of the Apple IIOS Programmer's Workshop Assembler 
and to use the operating system and the memory of the Apple IIGS efficiently, you must 
understand and be able to use them in a new context. The descriptions that follow here 
concern only the APW Assembler; if you are writing a program that contains segments in 
high-level languages, see the Apple llGS Programmer's Workshop Reference for 
directions on how to combine the segments. 

Source, Object, and Load Files 

The APW Assembler uses three types of files: source files, object files, and load 
files. Source files are ASCII flles containing 65816 or 65C02 assembly-language code 
and data. A source file consists of either 65816 instructions or 6502 instructions, APW 
Assembler directives, macros, and the data needed by the program. The APW Assembler 
uses source files to produce object files. 

Object files are binary files created by the APW Assembler and used by the APW Linker. 
They are created by the APW Linker and loaded into computer memory by the System 
Loader. Object ftIes contain global symbol defmitions, references to symbols in other 
object flles, the machine code translation of the source program, and the infonnation 
needed by the APW Linker to combine multiple object ftIes. 

Load files are also binary files. Load files are executable files consisting of the combined 
object files and segments from library ftles. 

Symbolic References 

The APW Assembler supports labeling specific instructions, subroutines, or blocks of data 
with names. You can then refer to the name in another pan of the program. For example, 
when you want to execute a subroutine, you generally refer to the subroutine by name. A 
name or label of code or data used in this way is called a symbolic reference (that is, a 
symbol that can be referenced or referred to). The assembler provides three kinds of 
symbolic references: local labels, global labels, and symbolic parameters. See the 
description of labels in Chapter 3 and the description of symbolic parameters in Chapter 6 
for more infonnation. 

Absolute and Relocatable Load Files 

The APW Assembler ORG directive allows you to specify actual locations in computer 
memory where you want source code to execute. A JMP $ 2 0 0 0 causes the instruction at 
this location to be executed. Files that contain source code whose location in memory is 
specified when the program is written or linked are called absolute load files . For program 
code like this to run, the loader must load the instructions and data at the given location or 
not at all. 

APDADraft 1-4 8/6/87 



---

APW Assembler Reference Chapter 1.' Overview 

Relocatable load flies, on the other hand, result when you write a program in which every 
reference to a location in the program is relative to another location, or is made through a 
symbolic reference. Such program code is loaded into memory by the System Loader. 
The actual memory addresses to which jumps (and other instructions that require absolute 
locations) must be made are patched into the program by the System Loader. 

The Apple IIos System Loader and Memory Manager are designed to support 
relocatable load files . Because desk accessories, shell programs, RAM-based tools, and so 
forth, are placed in memory by the System Loader and Memory Manager, absolute code is 
likely to conflict with other code already in memory. The APW Assembler is designed to 
work with relocatable code. Do not write absolute code unless you want to cause untold 
grief to yourself and the people who use your program. 

Converting Source Code into Executable Code 

Convening source code into 65816 machine-language instructions and data that is resident 
in memory is done in the three main steps, shown in Figure 1-1 and described in the 
material that follows. 

1. The source code is assembled. The APW Assembler processes the source flIe in two 
passes, as described in Chapter 2. The output from the assembler is an object file 
consisting of 65816 machine-language instructions, data, and unresolved symbolic 
references. 

Your program can consist of several source flies, each of which is converted into 
one or more object flies by the APW Assembler. 

2. The object flies are passed to the APW Unker, which can combine them into a single 
load flIe and resolve the symbolic references. The linker verifies that every routine 
referenced is included in the load file. If there are any routines that the linker has not 
found when it has finished processing all of the object flies, it either automatically 
searches all of the library flies with APW library prefixes, or searches the libraries 
that you specify with a LinkED command file. The linker replaces symbolic 
references with entries in relocation dictionary tables. The load flIe consists of 
blocks of machine language code that can be loaded directly into memory, plus 
relocation dictionaries that contain the information necessary to patch addresses into 
the memory images when the program is loaded into memory. 

3. At program execution time, the load flIe is loaded into memory by the System 
Loader. The System Loader calls the Apple IIos Memory Manager to request blocks 
of memory for the load file, loads the memory images, and uses the relocation 
dictionaries to put the actual memory addresses into the machine-language code in 
memory. The entire load file is not necessarily loaded into memory at one time; all 
OMF flies are divided into segments that can be processed independently. 

APDADraft 1 -5 816187 



Chapter 1: Overview 

~ Object File 

APW Assembler Reference 

65816 

Object File 

~~~ ____ ~ ____ ~~ __ O_b_J_'e_c_t __ F_i_l_e ____ ~ 

Linker

System Loader

Executable Code
in Memory

Figure I-I. Creating and Assembling an Executable Program on the Apple IIGS

Program Segments

The APW Assembler allows you to segregate large blocks of code or data into segments.
Individual segments can then be assembled and linked independently. Source code
segments are defined by either START, END, or PRIVATE, END assembler directives.
Data segments are defined by either DATA, END directive pairs or PRIVDATA and END
directives. The code between the START, PRIVATE, PRIVDATA or DATA directive and
the next END directive defines a segment. The APW Assembler allows you to assign
unique labels to each START, PRIVATE, DATA, or PRIVDATA directive. The label is the
source code segment name.

When you assemble source code, each source code segment becomes an object segment
and the source code segment name is canied to the object segment. You can determine
which object segments you want to include in any load segment by specifying a load
segment name in your START, DATA, PRIVATE, or PRIVDATA directive. All object
segments with the same load segment names are automatically included in the same load
segment, unless you are using a LinkED command file. In this case you must assign
segments as described in the Apple lIes Programmer's Workshop Reference.

APDADrajt 1-6 8/6/87

APW Assembler Reference Chapter 1: Overview

The advantage of dividing your code and data into segments is that it may be possible to
load a program that is divided into several small segments into memory when the same
program in one or two load segments would not fit. The Apple nGS Memory Manager
takes care of assigning each segment to a block of memory; the System Loader keeps track
of where in memory the segment is loaded, and patches intersegment calls in each segment
as it is loaded.

The other advantage of dividing your code and data into segments is that you can take
advantage of the APW Assembler's ability to do partial assemblies.

File Segments and Partial Assemblies

Each source file segment can be assembled independently by the APW Assembler in a
process referred to as a partial assembly. Each object file segment can be linked
independently by using a LinkEd command file. LinkEd command files are described in
the Apple lles Programmer's WorksJwp Reference.

OMF File Format

All APW Assembler object and load files are in object module format (OMF). Every OMF
file consists of one or more segments; each segment consists of a segment header and the
segment body. The segment header is divided into fields, one of which contains the name
of the segment and another that specifies the type and attributes of the segment. The type
and attribute field can be set with the assembler KIND directive described in Chapter 4 of
this book. The complete description of object module format is contained in the Apple lles
Programmer's WorksJwp Reference.

Static and Dynamic Segments

Static and dynamic segment attributes can be set with the KIND directive. The default
setting for all assembler segments is static. A static segment is loaded into memory at
program boot time, and is not unloaded or moved during execution. The flfst segment of
all programs must be static. Other segments of the same program may be static, but
(especially for large programs) the system will use memory more efficiently if infrequently
used segments are dynamic.

A dynamic segment is a load segment that can be loaded automatically by the System
Loader and Memory Manager while your program is executing. A dynamic segment can
also be removed from memory if the space is needed to load another segment. See the
Apple llGS ProD OS 16 Reference for directions.

Library Files

Library files contain routines that are useful to many different programs. All APW library
files are in object module format. When the linker processes one or more object files and
cannot resolve a symbolic reference, it assumes that it is a reference to a segment in a
libr.uy file. The linker either automatically searches all of the library files with the APW
library prefix or searches the library files that you specify, if you use a LinkEd command
file. You can create your own library files from one or more object files by using the
MakeLib APW utility program.

APDADraft 1-7 8/6/87

Chapter 1: Overview APW Assembler Reference

Backing up Your APW Disk
It is important to make a copy of your APW disk and to run APW from the copy only.
Keep the original disk in a safe place so you can make a new copy if something happens to
the one you have been using.

You can make a copy of your APW disk by using any system utility program or desktop
program you prefer, or you can use APW commands to do the job.

APDADra/t 1-8 816187

APW Assembler Reference Chapter 2: Using The APW Assembler

Chapter 2

Using The APW Assembler

This chapter consists of four sections that describe how to use the Apple IIGS
Programmer's Worlcshop Assembler. The first section, "Writing and Running a Sample
Program," steps through a sample session, giving you a fast way to become acquainted
with assembling, linking, and executing a program. The second section, "The Assembly
Process," describes the assembler listing formats, when error messages are generated, and
how to redirect the program assembly output from the screen to the printer. The third
section, "APW Shell Commands," describes the shell commands and options you'll use to
assemble, link, and run your program; build a macro library; make a dictionary segment;
and do partial assemblies. The fourth section describes the MakeLib utility program and
the Apple IIGS Debugger.

Writing and Running A Sample Program
When you edit an existing source file, the editor is automatically set to the language in
which the file was originally written. To edit the ftle, type the following command at the
shell prompt, #:

EDIT filename

When you open a new ftle, the editor is set to the last language you used. To change the
language type to 65816 instructions and open a new fIle named MYFROG, type the
following commands:

ASM65816
EDIT MYPROG

Use the APW Editor to type in this source code, which when assembled, linked, and run,
displays a simple message.

;

MAIN

APDADrajt

KEEP MYPROG. 1

MCOPY HW. MACROS

LIST ON
START
PHK
PLB
WRITELN j/' Hello
LDA to
RTL
END

New name so linker doesn't
overwrite source file.
Make macro file accessible
to program.
Show source code.
Begin the segment.
Push code bank.
Data bank=code bank

World!'Macro call

2-1

Clear error return.
Return to the shell.
End the segment.

816187

Chapter 2: Using The APW Assembler APW Assembler Reference

To exit from the editor and save your program after you have typed in the code, do the
following:

Press cJ-Q or Control-Q.

Press S

Press E

Causes the editor's Quit menu to appear.

Saves the fIle to the filename used when
the edi tor was entered

Exits from the editor and returns to the shell.

To create your own macro file HW. MACROS containing the single macro WRITELN,type in
the following command:

MACGEN MYPROG HW.MACROS 2/AINCLUDE/M16.UTIL

Now, when you run your program, the assembler will search your macro fIle instead of the
larger system M16 . UT I L fIle. Chapter 5 contains more information on how to build
custom macro library fIles.

To assemble, link, and run the program you have just entered, type the following
command:

RUN MYPROG

The shell checks the language type of MYPROG and calls the APW Assembler. The APW
Assembler uses your source code as input and produces an object fIle as output. When the
assembly is finished, control returns to the shell. The shell calls the linker to resolve all
references and write the load fIle. The shell then executes the program, and the following
message appears on the screen:

Hello, World!

The Assembly Process
The APW Assembler processes the source code in your program one segment at a time.
Each segment goes through two passes. During the first pass, the assembler resolves
local labels and lines that appear outside of program segments that do not contain labels.
When the assembler encounters an END directive, it begins pass two.

When the APW Assembler begins pass two, it starts over at the beginning of your
segment, as defined by a START, PRIVATE, PRIVDATA, or DATA directive. During this
pass, both the object code and the assembly listing are produced, local labels having
already been resolved in pass one. External labels are resolved at $8000, possibly with
some offset value. External direct page offset labels, indicated in the source listing by a
< character before the expression, are resolved at $80.

The output fIle from the second pass of the APW Assembler is in object module format
(OMF). Each APW language compiler produces object code in object module format,
allowing you to link together segments written in different languages. Object module
format is discussed in detail in the Apple lies Programmer's WorkShop Reference.

APDADraft 2-2 816187

--

APW Assembler Reference Chapter 2: UsingThe APW Assembler

When the APW Assembler finishes processing a segment, it generates an alphabetic list of
the local labels in the segment. The assembler then begins processing the next segment.
When all segments have been processed, the assembler lists the global labels and returns
control to the shell. Depending on the command you used to invoke the Assembler, the
shell will either pass control on to the linker or prompt you for your next input. If the
linker is called, it uses the object fIles produced by the APW Assembler, plus any other
object fIles that you specified on the shell command line or in a LinkEd fIle, as input. The
linker combines object files and resolves global labels, giving you an executable load file as
output.

The Assembly Listing

The APW Assembler default does not produce a listing on the screen during pass two. If
the LIST directive is set to OFF in the source code, or the shell command-line parameter
- L is used, each segment as it is processed produces two messages announcing the
segment name and pass number. Any error messages will also be produced. If you
instruct the assembler to list the output by using a LIST ON directive in the source fIle
(and do not have a -Lin the shell command line), or by setting the +L command line
parameter, the assembled code is listed during pass two. Be aware that the - L parameter is
not the same thing as a default; see the Apple IIGS Programmer's Workshop Reference for
a discussion of the differences between the - L parameter and the shell command line
defaults.

Each output line has four parts: a line number, the current relative address, the code that the
Assembler generates (printed in hexadecimal as a sequence of up to four bytes, each byte
separated by a space), and the source statement that generates the code. For example, if
you have a line in your program like one of the lines used to set the data bank equal to the
code bank in the earlier example, the assembled output line might look like this:

Line Address ~
0007 0001 AB

Source Statement
PLB

The first column is the four-digit decimal output line number. The line numbers start at
0001 and increment for each source line whether or not the output line is listed. This
means that even if the listing is turned off for part of the assembly, you can determine how
many lines the APW Assembler has processed. Lines generated by macros are not
considered source lines, so they do not have line numbers, but they are identified by plus
signs (+), as you can see in the fragment that follows.

Line A!1dr~~s ~ Sourc~ Slll~me!lt~
0003 0000 LIST ON
0004 0000 GEN ON
0005 0000 MAIN START
0006 0000 4B PHK
0007 0000 AB PLB
0008 0002 WRITELN it' Hello World! '

0002 + ANOP
0002 80 aD + BRA -B2
0004 OC 48 65 6C +-A2 DC I1'1:&STR',C'Hello World! '
0011 F4 00 00 +-B2 PEA -A21-16
0014 F4 04 00 + PEA -A2

APDADraft 2-3 816187

Chapter 2: Using The APW Assembler

0017
001A

0009 001E
0010 0021
0011 0022

A2 OC 1A +
22 00 00 E1 +-C2
A9 00 00
6B

Pausing in The Assembly

APW Assembler Reference

LOX #$lAOC
JSL $E10000
LDA *0
RTL
END

You can cause the assembly to pause at any time during pass two by pressing any character
key Apple-period. When you press the next key, the assembly resumes. You can cause
the assembler to pause and wait for a key press when it encounters an error by using the +w
shell command line parameter described later in this chapter.

Note: If there is no error, the assembler will pause only if a line or symbol table is
being printed. It will not stop while pass headings containing the segment names
are being printed.

Stopping The Assembly

You can stop the assembly by pressing Apple-period. The APW Assembler responds to
this keyboard input by returning control to the editor. If the assembler happens to be listing
output when you decide to stop, the listing is terminated.

If you have set one or more of the shell command-line parameters, their effect may override
this description of what happens when you stop the assembler. See the descriptions of
these parameters later in this chapter.

Assembler Error Messages

If the APW Assembler detects an error in the source statement and you are printing out the
source, the error is printed on the next line. All error messages are text messages. The
error messages are described in Appendix C.

FILE filename source line number error message

If the APW Assembler encounters any error and the + T shell command line parameter is
set, the assembler returns control to the shell. The sheIl then calls the editor and displays
the error message. Setting shell command-line parameters is described later in this chapter.

If the error is in a macro, the source code line that calls the macro is at the top of the screen.
This allows you to identify the line containing the error, even if pass two has not staned
and no listing has been produced.

Printer Listings

Specifying the + L option with the shell command you used to assemble your program
sends a listing to the screen. Specifying the - L option on the shell command line stops a

APDADraft 2-4 816187

APW Assembler Reference Chapter 2: Using The APW Assembler

listing from being produced. You can redirect program assembly output from the screen to
the printer using the redirection character >:

ASSEMBLE TEST >.PRINTER

You can also code the PRINTER directive with the ON option in your source file, in which
case subsequent lines are sent to the printer. Printed listings are the same as listings to the
screen, except that a form feed character is generated for the printer at the end of each page
and at the end of the listing. Specifying the - L option on the shell command line overrides
both the LIST and PRINTER directives in the source code.

For information on redirecting output and configuring the shell for the printer you are
using, refer to the Apple lIGS Programmer's Workshap Reference manual.

APW Shell Commands
This section discusses the shell' commands that you will use most often when working with
the APW Assembler. With these commands, you can perform the following tasks:

• edit new and existing files
• assemble, link, and execute your program
• perform partial assemblies

• call the APW Linker
• call APW utility programs

Editing Files

There are three shell commands you need to edit a new or existing file. They are

Change thedefauIt language to 65816 assembly language ASM65816
EDIT Transfer control to the editor so that you can edit an existing file or

open a new file
CHANGE Change the language type of an existing file

When you edit an existing program, the editor is set to the language in which the file is
written. When you open a new file, the editor is set to the default language, which is the
last language used or set with a language command. If you need to set the language to
65816 assembly language before calling the editor, use the ASM65816 command, as you
did in the example at the beginning of this chapter. If you need to change the language of
an existing source file, use the CHANGE command.

Assembling, Linking, and Running Programs

There are several shell commands you can use when you are assembling, linking, and
running your program. The following pointers will help you use these commands:

• You must separate the command from its parameters by one or more spaces.

APDADra/t 2-5 8/6/87

Chapter 2: Using The APW Assembler APW Assembler Reference

• You can use . the Right Arrow key to expand command names as described in the Apple
lles Programmer's Workshop Reference. You can use the Up Arrow and Down
Arrow keys to scroll through previously entered commands.

• There are no abbreviations for command names (except for aliases that you have added
to the system).

• All commands and parameters (unless otherwise noted in the command description) can
be entered in any combination of uppercase and lowercase characters.

• When a parameter in a command line conflicts with a source code command, the
command-line parameter takes precedence. When you use neither a source code
command nor a command-line parameter, the default parameter, if one exists, is used.

• If you fail to enter a required parameter, you are prompted for it.

• Any of these commands can be placed in an Exec command file for automatic
execution; Exec files are described in the Apple lles Programmer's Workshop
Reference.

The APW Assembler recognizes the following APW Shell commands and parameters.
Additional APW Shell commands and parameters are described in the Apple lles
Programmer's Workshop Reference.

ASSEMBLE

ASSEMBLE [+EI-E] [+LI-L] [+SI-S] [+TI-T] [+WI-W] filel [file2 ...]
[KEEP=ou(jile] [NAMES= (segi [seg2 [...]])]

This APW Shell command calls the APW Assembler to assemble one or more source files
and produces object fIles. To save the object fIles, you must either include a KEEP
directive in the source cOde, or use the KEEP parameter in this command, or use the
KeepName shell variable. The ASSEMBLE command does not call the linker, so no
executable load fIle is generated. The command parameters are described in the section
"Command Parameters," later in this chapter.

ASML

ASML [+E I-E] [+LI-L] [+S I-S] [+TI-T] [+WI-W] filel [ji/e2 ...]
[KEEP=ou(jile] [NAMES= (segl [seg2 [...]1) I

This shell command assembles one or more source code files and produces object meso If
the maximum error level found by the APW Assembler is equal to, or less than, the
maximum error level allowed, the assembler completes the assembly and control returns to
the shell. The shell then calls the linker to link the object files and any library files into a
load file. The link fails if you do not have a KEEP directive in the source code and you do
not use the KEEP parameter in this command, or the KeepName shell variable. If the error
level is exceeded, the assembly terminates and the linker is not called. The maximum error
level allowed is 0, unless you specify otherwise with the MERR directive. The command

APDADrajt 2-6 816187

~ .. -.

APW Assembler Reference Chapter 2: Using The APW Assembler

parameters are described later in this chapter; the assembler directives are described in
Chapter 4.

ASMLG

ASMLG [+EI-E] [+LI-L] [+SI-S] [+TI-T] [+wl-W] filel (file2 ...]
[KEEP=outjile] [NAMES= (segl [seg2 [...]])]

The command ASMLG assembles one or more source files, links one or more object files
with any library files, and runs the resulting load fIle. ASMLG functions exactly like ASML,
except that when the object files are successfully linked into a load file, the load file is
automatically executed.

LINK

LINK [+LI-L] [+SI-S] [+WI-W] objectjilel objectjile2 .. . [KEEP=outjile]

The L INK shell command calls the APW linker to link together object and library fIles
to create an executable load file. Use this command if you have assembled your source
code with the ASSEMBLE command. See the Apple llGS Programmer's Workshop
Reference for a complete description of the command and the rules for using the KEEP
directive in source code, or on the shell command line, or with the KeepName
variable.

Important: The LINK command can be used only to process object and library
files; do not try to process a LinkEd fIle with the LINK command.

RUN

RUN [+EI-E] [+LI-L] [+SI-S] [+TI-T] [+WI-W]jilel (file2 ...]
[KEEP=outjile] [NAMES= (segl [seg2 [... J])]

The command RUN assembles, Jinks, and executes source and library files. RUN functions
exactly like ASMLG.

Note: To automatically assemble and link two or more object files, use the
ASSEMBLE and LINK commands in an Exec file as described in the Apple llGS
Programmer's Workshop Reference.

Command Parameters

In general, command-line parameters (those described here) override source code options
where there is a conflict.

+EI-E

APDADraft

If you specify +E, the assembler calls the APW Editor when it encounters a
fatal error. The editor displays the error message and the source file at the
line where the error occurred. If you specify - E and a fatal error occurs in

2-7 816187

Chapter 2: Using The APW Assembler APW Assembler Reference

+LI-L

+SI-S

+TI-T

the assembly, you are returned to the shell command line or the Exec file
from which the command was executed.

If you specify + L, the assembler generates a source listing, or if you are
using L INK, a link map of the segments in the object files is produced
(including the starting address, the length in hexadecimal of each segment,
and the segment type). If you specify -L, the assembler does not produce
either a listing or a link map. The default is -L. The L parameter overrides
the LIST directive in the source file.

If you specify +S, the APW Assembler produces an alphabetical listing of
all local symbols following each END directive, and the linker, if it has been
called, produces an alphabetical listing of all global references in the object
file, called a symbol table. If you specify -S, these symbol tables are not
produced. The default is -So The S parameter in this command overrides
the SYMBOL directive in the source file.

If you select +T, the assembly tenninates on any error. The +T parameter
overrides the MERR directive in the source code. If you omit the +T
parameter or select -T, only fatal errors cause immediate termination of the
assembly. If you s~lect both +T and +E, any error causes the assembler to
terminate the assembly and call the APW Editor to display the error and
message.

+w I-W If you select +w, \he assembler stops on encountering an error and waits for
a key press. Press Apple-Period (LJ-.) to tenninate the assembly, or press
any character key or the Space bar to continue. If you select -W, execution
continues without pausing when an error is encountered.

filel fUe2. .. The full or partial pathnames (including the filenames) of the source files to
be assembled. You can also include the full pathnames or partial
pathnames, minus filename extensions, of additional object files to be
passed to the linker. You can include as many source, object, and library
files as you wish, but be sure that at least one of the files is a source file,
except when using the LINK command. The LINK cOmmand requires that
none of the files be source files. Separate the filenames with spaces. See
the Apple JIGS Programmer's Workshop Reference for a discussion of
object files and the order in which they are passed to the linker.

Remember that any library files that you specify are searched in the order in
which you list them on the command line. You should also note that if you
list a library file before an object file, the library file is searched before the
object file is linked. Finally, only the segments that are needed to resolve
references that have not already been resolved are extracted from the library
files.

KEEP=outfile Use this parameter to specify the pathname or partial pathname (including
the filename) of the output file, or the executable load file if you are using
LINK . Be sure that there are no spaces between KEEP and the equal sign
(=).

APDADraft 2-8 8/6/87

APW Assembler Reference Chapter 2: Using The APW Assembler

See the Apple IIGS Programmer's Workshop Reference for a complete
description of the KEEP parameter, what to do with partial assemblies, and
how to compile source files in other languages.

NAMEs=(segl seg2 ...) This parameter causes the APW Assembler to perform a partial
assembly. The operands seg 1 seg2 ... specify the names of the segments to
be assembled. The segment names are separated by one or more spaces.
There must not be any spaces between NAMES and the equal sign (=). The
APW Linker automatically selects the latest version of each segment when
the program is linked.

You assign names to object segments with START, PRIVATE,
PRIVDATA, or DATA directives. The object file created when you use the
NAMES parameter contains only the object segments that you list in this
parameter. When you link a program, the linker scans all the files whose
ftlenames are identical except for their extensions, and takes the latest
version of each segment. Therefore, you must use the same output filename
for every partial assembly of a program. See the Apple IIGS Programmer's
Workshop Reference for examples and information on using the NAMES
parameter with multiple source filenames on the shell command line

Note: Segment names are case sensitive

objectfilel objectfile2... The full pathname, including filename, minus ftlename
extensions, of the object ftles to be linked. You can link several object files
into one load file with a single LINK or ASML command You can also
search several library files. They are linked in the order in which they are
listed. Use the full or partial pathnames, minus filename extensions, of all
the object files to be included. Separate the pathnames with spaces. See the
Apple lIGS Programmer' oS Workshop Reference for a description of full
and partial pathnames and fllename extensions.

You can set the KeepName shell variable instead of using the KEEP assembler directive,
or the KEEP parameter on the command line. If you use KeepName, the shell uses the
value you set to name the output files. This name has precedence over any value set with
the KEEP assembler directive. KeepName is fully described in the Apple llGS
Programmer's Workshop Reference.

If you use neither the KEEP parameter, nor the KEEP assembler directive, nor the
KeepName shell variable, then the object modules are not saved at all. In this case, the
link cannot be performed, because there is no object module to link.

APDADra/t 2-9 8/6/87

Chapter 2: Using The APW Assembler APW Assembler Reference

Appending Files

When the assembler recognizes an APPEND directive in an assembly source file, it returns
control to the shell which opens the file named in the APPEND operand, bringing in a
language translator, if needed. If the current file and the new file are both in assembly
language, the effect is the same as if the two files were concatenated into a single file. This
means that flags that are set in the first file remain set in the second file and global EQU
directives set in the first file keep the symbols available to the second file. See the Apple
lIes Programmer's Reference for information about appending assembly-language source
files to source ftIes in other languages.

Partial Assemblies

If you are using partial assemblies, note the availability of the shell command CRUNCH. CRUNCH
combines all the object modules created by partial assemblies into a single file.

Assembler directives that are global in scope are resolved whether or not they are in one of
the subroutines assembled. These directives are

ABSADDR
APPEND
CASE
COPY
DIRECT
ERR
EXPAND
GEN
GEQU
IEEE
INSTIME
KEEP
LONGA
LONGI
LIST
MCOPY
MDROP
MERR
MLOAD
MSB
NUMSEX
OBJCASE
PRINTER
RENAME
SETCOM
SYMBOL
65816
65C02
TITLE
TRACE

APDADraft

Allow absolute addresses
Append a source file
Specify case sensitivity
Copy a source file
Promote direct page locations to absolute addresses
Print errors
Expand DC statements
Generate macro expansions
Define a global symbolic constant
Enable IEEE format numbers
Show instruction times
Keep an outpu t file
Select accumulator size
Select index register size
List output
Copy a macro file
Drop a macro file
Maximum error level
Load a macro file
Set or clear most significant bit
Set byte order in floating point numbers
Specify case sensitivity in object files
Send output to the printer
Rename an operation code
Set comment column number
Print symbol tables
Enable 65816 operation codes
Enable 65C02 operation codes
Print header
Observe assembler processing

2 -10 816187

APW Assembler Reference Chapter 2: Using The APW Assembler

The operands of these directives cannot contain labels unless they appear inside a program
segment, and the segment that they appear in is assembled. If you do not follow these
rules, an invalid operand enor will result.

Listings and error messages are sent to the screen unless you include a PR INTER directive with the
ON option in your source file, redirect output to a disk file or the printer in the command line, or
use command-line parameters to suppress the output. No listing is the default. Enor messages

. cannot be suppressed.

The APW Linker

The APW Linker takes object files created by the APW Assembler and library files and generates
load files. The linker resolves external references and creates relocation dictionaries which allow
the System Loader to relocate code at load time. The linker supports dynamic and static data
segments, dynamic and static code segments, and library files among other things.

The linker is called automatically by the shell commands ASML, ASMLG, and RUN. The
linker can also be called directly by using the L INK command. A LinkEd command file
can be used to create dynamic segments, search specified library files, link object files in a
given order, extract specific segments to link, and set load addresses for nonrelocatable
code. LinkEd commands can be appended to the last file of the source code, or can be
assembled and executed separately using the shell commands ASSEMBLE or ALINK. The
linker and i.ts uses are described in detail in the Apple IIes Programmer's Workshop
Reference manual.

Making Library Files
The MakeLib utility creates a library file (ProDOS 16 filetype $B2) from one or more object
files. Each library file consists of one or more segments, and each segment can contain as
many subroutines as you care to put in it. You specify one Or more object files to be
included in the library file. MakeLib concatenates the files and creates a special segment at
the beginning of the file called the library dictionary segment. The library dictionary
segment is the first segment of a library file; it contains the names and locations of all the
global symbols in the flIe. (A global symbol is a label in one segment that can be
referenced in another segment, as opposed to a local symbol, which can be used only
within the segment in which it is defined.) The linker uses the library dictionary segment to
find the segments it needs.

The library dictionary segment makes it possible for the linker to search a library file for
global symbols much more rapidly than it would be able to search an object flIe.
Consequently, the linker will search a library dictionary segment multiple times if necessary
to find segments referenced by other segments in the library file. The sequential order of
the segments in a library file is therefore not important. If you use several library files, on
the other hand, the order in which the files are searched is important: if the linker firs!
searched file A and then file B, for example, it could resolve a reference made in file A to a
global symbol in file B, but could not resolve a reference made in file B to a symbol in file
A. It is for that reason that MakeLib allows you to include several object files in a single
library flIe.

APDADrajt 2 - 11 816187

Chapter 2: Using The APW Assembler APW Assembler Reference

Note: The linker does not recognizejile. ROOT andjile. A as related to each other in
a library. They are treated as separate and equal files rather than two files in a
sequence. This means that private labels cannot be accessed because they are not
available outside of the object file in which they are defmed . .

The MakeLib utility is invoked by the APW Shell command MAKELIB. The syntax for this
command is

MAKELIB [-F] [-D] libjile [+ objectjile ...] [- objectjile ...] [A objectjile ...]

You can use this command to either create or modify a library file. The parameters for this
command are as follows:

- F If you specify -F, a list of filenames included in libjile is produced. If you
omit this option, no filename list is produced.

-D If you specify -D, the dictionary of symbols in the library is listed. Each of
the listed symbols is a global symbol occurring in the library file. If you
omit this option, no dictionary is produced.

libjile The full pathname or partial pathname (including the filename) of the library
file to be created, read, or modified.

+ objectjile The full pathname or partial pathname (including the filename) of an object
file to be added to the library. You may add as many object files as you
wish. Separate object filenames with spaces.

- objectjile The filename of a component file to be removed from the library. This
parameter is a filename only, not a pathname. You may remove as many
files as you wish. Separate the filenames with spaces.

A objectjile The full pathname or partial pathname (including the filename) of a
component file to be removed from the library and written out as an object
file. If you include a prefix in this pathname, the object file is written to that
prefix. You may specify as many files as you wish to be written out as
object files. Separate the filenames with spaces.

Note: You must specify at least one object file or option, otherwise, the message No
action requested appears on the screen.

To create a library file using the APW Assembler, follow this procedure:

1. Write one or more source files in which each library subroutine is a separate
segment. The first routine should be a dummy segment (the segment consists of a
START directive, followed by an END directive).

2. Assemble the segments, specifying a unique name for each with, for example, the
KEEP parameter in the ASSEMBLE command. If you have a multisegment program
(a dummy segment followed by all of the rest of your library routines), it is saved as
two object files, the first file has the extension . ROOT appended to its name and the

APDADraft 2 -12 816187

APW Assembler Reference Chapter 2: Using The APW Assembler

second fIle (containing the library routines) has the extension . A appended to its
name.

3 . Run the MakeLib utility, specifying each object file to be included in the library fIle.
For example, if you assembled two files, you would create the object files
LIBOBJ1 . ROOT, LIBOBJ1.A, LIBOBJ2 . ROOT, and LIBOBJ2 .A. Because
LIBOBJl . ROOT and LIBOBJ2 . ROOT contain dummy segments, you do not want
to include them in your library. If your library fIle is named LIBF ILE, then your
command line will be

MAKELIB LIBFILE +LIBOBJ1.A +LIBOBJ2.A

4. Place the new library file in the library prefix (prefix 2). You can accomplish this in
step 3 by changing your command line to

MAKELIB 2/LIBFILE +LIBOBJ1.A +LIBOBJ2.A

You could also put your new library file in the subdirectory by using the MOVE
command after the file is created.

The Apple IIGS Debugger and DumpOBJ

The Apple IIGs. Debugger and the DumpOBJ utility program are both useful tools for
debugging assembly-language programs.

With the Apple IIGS Debugger, you can trace the execution of your program, stepping
through the code one instruction at a time or executing at full speed. In either case, the
debugger will display the contents of the registers, the stack, the direct page, and 384 bytes
of RAM at any breakpoint you specify. The Apple IIGS Debugger displays in 80-column
mode only, but allows you to switch between its own display and the display of the
program being tested. The Apple IIGS Debugger is described in the Apple IIGS Debugger
Reference.

The DumpOBJ utility program is useful for debugging assembly-language code and for
whenever you want to see the contents of an object file. DumpOBJ writes the contents of
an object file to standard output (usually the screen). You can list either in object module
format (OMF), 65816 machine-language disassembly, or hexadecimal. You also have the
choice of listing only segment headers, or only the names of segments and their types, or
only operation codes and operands, or a variety of other options. The complete description
of DumpOBJ is found in the Apple IIGS Programmer's Workshop Reference.

APDADraft 2 -13 816187

" -

Part II

Language Reference

APW Assembler Reference
APW Assembly Statements

Chapter 3:

Chapter 3

APW Assembly Statements

Each line of an assembly-language source file is either an assembly statement or a
comment. The APW Assembler allows only one assembly statement per source line.
Assembly statements can consist of any of the following:

• a 65816 instruction (this includes 6502 and 65C02 instructions)

• an APW Assembler directive

• an APW macro

All of the APW Assembler statement types have the same syntax.

Assembly Statement Formats
An assembly statement can consist of up to four fields:

[label] OPERATION [operand] [comment]

The operation field is usually the only one required. Any time two or more fields appear in
one assembly statement, they must be separated by at least one space.

An APW Assembler source file line can be up to 255 characters long. The APW Editor,
however, allows only 80-character lines. If you are using an 80-column printer, source file
lines longer than 57 columns will cause printed assembler output to. wrap around to the next
line. To prevent this from happening, you can reset the APW Editor's end-of-line marker
from its default of 80 columns to 57 columns, or change the font on your printer. See the
Apple llGS Programmer's Workshop Reference manual for more information on the APW
Editor.

Labels
Labels can represent either the address of data or the address of an instruction. Labels are
usually optional. Exceptions are the DATA, ENTRY, EQU, GEQU, PRIVATE, PRIVDATA,
and START directives, where labels are required. Ifpresent, the label must begin in
column 1 with an alphabetic character, an underscore, c...), or a tilde (-). Labels may be 1
[0255 characters in length and consist of leiters, digits, underscores U, and tildes (-);
they may not contain imbedded spaces.

Note: Labels beginning with a tilde character (-) are reserved for system use.

APDADraft 3-1 816187

Chapter 3: APW Assembly Statements APW Assembler Reference

The APW Assembler is case insensitive by default, so that the labels, Co n sol e and
CONSOLE mean the same thing. The underscore (..J is significant in labels. This means
that THISLABEL and THIS LABEL are different.

NOTE: It is best not to use A as a label, because it can cause confusion between
absolute addressing using the label A and accumulator addressing.

Label Scope

A label may be private, global, or local in scope. A private label is not available outside of
the object me in which it is defined. A global label can be referenced from any segment in
the program, while a local label has validity only within the segment where it is defined.
You can define a local label with the same name as a global label. The APW Assembler
chooses the local label in preference to the global label. A particular label can be defined in
each code segment in the program, but only once per segment. Labels within data
segments can be defined once per program. They have local scope, but will be flagged as
errors if duplicates appear within other data segments.

The APW Assembler directives that define global labels are START, DATA, GEQU,
ENTRY, P R I VATE, and P RIVDATA.

A label defined by the GEQU directive is available at assembly time to source code that
follows it, while the actual values of all other global labels are available only at link time.
Consequently, you should always use a GEQU directive to define a direct page or long
address label that will be used in more than one segment. That way, the assembler can
automatically determine which addressing mode is most appropriate.

The following example shows how both local and global labels can be used. This code
would produce an error in SEG! because the label LAB! is not defined globally. It is
defined locally only for SEG2. It is legal, however,for both segments to use the local label
LAB2, which has a different value in each case.

SEG!
LAB2

SEG2
LAB2
LABl

S TART
LDA
END

START
LDX
LDY
END

LAB!

LAB2
LABl

Case Sensitivity in Labels

You can make a label case sensitive to the APW Assembler by specifying the ON option
with the CASE directive in your source code. CASE OFF reverses the effect. The
directive OBJ CASE ON causes labels sent to the object me to be case sensitive, whether or
not they are treated as case sensitive inside the assembler. Specifying the option OFF with
the directive OBJCASE makes exported labels case insensitive, whether or not they are
treated as case sensitive inside the assembler. The default is OBJCASE OF F. Setting

APDADraft 3-2 816187

APW Assembler Reference
APW Assembly Statements

Chapter 3:

CASE also sets OBJCASE, so if the exported behavior is to be different from the local
'-- behavior, you must specify the OBJCASE directive last.

Attributes and Labels

Attributes can tell you whether or not a label has been defined, whether or not a parameter
has been passed, or the kind of statement that generated the label. Attributes may be
thought of as functions that return information about labels. Attributes are resolved dwing
expression evaluation.

The form of an attribute used with a label is

X: Label

where the X stands for C, L, TorS. These attributes are defined as follows:

C
L
T
S

Count Attribute

Count attribute
Length attribute
Type attribute
Settings attribute (described in Chapter 4)

The count attribute is used to tell whether or not a label has been defined. The count
attribute of an undefined label is zero. The count attribute of a defined label is one. Several
examples of the count attribute are given in Chapter 6.

Length Attribute

The length attribute of a label is the number of bytes created by the line where the label was
defined. This makes counting characters very easy as shown by the example of how to
count characters in a string:

STRING DC
DC

C'Rello, World'
Il'L:STRING'

The length of the string in the first line will be used as the value for the second DC
directive. The second DC directive will contain a value equal to a decimal 12: IO letters,
plus I comma, plus I space.

Note: The length attribute returns a valid value only if the length is in the range 0-
255.

Type Attribute

The type attribute is used to determine the kind of statement that generated the label. The
character that is returned for each type is indicated in the table below.

APDADrajt 3-3 8/6/87

Chapter 3: APW Assembly Statements APW Assembler Reference

Character

A
B
C
D
E
F
G
H
I
K
L
M
N

o
P
S

Meaning

Address-type DC <lirective
Boolean-type DC <lirective
Character-type DC <lirective
Double-precision floating-point type DC <lirective
Extended floating-point DC <lirective
Floating-point type DC <lirective
EQU or GEQU <lirective
Hexadecimal-type DC <lirective
Integer-type DC directive
Reference-address type DC directive
Soft reference type DC <lirective
Instruction
Other assembler directives
ORG <lirective
ALIGN directive
D S <lirective

" ', .'

If a DC directive contains more than one type of variable, the first type in the line
detennines the type attribute. For example, the LDA instruction in this example is not
assembled because its type attribute is C (character) rather than A (address).

LAB DC A' ABCD " H' ABCD '
AIF T:LAB='A',.A
LDA no

.A

Operation Code
The operation code is required in all assembly statements. It can contain either an
assembly-language instruction to the 65C816 processor, a <lirective to the APW Assembler,
or a macro call.

Normally, the operation code starts in column ten. The editor has a tab stop set to this
column for your convenience. If there is no label, however, the operation code can start in
any column greater than two.

65816 Instruction Set

The operation codes for the 65816 instruction set used by the Apple nOS are three-character
alphabetic strings. While this manual assumes that you are familiar with the 65816
instruction set, it is summarized here for your reference. Appendix A contains a list of the
instructions, their addressing modes, and the number of bytes required by each.

The Apple nos can also operate in 6502 emulation mode. In this mode, the Apple nos
emulates the 6502 processor exactly, including the configuration of the registers, stack
location, and instruction timing.

APDADraft 3-4 816187

"-...

APW Assembler Reference
APW Assembly Statements

Chapter 3:

ADC Add With Carry adds the data located at the address specified by the operand to
the contents of the accumulator; adds one to the result if the carry flag is set, and
stores the fmal result in the accumulator.

AND Logically ANDs accumulator contents with the contents of memory specified by
the operand. Stores the result in the accumulator.

ASL Shift Memory Or Accumulator Left shifts the contents of the location specified
by the operand left one bit. The arithmetic result of the operation is an unsigned
multiplication by two.

BCC Branch IT Carry Clear tests the carry flag in the P status register. IT the flag is
clear, a branch is taken to the displacement specified in the operand field; if the
flag is set, the instruction immediately following Bce is executed.

BCS Branch IT Carry Set tests the carry flag in the P status register. IT the flag is set,
a branch is taken to the displacement specified in the operand field; if it is clear,
the instruction immediately following the BCS instruction is executed.

BEQ Branch IT Equal tests the zero flag in the P status register. If it is set, the last
value tested was zero and a branch is taken to the displacement specified in the
operand field; if it is clear, the instruction immediately following BEQ is
executed.

BIT Test Memory Bits Against Accumulator sets the P status register flags based on
the result of two different operations. First, it sets or clears the n flag to reflect
the high-bit value of the data at the location specified by the operand, and sets or
clears the v flag to reflect the contents of the next-ta-highest bit of the data.
Second, it logically ANDs the data with the contents of the accumulator and sets
the z flag if the result is zero; clears it if the result is not zero. The contents of
the accumulator are unaffected.

BMI Branch IT Minus tests the negative flag in the P status register. IT it is set, the
high bit of the value which most recently affected the n flag was set, and a
branch is taken. IT the negative flag is not set, the instruction following BMI is
executed.

BNE Branch If Not Equal tests the zero flag in the P status register. It is clear if the
value just tested was not zero, and a branch is taken to the displacement
specified in the operand field. IT the zero flag is set, the value tested was zero,
and the instruction following BNE is executed.

BP L Branch If Plus tests the negative flag in the P status register. It is clear if the
last value that affected the negative flag had its high bit clear (a two's
complement positive number), the branch is taken. IT the flag is set, the high bit
of the last value was set (a two's complement negative number), the instruction
immediately following BPL is executed.

BRA Branch Always branches with no tests. BRA, is in effect, a two byte
unconditional JMP that is relocatable. Because the BRA instruction uses
displacements from the program counter, its branch targets are limited to plus or
minus 128 bytes from the first byte following the ERA instruction.

APDADraft 3·5 8/6/87

Chapter 3: APW Assembly Statements APW Assembler Reference

BRK Software Break forces a software interrupt. BRK is not affected by the interrupt
disable flag.

BRL Branch Always Long is a three-byte relocatable instruction; the two bytes
immediately following the operation code form a sixteen-bit signed
displacement from the program counter. Once the branch address is calculated,
the result is loaded into the program counter and control is transferred to the
new location.

BVC Branch If Overflow Clear tests the overflow flag in the P status register. If it is
clear, a branch is taken; if it is set, the instruction immediately following BVC is
executed.

BVS Branch If Overflow Set tests the overflow flag in the P status register. If the
flag is set, a branch is taken; if it is clear, the instruction following BVS is
executed.

CLC Clear Carry Flag clears the carry flag in the status register.

CLD Clear Decimal Mode Flag clears the decimal mode flag in the status register.

CLI Clear Interrupt Disable Flag clears the interrupt flag in the status register.

CLV Clear Overflow Flag clears the overflow flag in the status register.

CMP Compares the contents of the accumulator with the data specified by the
operand. Sets the carry, zero, and negative flags based on the result. The
comparison is of unsigned binary values only (except for signed comparison for
equality).

COP Co-Processor Enable causes a software interrupt. The COP instruction must be
followed by a signature byte.

CPX Compare X Register compares the X register with the data specified by the
operand. Sets the carry, zero, and negative flags based on the result. The
comparison is of unsigned values only (except for signed comparison for
equality).

Cpy Compare Y Register compares the Y register with data specified by the operand.
Sets the carry, zero, and negative flags based on the result. The comparison is
of unsigned values only (except for signed comparison for equality).

DEC . Decrement subtracts one from the value at the location specified by the operand.

DEX Decrement X subtracts one from the value in the X register.

DEY Decrement Y subtracts one from the value in the Y register.

EOR Exclusive-ORs accumulator with the data specified by the operand. Stores the
result in the accumulator.

APDADraft 3-6 8/6/87

'--

",
APW Assembler Reference

APW Assembly Statements
Chapter 3:

INC

INX

INY

J ML

JMP

JSR

Increment adds one to the contents of the location specified by the operand.

Increment X adds one to the value in the X register.

Increment Y adds one to the value in the Y register.

Jump Long transfers control to a Ubit (long) address specified by the operand
field.

Jump transfers control to the address specified by the operand field.

Jump To Subroutine transfers control to the subroutine at the address within the
current program bank specified by the operand, after first pushing the current
program counter onto the stack, as a retumaddress.

",
J SL Jump To Subroutine Long transfers control to the subroutine at the 24-bit

address that is the operand, after first pushing a 24-bit (long) return address
onto the stack. This return address is the address of the last instruction byte
(the fourth instruction byte, or the third operand byte), not the address of the
next instruction.

LDA Load Accumulator loads the accumulator with the data specified by the operand.

LD X Load X Register loads the X register with the data specified by the operand.

LDY Load Y Register loads the Y register with the data specified by the operand.

LSR Logical Shift Right logically shifts the contents specified by the operand right
one bit

MVN Move Next copies a block of memory to a new location. The beginning address
of the source for the move is in the X register. The beginning address of the
destination is in the Y register, and the length of the move is in the C (double
accumulator) register. '

Note: The MVN instruction always copies one more byte than is specified in the
accumulator.

MVP Move Previous copies a block of memory to a new location. The ending
address of the source for the move is in the X register. The ending address of
the destination is in the Y register, and the length of the move is in the C
(double accumulator) register.

Note: The MVP instruction always copies one more byte than is specified in the '
accumulator.

NOP No Operation increments the program counter once to point to the next
instruction.

APDADraft 3- 7 816187

Chapter 3: APW Assembly Statements APW Assembler Reference

ORA OR Accumulator ORs the accumulator with the date specified by the operand.
Each bit in the accumulator is ORed with the corresponding bit in memory. TIle
result is stored in the accumulator.

P EA Push Effective Absolute Address pushes the two bytes in the operand onto the
stack. This operation always pushes sixteen bits of data (typically an absolute
address), regardless of how the m and x mode select flags are set.

PE r Push Effective Indirect Address pushes two bytes to the stack. The location of
the two bytes is detennined by adding the contents of the data byte immediately
following the operation code to the direct register (D). PEr implies that the
sixteen-bit data pushed is an address, although it can be any sixteen bits of data.
This operation always pushes sixteen bits of data, irrespective of the settings of
the m and x mode select flags.

P ER Push Effective Relative pushes the effective relative indirect address onto the
stack. This instruction adds the current value of the program counter to the
sixteen-bit signed displacement in the operand, and pushes the result onto the
stack. This operation always pushes sixteen bits of data, no matter how the m
and x mode select flags are set.

PHA Push Accumulator pushes the contents of the accumulator onto the stack. This
instruction pushes 8-bits if m is equal to I, or 16-bits if m is set to O.

PHB Push Data Bank Register pushes the contents of the data bank register onto the
stack. This instruction always pushes 8-bits or one byte.

PHD Push Direct Page Register pushes the contents of the direct page register onto
the stack. This instruction always pushes 16-bits or two bytes.

PHK Push Program Bank Register pushes the contents of the program bank register
onto the stack. This instruction always pushes 8-bits or one byte.

PHP Push P register pushes the contents of the processor status register onto the
stack. This instruction always pushes 8-bits or one byte.

P HX Push X Register pushes the contents of the X register onto the stack. This
instruction pushes 8-bits if m is equal to 1, or 16-bits if m is set to O.

P HY Push Y Register pushes the contents of the Y register onto the stack. This
instruction pushes 8-bits ifm is equal to I, or 16-bits ifm is set to O.

P LA Pull Accumulator pulls the value on the top of the stack into the accumulator.
This instruction pulls 8-bits if m is equal to I, or 16-bits if m is set to O.

P LB Pull Bank pulls the eight-bit value on top of the stack into the data bank register
B and switches the data bank to the new value. All instructions that reference
data specifying sixteen-bit addresses get their bank address from the value in the
data bank register. This is the only instruction that can modify the data bank
register.

APDADraft 3-8 8/6/87

APW Assembler Reference
APW Assembly Statements

Chapter3:

PLD Pull Direct pulls the sixteen-bit value on top of the stack into the direct page
register D. Switchs the direct page to the new value.

PLP Pull Processor pulls the eight-bit value on top of the stack into the processor
status register P.

P LX Pull X Register pulls the value on the top of the stack into the X register. This
instruction pulls 8-bits if m is equal to I, or 16-bits if m is set to O.

PLY Pull Y Register pulls the value on the top of the staCk into the Y register. This
instruction pulls 8-bits if m is equal to I, or 16-bits if m is set to O.

REP Reset Status Bits scans bits set to one in the operand byte, and resets the
corresponding bits in the status register to zero. Zeros in the operand byte
cause no change to their corresponding status register bits. _

ROL Rotate Memory Or Accumulator Left moves the contents of the location
specified by the operand left one bit. The leftmost bit is transferred into the
carry flag; the rightmost bit takes the value in the carry flag. When m is equal to
0, the leftmost bit is bit 7; when m is set to I, the leftmost bit is bit 15.

ROR Rotate Memory Or Accumulator Right moves the contents of the location
specified by the operand right one bit. The leftmost bit takes the value in the
carry flag; the rightmost bit, bit zero, is transferred into the carry flag. When m
is equal to 0, the leftmost bit is bit 7; when m is set to I, the leftmost bit is bit
15.

RTI Return From Interrupt pulls the status register and the program counter from the
staCk. If the processor is set to native mode (e=O), the program bank register is
also pulled from the staCk.

RTL Return From Subroutine Long pulls the program counter (flISt incrementing the
sixteen-bit staCk value by one), then the program bank register from the stack.

RTS Return From Subroutine pulls the program counter from the stack, after
incrementing it by one.

SBC Subttact With Borrow From Accumulator subtracts the data located at the
address specified by the operand from the contents of the accumulator
(subtracting one more if the carry flag is clear), and stores the result in the
accumulator.

SEC Set Carry sets the carry flag in the status register.

SED Set Decimal sets the decimal mode flag in the status register.

SE I Set Interrupt sets the interrupt disable flag in the status register.

SEP Set Status Bits sets each bit in the status register to the corresponding bit in the
operand byte. Zeros in the operand byte cause no change to their corresponding
status register bits.

APDADraft 3-9 8/6/87

Chapter 3: APW Assembly Statements APW Assembler Reference

STA Store Accwnulator stores either the 8 or 16-bits of the accwnulator at the
address specified by the operand.

STP Stop Processor shuts down the processor until a reset occurs.

STX Store X stores the contents of the X register at the memory address specified by
the operand. This instruction stores either 8 or 16-bits, depending upon the size
of the X register.

STY Store Y stores the contents of theY register at the memory address specified by
the operand. This instruction stores either 8 or 16-bits, depending upon the size
of the Y register.

STZ Store Zero stores zero in the memory location specified by the operand.

TAX Transfer Accumulator To X transfers the contents of the accwnulator to the x
register. If the registers are different sizes, the size of the X register determines
the nwnber of bits transferred.

TAY Transfer Accumulator To Y transfers the contents of the accumulator to the Y
register. If the registers are different in size, the size of the Y register
determines the number of bits transferred.

TCD Transfer C To D transfers the contents of the 16-bit accumulator to the direct
page register, regardless of how the accwnulator memory mode flag is set.

TCS Transfer C To S transfers the contents of the 16-bit accumulator to stack
pointer.

TDC Transfer D To C transfers the contents of the direct page register to the 16-bit
accwnulator. The transfer is always sixteen bits, regardless of the setting of the
accumulator memory mode flag.

TRB Test And Reset Bits ANDs to clear any bit in the memory operand that is set in
the A accwnulator.

TSB Test And Set Bits sets any bit in the memory operand that is set in the A
accwnulator.

TSC Transfer S To C moves the value in the sixteen-bit stack pointer S to the
sixteen-bit accumulator C.

TSX Transfer S To X transfers the contents of the stack pointer S to the X register.

TXA Transfer X To A transfers the contents of the X register to the accumulator. If
the registers are different sizes, the nwnber of bits transferred is determined by
the accwnulator.

TXS Transfer X To S transfers the value in the X register to the stack pointer

TXY Transfer X To Y transfers the value in the X register to the Y register.

APDADrajt 3- 10 , 816187

APW Assembler Reference
APW Assembly Statements

Chapter 3:

TYA Transfer Y To A transfers the value in the Y register to the accumulator. If the
registers are different sizes, the number of bits transferred is determined by the
size of the accumulator.

TYX Transfer Y To X transfers the value in the Y register to the X register.

WAr Wait For Interrupt pulls the RDYpin low. Power consumption is reduced and
RDY remains low until an external hardware interrupt (NMI, IRQ, ABORT, or
RESET) is received.

WDM Reserved for future expansion.

XBA Exchange B And A exchanges the contents of the low-order and high-order
bytes of the 16-bit accumulator, where B is the high-order byte and A is the
low-order byte.

Important: All flags are set according to the value of the low byte or
accumulator after the exchange

XCE Exchange Carry And Emulation Bits shifts the processor between 6502
emulation mode and 16-bit native mode. The operation exchanges the carry bit
in the P register with the value of the e bit. If e = I, the processor executes in
emulation mode; if e = 0, it executes in native mode.

The APW assembler allows substitutions for the following standard operation codes:

Standard

BCC
BCS
CMP
DEC A
INC A

Also Allowed

BLT
BGE
CPA
DEA
INA

APW Assembler Directives

The APW Assembler directives, which are listed in Chapter 4, tell the APW Assembler to
do such things as define program data, reserve space in memory, or send output to a
printer.

APW Assembler Macro Calls

Macro calls tell the APW Assembler tQ insert a group of instructions into the code. The
assembler directives that you need to use the predefmed macros in the macro libraries are
described in Chapter 5. The directives that you need to write your own macro calls are
given in Chapter 6.

APDADraft 3-11 8/6/87

Chapter 3: APW Assembly Statements APW Assembler Reference

Operands
An operand provides information that the operation code uses to perfonn its function. In
the case of 65816 instructions (including 6502 and 65C02 instructions), an operand is
generally an expression that resolves to an address. There must be at least one space
between the operation code and the operand. The operand normally starts in column
sixteen; the editor provides a tab stop there for your convenience. The operand may not
start in any column at or beyond that specified by the SETCOM directive (normally 41);
otherwise, the operand will be considerd a comment.

Instruction Operand Formats

When the operation code is a 65816 instruction, the operand that follows it consists of an
expression, and, if the addressing mode requires it, an addressing mode indicator.
Together they tell the assembler which addressing mode you want to use with the
instruction.

The choice of addressing mode determines where an instruction gets its data. If no
addressing mode indicator is present, the default addressing mode for the instruction is
determined based on the value of the expression.

For example, the difference between two-byte indirect addresses and three-byte indirect
addresses is represented by the presence of the following indicators:

operands enclosed by () are 2-byte indirect addresses

operands enclosed by [] are 3-byte (long) indirect addresses.

Immediate addressing operands are indicated by a number sign (#) prefix. If the operand
has a # operator, or #<, it means to use the least significant byte, or bytes, from the
expression for the address when forming immediate operands. For example:

LOA 41$123456

causes $56 to be generated as the immediate operand in eight-bit mode and $3456 to be
generated in 16-bit mode.

The operators #> or / mean shift the expression value right by one byte (divide by 256).
For example:

LOA #>$123456

causes $34 to be generated in eight-bit-mode and $1234 to be generated in sixteen-bit
mode.

The 1\ operator means to shift the expression right by two bytes (divide by 65536). For
example

LOA #~$123456

causes $12 to be generated in 8-bit mode and and $0012 to be generated in 16-bit mode.

APDADraft 3-12 8/6/87

APW Assembler Reference
APW Assembly Statements

Chapler 3:

LDA # ft $1234 5 678

causes $34 to be generated in 8-bit mode and and $12 3 4 to be generated in 16-bit mode.

Finally, instructions that use registers, such as the index registers or the stack pointer,
generally include the register letter (x, Y, or S) in the operand. The register letter is
separated by a comma from the operand value and positioned relative to other address mode
indicators such as parentheses and brackets to signify the kind of effective address
generation desired.

Table 3-1 shows the legal operand syntax for the 65816 addressing modes. It uses the
symbols expr to refer to any expression, and dp, abs, and long, to refer to constant
expressions that resolve to one, two, or three bytes respectively.

Table 3-1. Operand Symbol Types

This table summarizes the abbreviations used for legal values in the addressing mode
syntax examples:

apr

dp

abs

long

An expression without regard to magnitude.

An expression that resolves to a number in the range 0-255 for the
direct page or stack offset. Addresses of other lengths can be
forced to one-byte with the less than «) prefix.

An expression that resolves to a two-byte address. A two-byte
address can be forced (regardless of the actual length of the value)
by preceding the expression with a vertical bar (I).

An expression that resolves to a three-byte address. Addresses of
other lengths can be forced to three-bytes with the greater than (»
prefix

The actual value, or if that is not known, the presumed range of an expression is used in
addition to other address mode indicators to determine the appropriate operand size so that
the operation code with the correct addressing mode for the instruction will be generated.
When the < character is prefixed to an expression, it forces evaluation as an 8-bit (one byte)
value (less than $100). When a > is prefixed to an expression, it forces evaluation as a 24-
bit value (greater than $FFFF). When> is used, for example, as a prefix to a value such as
$36 (for example, LDA >$3 6), the absolute long addressing mode is used rather than the
direct page mode that would normally be used with an operand value of $36. When the 1

operator is prefixed to an expression, it forces evaluation as a l6-bit value (greater than
$FF but less than $100(0). If the assembler does not know the actual value of a relocatable
or external expression, it assumes a 16-bit value. If a modifier is used and the value is
greater than will fit in the size indicated, any extra bytes are ignored. If the size is greater
than required to represent the value, additional zero-bytes are added.

The JMP indirect absolute instruction needs a sixteen-bit address as the target for the jump:

JMP ($2000)

APDADra/t 3-/3 8/6/87

Chapter 3: APW Assembly Statements APW Assembler Reference

This syntax wiil result in an error message if an expression that resolves to one byte is used
instead:

JMP ($36)

The use of the vertical bar before the expression forces the extension to a 16-bit operand
size (no matter what value is given within the parentheses):

JMP (1$36)

resolves to $ 0 036. Long addressing is forced in the same way with the > operator:

LDA >$2300

This generates a three-byte operand which always loads at $ 2 3 0 0 in bank zero, regardless
of the data bank value. The same instruction without the > operator

LDA $2300

generates a 2-byte operand that loads from offset $2300 in the current data bank.

The < operator is used to force evaluation as a one-byte (8-bit) value as with

LDA <$2034

This address mode syntax causes the operand to evaluate to the one byte value ($34);
therefore, the direct page addressing form of the LDA instruction is generated by the
assembler. When the instruction is executed, data is loaded from the direct page offset of
$ 34. The high byte ($ 2 0) is ignored by the assembler.

An example of the legal format for each of the addressing modes is shown in Table 3-2

Table 3-2. The 65816.Addressing Mode Operand Syntax

Addressing Mode

Absolute

Absolute Long

Absolute Indexed

Absolute Long
Indexed

Absolute Indexed
Indirect

Absolute Indirect

APDADraft

Operand Format Example

LDA abs or LDA 1 expr

LDA long or LDA >expr

LDA abs, x or LDA 1 expr, X
LDA abs, Y or LDA I expr, Y

LDA long, X or LDA >expr, X

JMP (abs, X) or JMP (I expr, X)

JMP (abs) or JMP (I expr)

3- 14 8/6/87

' -

APW Assembler Reference
APW Assembly StatemenlS

Absolute Indirect
Long

Accumulator

Block Move

Direct Page

Direct Page Indexed

Direct Page Indirect

Direct Page
Indirect Long

Direct Page
Indirect Indexed

Direct Page Indirect
Indexed Long

Direct Page
Indexed Indirect

Immediate

Implied

Program Counter
Relative

Program Counter
Relative Long

Stack (Absolute)

S tack (Direct
Page Indirect)

Stack (Program
Counter Relative)

Stack Relative

Stack Relative

JMP [absJ or JMP (Je.xprJ .

ASL A

MVN. long,long

LOA tip or LOA <apr

LOA tip, X or LOA <expr X
LOA dp, Y or LOA <expr, Y

LOA (tip) or LOA (expr)

LOA [dp 1 or LOA [<expr 1

LOA (dp) , Y or LOA «expr) , Y

LOA (tipJ,Y or LOA «exprJ,Y

LOA (dp,X) or LOA «expr,X)

LOA .expr

INY

BRAexpr

BRLexpr

PEA abs or PEA J expr

PEl dp or PEl (dp) or PEl «expr)

PER expr or PER abs

LOA dp, S or LOA <expr,S

Chapter 3:

Indirect IndClted LOA (dp, S), Y or LOA !<expr, S). Y

APDADraft 3-15 816187

Chapter 3: APW Assembly Statements ,APW Assembler Reference

Expressions

An expression is a logical or mathematical formula that resolves to a number. The
expression can contain both labels and constants. In general, expressions resolve to
integers in the range -2147483648 to 2147483647. If the expression is a logical operation,
its result is always 0 or 1, corresponding to false or true. If an arithmetic value is used in
an assembler directive that expects a Boolean result, 0 is treated as false, and any other
value is treated as true.

An expression can be either simple or compound .. A compound expression consists of two
simple expressions separated by one of the logical operators shown in Figure 3-1.

simple expression

C> <=

simple expression

Figure 3-1. Syntax of a Compound Expression

Here are some examples of compound expressions that follow these rules:

Expression

2<4

2+1<>$FFF

LOOPCOUNT=LOOPCOUNT+l

~esult

1

1

o

The syntax for a simple expression is shown in Figure 3-2. It consists of

1) an optional leading sign,

2) a term, and optionally,

3) a +, -, .OR., or .EOR. followed by another term.

Logical comparisons have the lowest priority.

APDADraft 3-16 816187

APW Assembler Reference
APW Assembly Statements

Chapter 3:

term

term

Figure 3-2. Syntax of a Simple Expression

Here are some examples of a simple expression made up of a term, an operator. and
another tenn:

Expression Result

5+6 11

-3+2 -1

1.0R.O 1

3 / 4+6*2 12

A tenn is a factor. optionally followed by one of the operators *.1 • . AND., or I (the bit
shift operator) and another factor. Figure 3-4 shows the syntax of a term. .AND. is a
logical operator, asking if the terms on either side are true. If both are true. so is the result,
otherwise the result is false. The vertical bar (or. optionally. !) is a bit shift operator. The
first operand is shifted the number of bits specified by the right operand. with positive
shifts shifting left and negative shifts shifting right. Thus, alb is the same as a*(2J\b). It is
important to note that logical operators perfonn word comparisons, rather than bit-wise
operations.

lactor

lactor

Figure 3-3. Syntax of a Tenn

Here are some examples of terms made up of factors. operators. and factors in an
expression:

Expression

3/4

1+2*3

APDADraft

Result

o
7

3-n 816187

Chapter 3: . APW Assembly StatemellJs APW Assembler Reference

A factor, as shown in Figure 3-4, is a constant, label, or expression enclosed in
parentheses, or a factor preceded by .NOT.. .NOT. is the Boolean negation, producing
true (1) if the following factor is false, and false (0) if it is true. Here, a label refers to a
named symbol that cannot be resolved at assembly time . .constants are named symbols
defmed by a local EQU directive or global GEQU directive, or a decimal, binary, octal, or
hexadecimal number, or a character constant.

constant

expression

factor

Figure 3-4. Syntax of a Factor

Here are some examples of factors in expressions:

Expression

6*7=42

.NOT. (4+6=10)

APDADrajt

Result

1

o

J-J8 8/6/87

'-.. -

APW Assembler Reference
APW Assembly Statements

The constants that are legal in a factor are shown in Figure 3-5 .

"'{ equated symbol '- ..
J ~

-r binary number '- •

J octal number '- •

"'{ decimal number '- ..
J

"'{ hexadecimal number) ..
character constant •

.J program counter symbol r
Figure 3-5. Syntax of a Constant

Chapter3:

The syntax for a binary number is shown in Figure 3-6. It can consist of I' s and 0' s and is
prefixed with a percent sign (%).

Figure 3-6. Syntax of a Binary Number

Here are some examples of binary constants and their decimal equivalents:

Binary constant

%0

%1

%10

%10100101

APDADraft

Decimal equivalent

o
1

2

165

3-19 816187

Chapter 3: APW Assembly Statements APW Assembler Reference

The syntax for an octal number is shown in Figure 3-7. It consists of the numbers 0
through 7 and is prefixed by an at sign (@) .

~---rt{-==0.=.7 =-)J--r-~ ••
Figure 3-7. Syntax of an Octal Number

Here are some examples of octal constants and their decimal equivalents:

Octal constant

@6

@7

@l O

Decimal equivalent

6

7

8

The syntax for a decimal constant is shown in Figure 3-8. It consists of the digits 0
through 9.

t~ 0 .. 9)

Figure 3-8. Syntax of a Decimal Number

Here are some examples of decimal constants:

3

45 7

APDADraft 3-20 8/6/87

APW Assembler Reference
APW Assembly Statements

Chapter3:

The syntax for hexadecimal constants is shown in Figure 3-9. The constant can consist of
the numbers 0 through 9 and the letters A through F and must be preceded by a dollar sign
($).

Figure 3·9. Syntax of a Hexadecimal Number

Here are some examples of hexadecimal constants and their decimal equivalents:

Hexadecimal constant Decimal equivalent

$9 9

$A 10

$B 11

$89ABCD 9022413

The syntax for character constants is shown in Figure 3-10. A character constant may
consist of any keyboani character except a single quotation mark (,). enclosed by single
quotation marks, or any keyboani character except double quotation marks (n), enclosed
by double quotation marks.

APDADrajt

keyboard
character
other than'

keyboard
character
other than·

3-21 816187

Chapter 3: APW Assembly Statements APW Assembler Reference

Figure 3-10. Syntax of a Character Constant

Here are some examples of character constants and their decimal equivalents:

Character constant

'a'

"A"
I I , I

Comments

Decimal equivalent

97

65

39

Comments can be contained in either comment fields or on separate lines of the source file.

The Comment Field

The comment field is optional. It is a place where you can document in English what your
program is doing. The comment field exists entirely for your benefit; it does not affect
object ftle generation.

There must be at least one space between the operand (or operation code, if there is no
operand), and a comment. Some Assemblers require a semicolon before the comment; the
APW Assembler requires a semicolon only if there is nothing else on the line. Comments
usually start in column 41; the editor has a tab stop there, but the comment can start one
space after the operand in any column. See the description of the SETCOM directive in the
next chapter for more information.

Comment Lines

Each line of an assembly· language source ftle can be either an assembly statement or a
comment. Comment lines have the same function as the comment fields in assembly
statements, the lines are just longer. Comment lines are either blank lines, or lines
beginning with asterisks (*), semicolons (;), or exclamation points (!). These statements
appear in listings, but are otherwise ignored by the APW Assembler.

Important: Do not use ampersands (&) in your comments. The & denotes the
beginning of a symbolic parameter. See Chapter 6 for more information on this
topic.

Note: Comment lines must begin with either *, ;, or! or the assembler will
generate an error.

APDADrajt 3·22 8/6/87

APW Assembler Reference Chilprer4: APW Assembler Direcrives

Chapter 4

APW Assembler Directives

A directive is a statement that tells an assembler to take some action. You can use APW
Assembler directives to perform such tasks as

• controlling the program

• deflning data

• deflning symbols

• moving code to memory locations

• controlling flles

• determining assembler options

• controlling output listing options

All directives except macro deflnition directives are valid within a source flle; macro
defmition directives are valid only within macro files as described in Chapters 5 and 6.

Directive Formats
APW directives are coded in the same way as 65816 instructions, which means that they
can have the fields shown here.

[label] OPERATION [operand] [comment]

As with instructions, the only directive field that is always required is the operation field.
This field contains the name of the directive.

Directive Functions
The APW Assembler directives can be divided into the following functional groups:
program control, data definition, symbol definition. memory designation, file control,
APW Assembler options, and listing options.

Program Control Directives

The program control directives defme code segments, data segments, and alternate entry
points. These directives include

DATA Begin a data segment.

APDADraft 4-/ 8/6/87

Chapter 4.- APW Assembler Directives APW Assembler Reference

END
ENTRY
PRIVATE

PRIVDATA

START
USING

Complete a code or data segment.
Define an alternate entry point into a segment.
Make an object code segment name unavailable to other object
segments.
Make an object data segment whose name is unavailable to other object
segments.
Begin a code segment.
Make local data segment labels available to code segments.

Data Definition Directives

The data defmition directives define constants, initialize memory, and reserve storage areas
in code and data segments. They include

DC
DS

Define a constant and initialize the value in memory.
Define an area of storage in memory and initialize it to zeros.

Symbol Definition Directives

The symbol definition directives assign values to names. These directives let you assign
names to nwneric constants and expressions, so that you can use the names instead of the
original values in your source text. The symbol defmition directives include

EQU
GEQU

Defme a local label and set it equal to a value.
Defme a global label and set it equal to a value.

Code Location Directives

The code location directives move code to specified locations in memory. These directives
include

ALIGN
ORG
OBJ

OBJEND

Force a code or data segment to a boundary.
Designate program execution at a fixed location.
Set the object code execution location, but don't force the code to load
there.
Cancel the effect of the last OBJ.

File Control Directives

File control directives save assembled object files on disk and access files other than the
current source file during assembly. These directives include

APPEND
COPY
KEEP

APDADraft

Transfer processing to another file.
Transfer processing to another file and then return to the original file.
Save assembled code on a disk.

4-2 816187

'- ,

APW Assembler Reference Chapter 4: APW Assembler Directives

APW Assembler Option Directives

The APW Assembler option directives control the assembly process. These directives
include

CASE
CODECHK
DATACHK
DYNCHK
IEEE
LONGA
LONGI
MERR
MSB

NUMSEX
OBJCASE
SETCOM
65C02
65816

Specify case sensitivity in source file labels.
Enable/disable linker check of JMP and JSR instructions.
Enable/disable linker check of data references.
Enable/disable linker check of jumps to dynamic segments.
Generate IEEE format numbers.
Select accumulator size.
Select index register size.
Set the maximum error level.
Set or clear the most significant bit of characters generated by DC
directives.
Set the order of bytes in floating-point numbers.
Specify case sensitivity in object file labels.
Set comment column.
Enable/disable 65C02 code.
Enable/disable 65816 code.

Listing Option Directives

The listing option directives allow you to specify certain options when you are listing the
assembly to the screen, a file, or to the printer. The listing option directives include

ABSADDR
EJECT
ERR
EXPAND
INSTIME
LIST
PRINTER
SYMBOL
TITLE

Enable/disable absolute addresses in output listings.
Eject the page.
Print errors.
Expand DC directives.
Show instruction times.
Enable/disable list output.
Send output to printer.
Enable/disable symbol table production.
Generate a header.

The Comment Field and APW Assembler Directives

The same rules apply to comments in APW Assembler directives as in any other assembly
statement. Comments are always optional (the field is shown in each directive for
completeness). If present, there must be at least one space between the operand (or
operation code, if there is no operand) and the beginning of the comment field. The
comment can begin in any column. There. are almost no restrictions on what you can. put in
this field. Symbolic parameters are expanded, so you should not follow an ampersand (&)
with A ... Z, -, or unless you are aware of the consequences.

APDADraft 4-3 8/6/87

Chapter 4: APW Assembler Directives APW Assembler Reference

Settings Attribute and APW Assembler Directives

Several APW Assembler directives have operands which can be set to ON or OFF . You can
use the settings attribute to find out how these operands are set at any time. The senings
attribute is coded as S, followed by a colon and the name of the directive to be evaluated.

S : directive

If the operand is set to ON, a 1 is returned, if the operand is setto OFF, a 0 is returned. If
you wanted to find out whether the 65816 instruction set was enabled so that you can do a
16-bit arithmetic operation, you could use S : 65816. If the answer comes back as ai, it
means that the 65816 instruction set and addressing modes are enabled The directives that
accept ON or OFF operands follow:

ABSADDR EXPAND LONGI 65816
CASE GEN MSB SYMBOL
CODECHK IEEE NUMSEX TRACE
DATACHK INSTIME OBJCASE
DYNCHK LIST PRINTER
ERR LONGA 65C02

This example uses the settings attribute to determine which of two code sequences to
assemble. In CASE=l, assemble the sequence of code that follows the label. A.
Otherwise, fall through the senings test and assemble the sequence of code that follows the
label . B. See Chapter 6 for descriptions of the conditional assembly directives AIF and
AGO.

AIF S:CASE=l,.A
MAIN START

AGO .B
.A
MAIN START

.B

APW Assembler Directives

This section describes the functions that can be performed with the APW Assembler
directives.

ABSADDR Allow Absolute Addresses

[label] ABSADDR ONIOFF [comment]

APDADraft 4-4 8/6/87

APW Assembler Reference Chapter 4: APW Assembler Directives

The ABSADDR directive enables and disables absol\!te addresses in the APW Assembler
Ol!tpl!t listing.

ON Use this parameter to obtain a coll!mn of 6-byte addresses to the left of the
relative offsets that the APW Assembler normally places in the Ol!tpl!t
listing. The relative offsets still appear in the Ol!tpl!t

OFF The defallit is OFF. With this option, only relative offsets appear in the
Ol!tpl!t.

The 'He 110 Wor ld! 'program with ABSADDR OFF shows the following relative
offsets:

0003 0000 LIST ON
0004 0000 GEN OFF
0005 0000 ORG $10000
0006 0000 ABSADDR OFF
0007 0000 MAIN START
0008 0000 4B PHK
0009 0001 AB PLB
0010 0002 WRITELN i/'Hel10 World! '
0011 001E A9 00 00 LDA i/O
0012 0021 6B RTL
0013 0022 END

The 6-byte addresses prodl!ced with ABSADDR ON are the base nl!mberpll!S the number
of bytes generated by the assembler since the last change in the base nl!mber.

0003 0000 LIST ON
0004 0000 GEN OFF
0005 0000 ORG $10000
0006 010000 0000 ABSADDR ON
0007 010000 0000 MAIN START
0008 010000 0000 4B PHK
0009 010001 0001 AB PLB
0010 010002 0002 WRITELN i/'Hel10 World! '
0011 01001E 001E A9 00 00 LDA fO
0012 010021 0021 6B RTL
0013 010022 0022 END

If there is no ORG directive, the base nl!mber defal!lts to $000000. An ORG directive
changes the base nl!mber to the vall!e specified by the ORG' s operand. The net effect is that
this coll!mn shows' the correct absoll!te memory location of the line, assl!ming that the
listing is from a fl!ll assembly, and the file is loaded at the location specified in the ORG
directive. It also assl!mes that yoo have not I!sed the advanced linker, or the standard
linker in some I!nl!sl!al way such as li.nking code in a library.

APDADraft 4-5 816187

Chapter 4: APW Assembler Directives APW Assembler Reference

ALIGN . Align to a BoWldary

[label]. ALIGN [comment]

The ALIGN directive is used either prior to the stan of a code or data segment, or within a
segment. ALIGN directives used outside of segments must be restricted to page or bank
alignments because these are the only kinds of alignments supported by the System Loader.

anumb This number is an absolute number and must be a power of 2.

When the ALIGN directive is used before a START, PRIVATE, DATA, or PRIVDATA
directive, it directs the linker to align the segment to a byte boundary divisible by the
absolute number in the operand of the ALI GN directive. To align a segment to a page
boundary, for example, use the sequence

ALIGN 256
ONCE START

END

When an ALIGN directive is used within a segment, enough zeros are inserted to force the
next byte to fall at the indicated alignment. The insertion is done at assembly time, so the
zeros appear in the program listing. If an ALIGN directive is used within a segment, that
segment must also be controlled by an ALIGN directive. The internal ALIGN directive
must have equal or smaller boundaries than the external ALIGN directive.

ANOP Assembler No Operation

[label] ANOP [comment]

The ANOP directive allows you to define a label without an instruction. This directive does
not cause the assembler to do anything.

label This parameter assumes the current value of the program counter.

APPEND Append a File

[label] APPEND parhname [comment]

The APPEND directive transfers processing to the beginning of the file specified by
pathname. Anylines following the APPEND directive in the original file are ignored. The
file indicated by parhname must be an APW source file, but does not have to be an

APDADrajt 4-6 816187

APW Assembler Reference Chapter 4: APW Assembler Directives

assembly-language file. Any language for which you have an assembler or compiler
installed in your system will work: if it confonns to the APW language standards.

pathname This parameter indicates a full pathname, including the prefix and filename,
or a partial pathname, in . which the current prefix is assumed. If you are
using a full pathname, be sure that it begins with a slash (f). Do not precede
paihname with a slash if you are using a partial pathname. No wild cards
or device names may be used.

For example, inserting the APPEND directive in this code segment transfers processing to
TEST. C so the remaining text is not assembled. If you want to finish assembling the text,
use the COP Y directive.

GEN OFF
ORG $10000
ABSADDR OFF

MAIN PHK
PLB
APPEND TEST.C
WRITELN t'Hello World!'
LDA to
RTL
END

CASE Specify Case Sensitivity

[label] CASE ONIOFF [comment]

The CASE directive enables and disables case sensitivity in source file labels.

ON Use the ON option to make source file labels case sensitive.

OFF Use this parameter to make source file labels insensitive to case. The default
is OFF. This means that LABEL and Label are treated as though they are
the same.

If you are using CASE OFF and you have not set OBJCASE, all labels will be written to the
object file in uppercase.

APDADrajt 4-7 816187

Chapter4: APW Assembler Directives APW Assembler Reference

CODECHK Tell Linker to Check Jump Instructions ·

[label] CODECHK O~IOFF [comment]

The CODECHK directive enables and disables the APWLinker check of 16-bit JMP and
JSR instructions to insqre that their targets are within the CurTent load segnient. The default
is ON and it is unlikely that you will fmd a circumstance in which you will want to tum it
off. With CODECHK ON, a jump out of range produces a lihker enor of:

Address not in the current bank

with a severity level of 8.

If you have a case, as in the example, where you need to tum CODECHK OFF no error will
be generated for references outside of the current load segment.

In the example which follows, the two segments FOO and BAR are destined for different
load segments.

CODECHK OFF
FOO START

JSR BAR
RTL
END

BAR START FOOBAR
LDA .0
RTS
END

COpy Copy A File

[label] COpy [comment]

The COpy directiveis used to transfer processing to the beginning of the file indicated by
pathname. When the file named in pathname is completely processed, the assembly
continues with the first line after the COpy directive in the original file.

pathname This parameter indicates a full pathname, including the prefix and filename,
or a partial pathname, in which the current prefix is assumed. If you are
using a full pathname, be sure that it begins with a slash (J). Do not
precede pathname with a slash if you are using a partial pathname. No wild
cards or device names may be used.

APDADrajt 4-8 816187

'-'.

--'.

APW Assembler Reference Chapter4: APW Assembler Directives

Compare COpy with the APPEND directive, which does not return to the original me. A
copied file can copy another me; the depth is limited only by the amount of available
memory.

DATA Define Data Segment

label DATA [loadl"eg] [comment]

DATA marks the beginning of a data segment. Its purpose is to store data defrnitions and
any instruction found in this segment will be flagged as an error. The data segment
continues until an END directive is reached.

label Each DATA directive requires a label, which functions as the data segment
name in the object me. The label is global in scope. No more than 127 data
segments may be defined in anyone program. Each data segment must
have a unique object segment name.

loadl"eg The optional load segment name may be up to 10 characters long. It may
begin with an alphabetic character, an underscore (J, or a tilde (-). The
name may contain letters, digits, underscores L), and tildes (-), but no
spaces. Several object segments may have the same load segment name.
The linker places all object segments with the same name in the same load
segment. If you use a LinkEd me to control the APW Linker, the load
segment name you specify here will be ignored unless you ask for it
specifically. By default, loadl"eg is case insensitive and uppercase in the
output file. The OBJCASE value is respected.

Labels used within a data segment are local, but they cannot be duplicated in other data
segments, or as global labels. They become available to outside segments that have USING
directives that reference the data segment The US ING directive has the effect of making
the labels local to both the data area and the segment where the directive appears.

Note: If you use a comment with the DATA directive, the comment must start at
the SETCOM column (usually the forty-first). A comment that begins before the
SETCOM column will be interpreted as a loadseg parameter.

DATACHK Check Data References

[label] DATACHK ON I OFF [comment]

The DATACHK directive enables and disables checking by the APW Linker for 16-bit data
references outside of the current load segment. With DATACHK ON, such a reference
causes a severity level 8 error:

APDADraft 4-9 816187

Chapter 4: APW Assembler Directives APW Assembler Reference

Address is not in current bank

The following example code segment will be loaded under the default name of 10 space
characters. The data segment will be loaded with the name FOOBAR. In order to access
ITEM (which is a 16-bit data reference), you must have a US ING directive and tum
DATACHK OFF.

FOO

BAR
ITEM

DC

[label)

DATACHKOFF
START
USING

LDA
RTL
END

DATA
DS
END

BAR

ITEM

FOOBAR
2

USING allows you to access the data
segment BAR

The 16-bit data reference

Declare Constant

DC condeJI,conde/, ...] [conunent]

The DC directive defines constants within a program that initialize values in memory. The
constants may be any of these value types:

AX
B
C
D
E
F
H
Ix
R
Sx

conde{

APDADrajt

Address
Binary
Character
Double-precision floating point
Extended floating point
Floating point
Hexadecimal constant
Integer
Reference an address
Soft reference

The constant definition conde!, begins with an optional repeat count
(rcount), which must be in the range I to 255 decimal, followed by an
identifier describing the value type. The variable being defined is placed in
the object fIle as many times as specified by the repeat count (rcount). The
identifier is followed by values, enclosed in single quotation marks,
separated from each other by commas. Optionally, additional constant
definitions may follow the first, separated by commas. The format for
condef is

4 -10 816187

APW Assembler Reference Chapter4: APW Assembler Directives

conde! = {rcount } identifier'value, value, ... '

The following example has a repeat count of 2, an integer identifier <n, and two values
followed by another repeat count, an integer identifier and another value. The result places
four 16-bit integers and one 8-bit integer into memory.

LABEL DC 2I'2,3',lI'4'

The hexadecimal values resulting from this directive are

02 00 03 00 02 00 03 00 04

Some important points about the DC directive:

• You can mix value types in one line.

• Except for B, C, or H types, you can have multiple values of the same type on one
line, each value separated by a comma.

• Character strings defined by DC directives have their most significant bits cleared.
You must use the MSB directive if you want to change this.

Address (Ax)

Address identifiers are used to build tables of addresses. The A DC statement generates a
1- to 4-byte integer address. If you omit the x, a 2-byte address is generated, by default.

Binary (B)

The value type B designates a binary number. Binary values consist of ones, zeros, and
spaces, enclosed by single quotation marks. The spaces are removed by the assembler
before the bit values are stored. If a byte is left partially filled, it is padded on the right with
zeros, as shown in the second example:

Example Code

DC B'Ol 01 01 10'
DC B'lllllllll'

Character (C)

Hexadecimal Values

56
FFBO

Character strings are indicated by the value type C. The string, enclosed in quotation
marks, may contain any sequence of keyboard characters. If you use a quotation mark
within the string, enter it twice to distinguish it from the end of the string:

Example Code

DC C'HOW' 'S THE WEATHER?'

APDADraft

Hexadecimal Values

48 4F 57 27 54 20 54
4845 20 57 45 41 54 48
45 52 3F

4 -11 816187

Chapter 4: APW Assembler Directives APW Assembler Reference

Nonnally, strings are stored with the high-order bit off, corresponding to the ASCII
character set If you are writing characters directly to the Apple II screen, use the MSB
directive to set the high bit on.

Hexadecimal (H)

The value type H indicates a hexadecimal value. Hexadecimal values consist of the digits 0
through 9, the hexadecimal digits A through F, and spaces, all enclosed by single quotes.
The spaces are removed before the value is stored, two digits per byte. Hexadecimal
values are stored as pairs of digits. If you code an odd number of digits, the assembler
pads the last byte with 4 bits of zeros on the right The flTSt example shows what happens
when you ask the assembler to store an odd number of digits:

Example Code

DC
DC

R'01234ABCDEF'
R'llll 2222 3333'

Integers I(x)

Stored Values

01 23 4A BC DE FO
11 11 22 22 33 33

Integers are indicated by a value type of I. Because integer sizes can vary between 1 and 8
bytes, the size is indicated by a digit from 1 to 8 following the I. If you omit the length, a
2-byte (16-bit) integer is generated. All integers are stored least significant byte first.
Expressions can be used in DC statements to declare integers of 1 to 4 bytes. Expressions
larger than 4 bytes are illegal.

This DC directive is illegal:

DC I5'4+5'

This DC directive is fine:

DC I5'9'

Integers longer than four bytes can be represented only as signed decimal constants.

The table that follows gives the valid range of signed integers through a length of eight
bytes. See the M16. INTMATH macro file for macros to perfonn integer math operations:

Size in bytes Smallest value

-128
-32768

-8388608
-2147483648

-549755813888
-14073748355328

l'
2
3
4
5
6
7
8

-36028797018963968
-9223372036854775808

APDADraft 4 -12

Largest value

127
32767

8388607
2147483647

549755813887
14073748355327

36028797018963967
9223372036854775807

816187

APW Assembler Reference Chapter4: APW Assembler Directives

Floating Point (F, D, E)

There are four kinds of floating-point numbers designated by three value types: F, 0, and
E. All of the floating-point values are entered as signed floating-point numbers, with
optional signed exponents starting with E. TIle numbers are stored least significant byte
first, by default.

Floating Point (F)

The value type F designates a floating-point number that is stored as a 4-byte (32-bit)
floating-point number in a fonnat compatible with the Standard Apple Numeric
Environment (SANE). Floating-point numbers designated by F can range from
approximately lE-3S to lE+3S. The mantissa is accurate to over 7 decimal digits.

Example:

DC F' 3, -3, . 35El, 6. 25E-2'

Double-Precision Floating Point (D)

Double-precision floating-point values are identical to F, except that an S-byte (64-bit)
number is generated. Numbers can range from about IE-30S to lE+3OS. The mantissa is
accurate to slightly more than 15 decimal digits.

Example:

DC 0' 35EI05, 6. 25E-202 '

Extended Floating Point (E)

Extended floating-point values are identical to F and D, except that they generate lO-byte
(SO-bit) numbers. Numbers can range from about lE-4931 to IE+4931(they are calculated
by formula). The mantissa (which is also calculated) is accurate to slightly more than 19
decimal digits.

Example:

DC E' 42ElOOO, 8. 73E-llOO'

A pplesoft Floating Point (F)

To generate floating-point numbers that are compatible with the Apple II Applesoft floating
point firmware, turn off the IEEE format and use the F value type floating-point format A
5-byte (40-bit) Applesoft-style floating-point number representation will be generated.
These numbers are always stored most significant byte first.

APDADrajt 4-13 816187

Chapter 4: APW Assembler Directives APW Assembler Reference

Reference an Address (R)

The value type R generates a reference 10 an address in the object file without saving the
address in the executable file. This allows a program 10 note that a subroutine will be
needed from the subroutine library without reserving storage for the address. TIlls
reference does not take up space in the fmished program.

Usually only subroutines in a library referenced by JSR, or JSL are added 10 the load fIle
by the APW Linker. Sometimes code in the library is not referenced directly, but still
needs to be added to the load file. The R value type can serve this PUIJlOse without
generating any code in the load file.

Soft Reference (Sx)

The value type S generates I 10 4 bytes of storage for each address in the operand, but does
not instruct the linker to link the segments into the fmal program. If the segment is not
linked, the executable ftle produced by the linker will have $0000 as the 1- 10 4-byte
address. This allows a table of addresses to be built, but only those segments requested
elsewhere in the program have their addresses placed in the table.

DIRECT Set Direct Page Value

[/abel] DIRECT expression IOFF [comment]

The DIRECT directive controls the generation of errors and promotion to absolute
addresses when no direct-page addressing mode is available. The DIRECT directive is
either set to OFF or set to an expression which resolves to a l6-bit constant. If the operand
is a number, the assembler promotes direct-page addresses to absolute addresses when no
direct-page addressing mode is available. It does this by adding the l6-bit constant to the
direct-page value. For example

LDA 4,Y

does not automatically promote to LDA 1$0004, Y because the direct page may not be a
O. If, however you specify

DIRECT $1200

LDA 4, Y

the assembler can generate LDA $1204, Y because you set the location of the direct
page.

DIRECT OFF causes the assembler to generate errors for direct-page addresses when no
direct-page addressing mode is available.

APDADraft 4 -14 8/6/87

APW Assembler Reference Chapter 4: APW Assembler Directives

DS Define Storage

[label) DS expression [comment]

The DS directive defmes areas of memory for program use. It also initializes these
locations to zeros.

expression The number of bytes' of storage to reserve.

The following directive defines 50 bytes of memory initialized to zeros:

FREE DS 50

DYNCHK Check References to Dynamic Segments

[label] DYNCHK ONIOFF [comment]

The DYNCHK directive enables and disables a check on how jumps are made to dynamic
segments. With DYNCHK set to ON, jumps are legal to dynamic segments only via JSL
instructions. With DYNCHK set to OFF, you can jump to dynamic segments via JSRs
without error as shown in the example. Remember that if you set DYNCHK to OFF the
directive CODECHK is also set to OFF so that there is no longer a check on whether or not
your jump target is within the current load segment.

DYNCHK OFF
Foo START

JSR BAR Go to location in dynamic segment.
RTL
END

BAR START FOOBAR
KIND $80 Set this segment header to dynamic.
LDA fa
RTL
END

EJECT Eject the Page

[label] EJECT [comment]

The EJE CT directive causes printer output to skip to a new page. The directive has no
effect on output going to the console.

APDADrajt 4 ·15 816187

Chapter 4: APW Assembler Directives APW Assembler Reference

END End Program Segment

[label] END [comment]

The END directive indicates the end of a code or data segment. It directs the APW
Assembler to print the local symbol table (if the +S option is used on the command line. or
if the SYMBOL ON directive is in effect) and delete the local labels from the symbol table.
The END directive has no (>perandand usually no label. The END directive is required. If it
is omitted. the assembler gellerates an error message.

ENTRY Defme Entry Point

label ENTRY [comment]

The ENTR Y directive defmes a global label that corresponds to a location within the
segment. lbis label can be used as an alternate entry point into the segment, or for other
reasons such as making data within a code segment visible to code in other segments.

label The required label is the name of the new entry point. The label is global.

The first example provides alternate entry points at SUBl and SUBZ.

MAIN START

JSL SUBl

JSL SUBZ

END
SUBS START

SUBl ENTRY

RTL
SUEZ ENTRY

RTL

END

APDA Draft 4 -16 816187

APW Assembler Reference Chapter 4: APW Assembler Directives

This example makes the address of the DC directive visible to other code segments.

MAIN START

LDA VARl

END
SUB START

VARl ENTRY
DC 12'$FF'
END

EQU Equate

label EQU value [comment]

The EQU directive defines the name in the label field and assigns the value in the operand to
it. This allows you to assign a name to a numeric value and use the name instead of the
number in further operands.

value The operand may contain a label that already has a value, an expression, or
a constant defined by an earlier equate.

label The label is required. If the label field does not contain a value, an error is
generated.

If you need to define a label without generating code, you can use the ANOP (No
Operation) directive.

You should defme constants before they are used. It is customary to put all equates in one
data segment Although this is a strict requirement only when the constant is used later as a
direct-page or long address, it is good programming practice.

The following commands place a carriage return at the end of a line of characters. First,
define the RETURN symbol and set it equal to the code for a carriage retumusing the EQU
directive. Then use a DC directive to define a I-byte integer to contain the value.

RETURN EQU
DC
DC

APDADraft

$D
C'This line ends with a carriage return'
11 'RETURN'

4 -17 816187

Chapter 4: APW Assembler Directives APW Assembler Reference

Some additional examples of EQUATE directives follow;

ONE EQU 1
TWO EQU 1+1
FOUR EQU TWO * TWO
L1 EQU L0/2+7
HERE EQU *

ERR Print Errors

[label] ERR ONIOFF [comment]

The ERR directive enables and disables error listings when the LIST directive is set to
OFF.

ON If ON is specified, error lines continue to be printed, with the LIST directive
set to OFF. The default is ERR ON.

OFF If this operand is specified, errors are no longer printed, but the number of
errors found is still listed at the end of the assembly.

EXPAND . Expand DC Statements

[label] EXPAND ON I OFF [comment)

The EXPAND directive enables and disables the listing of code generated by DC directives in
output listings.

ON The ON option causes all bytes generated by DC directives to be shown, four
bytes per line, in the output listing. A maximum of sixteen bytes per DC
directive, or four lines, can be displayed.

OFF The OFF option limits code shown in the output listing to the fIrst four
bytes of a DC directive, or one line in the listing. The default is OFF.

With EXP AND set to OFF, the DC directive L . DC E' 1 . l' generates the line

0006 3F FF BC CC L DC E'l.l'

When EXPAND is set to ON, the same DC directive generates the lines

0006 3F FF BC CC L
OaOA CC CC CC CC
OOOE CC CD

APDADrajt

DC E'l.l'

4 -18 816187

APW Assembler Reference Chapter 4: APW Assembler Directives

GEN Generate Macro Expansions

GEN ONIOFF

If GEN is turned on, all lines generated by macro expansions are shown on the output
listing. Each line generated by a macro has a + chaIacter to the left of the line. If GEN is
turned off, only the macro call is printed in the assembly listing. Errors within the macro
expansion are still printed, together with the line causing the error.

GEQU Global Equate

label GEQU expression [comment]

Like the EQU directive, GEQU defines the name in the label field and assigns the value in the
operand to it. Unlike EQU, however, GEQU'S label is saved in the global symbol table.
This makes the label available to all program segments.

label The label is required. They are included in the object file, so library
routines can use global equates to make constants available to the main
program.

expression The expression operand may contain a label that already has a value, an
expression, or a constant defmed by an earlier equate.

Labels defined by the GEQU directive are resolved at assembly time if they are defined
before they are referenced; otherwise, they are resolved at link time. The following
example will be resolved at assembly time:

A GEQU 5
MAIN START

LOA fA
END

but the following code sequence will be resolved at link time:

MAIN START
LOA itA
END

D DATA
A GEQU 5

END

APDADraft 4 -19 8/6/87

ClIl1pter 4: APW Assembler Directives APW Assembler Reference

IEEE Generate IEEE Format Numbers

[label] IEEE aNI OFF [comment]

The IEEE directive enables and disables Applesoft compatible format for floating-point
constants created with DC directives. This directive has no effect upon D and E value types
of floating-point constants.

ON In its default setting, DC directives generate numbers compatible with the
IEEE floating-point standard. The default is ON.

OFF If IEEE is turned off, the F value type floating-point constants created with
the DC directives will be in Applesoft compatible fonnat.

For example, if you enter 5 . 5 with IEEE set to ON, the hexadecimal value generated is
0000B040. If you enter the same number with IEEE setto OFF the Applesoft fonnat
number generated is 8330000000.

INSTIME Show Instruction Times

[label] INSTIME ONIOFF [comment]

The INSTIME directive enables and disables instruction cycle times in the output listing of
the APW Assembler.

OFF . With this option no cycle times are shown in the output listing. The default
is OFF.

ON This option causes a column of instruction cycle times to be inserted in the
output listing immediately before the text of the source line. This column is
two characters wide. It shows the number of machine cycles required to
execute the assembly-language instruction appearing on the line. The
column is blank for macros, directives, and comments. Otherwise, the fIrst
character indicates the number of cycles; the second character may be an
asterisk (*) if the cycle time is variable. There are many reasons that an
asterisk may occur, for example, a page boundary was crossed, a branch
was taken, a move was made, and so forth. Consult one of the
commercially available reference sources given in the preface of this manual
for more information. .

With INSTIME set to ON cycle times are displayed in lines 9,10,12, and 13 of the
example.

Cycle Times
0004 0000 LIST ON
0005 0000 MERR a
0006 0000 MSB ON
0007 0000 GEN OFF
0008 0000 MAIN START
0009 0000 4B 3 PHK
0010 0001 AB 4 PLB

APDADraft 4 - 20 8/6/87

APW Assembler Reference Chapter 4: APW Assembler Directives

0011 0002
0012 001E A9 00 00
0013 0021 6B

2*
6

WRITELN i'Hello World!'
LDA 110
RTL

0014 002 2 END

KEEP Keep Object File

KEEP objname [comment]

The KEEP directive saves assembled code on a disk as an object file. This file can be used
as input to the linker to generate an executable load file. The KEEP directive may be used
only once per source file, and must appear before any code generating statements.

objname The name of the object file can contain a maximum of 10 letters, digits, and
periods.

Important: Remember that if you have a KeepName variable set in your LOGIN
file and a KEEP directive in your source me, the KeepName will override the name
you used in the source file. If you use a shell command-line KEEP, it will override
both the KeepName and any KEEP directives in your source file.

KIND Specify Object Segment Type and Attributes

[label] KIND number [comment]

The KIND directive sets the kind field of the object segment header created when you
assemble this source code segment. If you use multiple KIND directives or you mix
segments that have KIND directives with segments that don't have KIND directives, be sure
that the resulting values match (have the same types and attributes) for all segments that will
eventually occupy the same load segment.

number

APDADraft

This value can be in the range 0 to FF and has the following
meanings

Bits 0-4

$00
$01
$0 2
$04
$08
$10
$11
$12

Types

code segment
data segment
jump table segment
pathname segment
library dictionary segment
initialization segment
absolute bank segment
direct page/stack segment

4 -21 816187

Chapter 4: APW Assembler Directives APW Assembler Reference

Bit 5
Bit 6
Bit 7

Attributes
position independent (l=YES)
private (1 = YES)
static = 0
dynamic = 1

Attributes can be combined with types in a single KIND directive. For example a dynamic
initialization segment has a KIND directive value of $90. A private code segment is an
object code segment whose name is only available to other code segments within the same
object me. A private data segment is an object data segment whose labels are available only
to other code segments within the same object file. Absolute bank segments are relocatable
within a specified bank. Direct page/stack segments are used to preset direct and stack
registers for an application.

To create a dynamic code segment you could use the following code:

A START LOADSEG1
KIND $80

END

This causes the linker to create a load segment named LOADSEG1 whose kind field is $80
(dynamic code segment). -

LIST List Output

[label] LIST ONIOFF [comment]

The LIST directive enables and disables the APW Assembler output listing.

OFF If the listing is turned off, error lines may still be produced. See the ERR
directive.

ON A listing of the assembler output is sent to the current output device. The
default is ON.

Example using LIST ON:

0003 0000 LIST ON
0004 0000 GEN OFF
0005 0000 MAIN START
0006 0000 4B PHK
0007 0001 AB PLB
0008 0002 WRITELN iI'Hello World! '
0009 OOlE A9 00 00 LOA i/O
0010 0021 6B RTL
0011 0022 END

APDADraft 4 ·22 816187

--,

APW Assembler Reference Chapter 4: APW Assembler Directives

11 source lines
1 macros expanded
14 lines generated

This example using LIST OFF shows that only summaries of the processing are contained
in the output listing. .

Pass 1: MAIN
Pass 2: MAIN

11 s o urce lines
1 macros expanded
14 lines generated

LONGA

[label] LONGA

Select Accumulator Size

ONIOFF [conunent]

The 65C816 processor can perfonn both 16-bit and 8-bit operations involving the
accumulator. The size of the accumulator and amount of memory affected by instructions
like LDA, STA, and INC are controlled by a bit in the processor status register. At
assembly time, the APW Assembler has no idea how that bit will be set at run time, so it is
the responsibility of the programmer to tell the assembler using this directive.

ON This option indicates 16-bit operations. The default is ON.

OFF This option indicates 8-bit operations.

The ouly difference between LONGA ON and LONGA OFF in the assembled program is
the number of bytes placed in the code stream when an immediate load is perfonned. For
example:

LONGA ON
LDA jf2
LONGA OFF
LDA jf2

2 byte operand

1 byte operand

Important: The status bit that the processor uses at run time must be set
separately.

LONGI Select Index Register Size

[label] LONG I ONIOFF [conunent]

The 65C816 processor can perfonn both 16-bit and 8-bit operations involving the X and Y
registers as well as the accumulator. The size of the X and Y registers is controlled by a bit
in the processor status register. At assembly time, the APW Assembler has no idea how

APDADraft ·4 - 23 8/6/87

Chapter 4: APW Assembler Directives APW Assembler Reference

that bit will be set at run time, so it is the responsibility of the programmer to tell the
assembler, using this directive. Specifically, the LONGI directive controls the number of
bytes generated by immediate loads to the X and Y registers when using the 65C8l6
processor.

ON This option indicates 16-bit operations. The default is ON.

OFF This option indicates 8-bit operations.

LONGI controls the number of bytes placed in the code stream when an immediate load is
performed. For example:

LONGI ON
LDX f2
LONG I OFF
LDY f2

MERR

[label]

2 byte operand

1 byte operand

Maximum Enur Level

MERR expression [comment]

The MERR directive determines whether or not output code assembled with the ASML or
AMSLG conunands will be immediately linked and executed. .

[label] The label is optional.

expression

MSB

[label]

The expression operand contains the maximum level severity code that
can be detected in an assembly before the link is aborted. The default
value is zero. The error levels are described in Appendix C.

Most Significant Character Bit

MSB ONIOFF [comment]

The MSB directive causes character constants and characters generated by DC directives to
have their sign bits set or cleared.

ON Character constants and characters generated by DC directives have bit seven
turned on, and appear nonna! on the Apple IIGS text display.

OFF The defaulris OFF. This conforms to the ASCII character convention of
using only the least significant seven bits in a byte.

APDADraft 4 -24 8/6/87

---."

APW Assembler . Reference Chapter 4: APW Assembler Directives

NUMSEX Set Floating Point Byte Order

[label] NUMSEX ON I OFF [comment]

The NUMSEX directive causes floating-point numbers in DC directives to reverse the order of
their bytes.

ON Floating-point numbers generated by DC directives have the most significant
byte flIst.

OFF The default is OFF. This conforms to the SANE convention of least
significant byte first.

For example, if you have a program that contains the DC directive

L DC F' 1.1'

and you set the NUMSEX directive to ON, the hexadecimal value that is generated is

CONST ($04) I 3F8CCCCD

The same DC directive, with the NUMSEX directive set to OFF generates this hexadecimal
value:

CONST ($04) I CDCC8C3F

OBJ Designate Destination

[label] OBJ val [comment]

The OBJ directive sets the program counter so that code that follows this directive is
assembled as if it were located at the machine code address given in the operand. The
OBJ directive has no effect on the actual physical location where the code is assembled; it is
used when pan of a program must be moved (to val) before execution.

val The absolute address where the code is to be executed.

The effect of OBJ can be canceled by either an END directive, an OBJEND directive, or
another OBJ directive.

Note: Code produced in this way does not need to be relocated by the System
Loader because it contains references to absolute addresses. It may, however, be
included within a segment that is relocauible.

Important: References to local labels must use the > operator to force them to
absolute long addressing mode. Otherwise, they will cause addressing errors.

APDADrajt 4 -25 8/6/87

Chapter 4: APW Assembler Directives APW Assembler Reference

This command is provided forthose programs that have their own routines to move
segments to specific absolute addresses. We strongly recommend that you not use this
command, but take advantage of the capabilities of the Apple lIOS System Loader and
Memory Manager instead. Programs that do their own loading and memory management
are very unlikely to work successfully with any other Apple lIos routines.

OBJCASE Specify Case Sensitivity in Object Files

[label) OBJCASE ONIOFF [comment]

The OBJCASE directive enables and disables case sensitivity in object fIle labels, object
segment names, and load segment names.

ON Use this parameter to make object fIle labels case sensitive. These labels
may, or may not, be case sensitive in the source fIle.

OFF Use the OFF parameter to make object fIle labels insensitive to case,
whether or not they are treated as case sensitive in the SOUICe fIle. The
default is OBJCASE OFF.

Setting CASE also sets OBJCASE, so that if you expect the behavior of a label to be
different in an object file from its behavior in a SOUICe fIle, you must specify the OBJCASE
directive last

OBJEND End Destination Segment

[label) OBJEND [comment]

The OBJEND directive indicates the end of a code segment that began with an OBJ
directive. The OBJEND directive has no operand, and usually no label.

ORG Designate Origin

[label) ORG memloc [comment]

The ORG directive sets the program counter so that a program begins execution at a fixed
location. ORG directives can be used at the beginning of a source fIle before the first
START, PRIVATE, DATA, or PRIVDATA directives in the SOUICe code. The ORG
directive can also be positioned before any subsequent START, PRIVATE, DATA, or
PRIVDATA directives to force that segment to a particular fixed address. Finally, an ORG
directive may be used within a program segment

memloc The operand field contains a constant, or an expression which evaluates to a
constant, that is the absolute address at which execution is to begin.

APDADrajt 4 -26 816187

APW Assembler Reference Chapter 4: APW Assembler Directives

Important: Because the Apple IIGS system uses a relocating loader. you cannot
ever be guaranteed that a specific area in memory will be available to your program.
We strongly recorrimend that you not use this command. but take advantage of the
capabilities of the Apple IIGS System Loader and Memory Manager instead.
Programs that do their own loading and memory management are very unlikely to
work successfully with any other Apple IIGS routines.

When the ORG directive is used to force a segment to a particular fixed address. zeros are
inserted until the desired location is reached. This action is performed by the linker as the
final load file is created.

When an ORG directive is used before the first segment, the entire load file is loaded at that
location. If the ORG directive is used outside of any other segment but the first. the first
segment must also be preceded by an ORG directive.

When the ORG directive is used inside a program segment, the operand must be an asterisk
(*) indicating the current location counter, followed by a + or -, and an expression that
evaluates to a constant The location counter is moved forward or backward by the
indicated amount as in the examples that follow:

ORG *+2

moves the location counter forward by 2. This is equivalent to the DS directive

DS 2

An ORG directive with a negative operand moves the location counter backward, as in

ORG *-1

which deletes the last byte generated within the segment. It is not possible to delete more
bytes than have been generated by the current segment.

PRINTER Send Output to Printer

[label] PRINTER ONIOFF [comment]

The PRINTER directive controls output to the printer.

[label] The label is optional, but global if used.

ON The ON option causes output to be sent to the printer. A printer capable of
printing at least 80 coluruns is expected. The slot number and printer
characteristics may be changed. Refer to the Apple IIGS Programmer's
Workshop Reference manual.

OFF The OFF option causes output to be sent to the video display. The default
is OFF.

APDADraft 4 - 27 8/6/87

Chapter4: APW Assembler Directives APW Assembler Reference

PRIVATE Defme a Private Code Segment

[labell PRIVATE [loadseg] [comment]

The PRIVATE directive works like the START directive. except that the object segment
name cannot be accessed from outside of the object file in which it is created. Segments in
different flles can have the same names as long as all but one is private. This mimics the
capabilities of the C language static variable. Any !libels declared inside of the segment that
would nonnally be global. are now private.

label Each PRIVATE directive requires a label. which becomes the name of the
object segment produced by the assembler. The label is global in scope.

[loadseg] The optional load segment name may be up to 10 characters long. It may
begin with an alphabetic .character. an underscore U. or a tilde (-). The
Dame can contain letters. digits. underscores U. and tildes (-). but no
spaces. Several object segments may have the same load segment name.
The linker places all object segments with the same load segment name in
the same load segment. If you use a LinkEd file to control the APW Linker.
the load segment Dame you specify here will be ignored unless you
specifically request it.

Note: If you use a comment with the PRIVATE directive. the comment must start
at the SETCOM column (usually the forty-first). A comment that begins before the
SETCOM column will be interpreted as a loadseg parameter.

PRIVDATA Define a Private Data Segment

label PRIVDATA [loadseg] [comment]

The PRIVDATA directive operates like the DATA directive. except that the object segment
name is not accessible from outside the object file in which it appears. Segments in
different files can have the same names as long as all but one is private. This mimics the
capabilities of the C language static variable. Any labels declared inside of the segment that
would nonnalIy be global are now private.

label Each PRIVDATA IDr€Ctive requires a label. which becomes the name of the
object data segment produced by the assembler. Each data segment within a
file must have a unique object segment name.

[loadseg] The optional load segment name may·beup to 10 characters long. It may
begin with an alphabetic character. an underscore L). or a tilde (-). The
name can contain letters. digits. underscores CJ. and tildes (-). but no
spaces. Several object segments may have the same load segment name.
The linker places all object segments with the same load segment name in
the same load segment. If you use a LinkEd file to control the APW Linker,
the load segment name you specify here will be ignored unless you
specifically request it.

APDADraft 4 -28 816187

APW Assembler Reference 'Chapter4: APW Assembler Directives

Note: If you use a comment with'the PR'IvDA'rA directive, the comment must
stan at the SETCOM colwnn (usually the fotty-first). A comment that begins before
the SETCOM column will be interpreted as a loadseg parameter.

RENAME Rename Operation Codes

The RENAME' directive allows you to give a new name to an existing operation code. Use
this directive to prevent conflicts i(you are using the APW Assembler with a macro library
that implements a cross assembler for another microprocessor that has operation codes that
conflict with the 65816 instruction set or with APW clliectives. The operand is the old
operation code followed by the new one.

oldop,

newop

RENAME oldop,newop [comment]

The old operation name can be eight characters or less and may not contain
either spaces or the & character.

The new operation name is eight characters or less, and contains no spaces
or the & character.

The RENAME directive cannot be used within a segment.

To change an LDA instruction to an instruction called LOAD use the RENAME directive

RENAME LDA,LOAD

SETCOM Set Comment Colwnn

[label] SETCOM expression [comment]

The SETCOM directive indicates the start of the comment column. The assembler will not
search beyond this coluinn for an operand (although it will search for an operation code).
Comments may, of course, begin before this column if an operation code also occurs
earlier. If the end of an operation code Occurs past this column the operand must begin one
space after the end of the operation code or it will not be found by the APW Assembler. IT
you use both SETCOM and a space after an operand, the space has priority.

expression The column number is a constant in the range of 1 to 255. The default is
40. .

Note: A line consisting of a comment only must begin with one of the comment
characters (; * !) even if the comment text occUrS 'after the comment column
number. .

APDADra/t 4 -29 816187

Chapter 4: APW Assembler Directives APW Assembler Reference

65C02

[label]

Enable 650)2 Code

65C02 ON I OFF [comment]

This directive enables and disables the instructions and addressing modes of the 65C02
processor.

ON

OFF

65816

[label]

Use this parameter to enable the 65C02 instructions and addressing modes.

Use this parameter to disable the 65C02 instructions and addressing modes.
The default is OFF.

Enable 65816 Code

65816 ON I OFF [comment]

This directive enables and disables the instructions and addressing modes of the 65C816
processor.

ON

OFF

START

label

Use this parameter to enable the 65816 instructions and addressing modes.
The defalllt is ON.

When off. only 6502 instructions are valid unless you have previously set
65C02 ON.

Stan Segment

START [/oadseg] [comment]

The START directive marks the beginning of a named code segment The code segment
extends to the next END directive.

label

(Loadsed

APDADraft

Each START directive requir!:s a label. which becomes the name of the
object code segment produced by the assembler. The label is global in
scope. Each code segment must have a unique object segment name.

The optional load segment name may be up to 10 characters long. It may
begin with an alphabetic character. an underscore U. or a tilde (-). The
name can contain letters. digits. underscores U. and tildes (-). but no
spaces. Several object segments may have the same load segment name.
The linker places all object segments with the same load segment name in
the same load segment. If you use a LinkEd file to control the APW Linker.
the load segment name you specify here will be ignored unless you
specifically request it.

4 -30 816187

-- --..

APW Assembler Reference Chopter4: APW Assembler Directives

Note: If you use a comment with the START directive, the comment must start at
the SETCOM column (usually the forty-first). A comment that begins before the
SET COM column will be interpreted as a loadseg parameter.

At least one START, PRIVATE, PRIVDATA, or DATA directive is required. If all of these
are omitted, the APW Assembler generates an error message.

SYMBOL Print Symbol Tables

[label] SYMBOL ONIOFF [comment]

The SYMBOL directive controls the printing of the symbol table. An alphabetized listing of
all local symbols is printed following each END directive. After all processing is complete,
global symbols are printed.

[label]

OFF

ON

The label is optional, but global if used.

No symbol table is printed. The default is OFF.

The symbol table is printed.

For example, the program MYPROG

0003 0000 LIST ON
0004 0000 SYMBOL ON
0005 0000 GEN ON
0006 0000 MAIN START
0007 0000 4B PHK
0008 0001 AB PLB
0009 0002 WRITELN I'He110 World!'

0002 + ANOP
0002 80 OD + BRA -62
0004 OC 48 65 6C +-A2 DC I1'l:&STR',C'He110 World! '
0011 F4 00 00 +-B2 PEA -A21-16
0014 F4 04 00 + PEA -A2
0017 A2 OC 1A + LDX #$lAOC
001A 22 00 00 E1 +-C2 JSL $E10000

0010 001E A9 00 00 LDA #0
0011 0021 66 RTL
0012 0022 END

produces the following symbol table with SYMBOL set to ON:

Local symbols

000004 -A2 000011 -B2 00001A -C2

APDADrafi 4 - 31 816187

Chapter 4: APW Assembler Directives APW Assembler Reference

TITLE Print Header

[label] TITLE [string] [comment]

The TITLE directive is used to place page numbers at the top of each page sent to the
printer.

string

TRACE

If you use this optional string. it is printed at the top of each page.
immediately after the page number. If it is coded. it must be a legal string
and must be enclosed in single quotation marks if it contains spaces or starts
with a single quotation mark. If the string is longer than 60 characters. it is
truncated.

Trace Macros

TRACE ONIOFF

Most conditional assembly directives are not printed by the assembler. This is to avoid
printing lines of output that have no real effect on the finished program. It is. however.
sometimes desirable to see all of the lines the assembler processes especially when
debugging macros. To do this. use TRACE ON. The default is TRACE OFF.

The assembler output with TRACE set to ON looks like this:

0006 0000 TRACE ON
0007 0000 CASE ON
0008 0000 LIST ON
0009 0000 TITLE 'SAMPLE PROGRAM'
0010 0000 TEST START
0011 0000 USING TESTDAT
0012 0000 ADD I, J, K

0000 + ANOP
0000 + AIF C:&A1=0, . A
0000 AD 00 80 + LDA I
0003 +.A
0003 18 + CLC
0004 6D 00 80 + ADC J
0007 + AIF C: &A3=0, .B
0007 8D 00 80 + STA K
OOOA +.B

0012 OOOA ADD I,J,K
0013 OOOA ADD K,J,I

OOOA + ANOP
OOOA + AIF C:&A1=0, .A
OOOA AD 00 80 + LDA K

DODD + . A
DODD 18 + CLC
OOOE 6D 00 80 + ADC J

APDADraft 4 - 32 8/6/87

-"

APW Assembler Reference Chapter4: APW Assembler Directives

0011 +
0011 8D 00 80 +
0014 +.B

0013 0014
0014 0014 6B
0015 0015

Page 2 SAMPLE PROGRAM

0016 0000
0017 0000
0018 0000 00 00
0019 0002 00 00
0020 0004 00 00
0021 0006

Page 3 SAMPLE PROGRAM

21 source lines
2 macros expanded
18 lines generated

TESTDAT
I
J
K

AIF C:&A3=0, .B
STA I

ADD K,J,I
RTL
END

DATA
OS 2
DS 2
DS 2
END

With TRACE OFF the output from the same program looks like this:

0008 0000 LIST ON
0009 0000 TITLE 'SAMPLE PROGRAM'
0010 0000 TEST START
0011 0000 USING TESTDAT
0012 0000 ADD I, J, K

0000 + ANOP
0000 AD 00 80 + LDA I
0003 18 + CLC
0004 6D 00 80 + ADC J
0007 8D 00 80 + STA K

0013 OOOA ADD K,J,I
OOOA + ANOP
OOOA AD 00 80 + LDA K
OOOD 18 + CLC
OOOE 6D 00 80 + ADC J
0011 8D 00 80 + STA I

0014 0014 6B RTL
0015 0015 END

Page 2 SAMPLE PROGRAM

0016 0000
0017 0000 TESTDAT DATA
0018 0000 00 00 I DS 2
0019 0002 00 00 J DS 2
0020 0004 00 00 K DS 2
00 2 1 0006 END

APDADraft 4 -33 816187

Chapter4: APW Assembler Directives

Page 3 SAMPLE PROGRAM

21 source lines
2 macros expanded
18 lines generated

USING Using Data Segment

[label] USING dataseg

APW Assembler Reference

[comment]

The US ING directive makes local data segment labels visible to the code segment in which
the US ING directive appears.

dataseg The operand field contains the data segment label.

[label] Labels defined within the code segment take precedence over labels by the
same name in data segments.

For example. the line USING TESTDAT makes the data segment TESTDAT available to
the code segment in the program SAMPLE PROGRAM which follows.

GEN ON
TITLE 'SAMPLE PROGRAM'

TEST START
USING TESTDAT
ADD I,J,K
ADD K,J,I
RTL
END

TESTDAT DATA
I DS 2
J DS 2
K DS 2

END

APDADraft 4 - 34 8/6/87

APW Assembler Reference Chapter 5: Using Macros

Chapter 5

Using Macros
Language

in Assembly·
Programs

This chapter describes how to use macros in your assembly-language programs. It shows
you an assembler listing with macros ;tells you what is in the APW macro and equates
directory, and tells you how to build your own subset of this directory. Finally, this
chapter describes the macro directives you need to use the macros in the directory.

Macro Definition
A macro is a predefined sequence of instructions and directives that acts as a template. You
code a single macro call in your source program which is expanded by the APW Assembler
at assembly time. When the APW Assembler expands a macro call, it replaces the macro
call statement with the contents of the macro definition, substituting actual values for its
variables and parameters. You can create shorthand instructions for lengthy source text
sequences by using the macros provided with your Apple IIGS or by creating your own
macro definitions. Macros are stored in macro files, which are text files, created using the
text editor in the same way that a source file is created. Groups of macro files are often
referred to as macro libraries simply because they are a collection of macros stored in one
place.

Note: APW provides a number of macro defmitions contained in separate files in
the AINCLUDE directory.

Note: Macro definition files are not legal in source files.

Macro Formats
APW macros are coded the same as any other assembly statement. Like instructions and
directives, macros can consist of an optional label field, an operation code (which is always
.the macro name), an optional operand field, and an optional comment field.

[label] OPERATION [operandI [,operand2[,operand311] [comment]

The operation field is usually the only one required. Multiple operands, if they are coded,
must be separated by commas. Any time two or more fields appear in one macro statement
(an operation code, an operand field, and a comment field for example), they must be
separated by at least one space.

APDADra/t 5·1 816187

Chapter 5: Using Macros APW Assembler Reference

Macro Expansions
Nonnally the text resulting from a macro expansion is not listed in the assembler output.
However, inclusion of the GEN ON directive causes the expansion lines to be listed as well
as the rest of the code. If you wrote a macro called ATIMES10 and stored it in a macro
library called MYMACS the source code in your program might look like what follows.

MCOPY MYMACS
GEN ON

MAIN START
LOA #5
ATIMES10
STA FIFTY
RTL

FIFTY OS 2
END

When your program is assembled and the ATIMES10 macro is expanded, your output file
would look like this:

0001 0000
0002 0000
0003 0000 MCOPY MYMACS
0004 0000 GEN ON
0005 0000
0006 0000 MAIN START
0007 0000 A9 05 00 LOA #5
0008 0003 ATIMES10

0003 48 + PHA
0004 OA + ASL A
0005 OA + ASL A
0006 OA + ASL A
0007 18 + CLC
0008 63 01 + ADC 1,S
OOOA 63 01 + AOC 1,S
OOOC 83 01 + STA 1,S
OOOE 68 + PLA

0009 OOOF 80 13 00 STA FIFTY
0010 0012 6B RTL
0011 0013
0012 0013 00 00 FIFTY OS 2
0013 0015 ENO

Each line of text generated by the macro expansion process is preceded by a plus (+) sign.
Also notice that the macro-generated lines are not preceded by line numbers in the
assembler listing; only the original source code lines (including the macro call itself) have

APDADra/t 5-2 8/6/87

APW.Assembler Reference Chapter 5: Using Macros

line numbers. Because code is actually generated for the macro lines, the program counter
is incremented.

Assembler Directives Used With Macros
The MCOPY, MDROP, and MLOAD assembler directives described in this chapter are used to
manipulate macro meso

MCOPY Copy Macro Library

[label] MCOPY maclib [comment]

maclib The name of the library to search for the macro operation code.

The name of the me is placed in a list of available macro libraries. If an operation code
cannot be identified, the macro mes in the list are loaded into the macro buffer, one at a
time, and checked until the correct macro is found. The search begins with the macro me
in memory, proceeds to the first me in the list of macro files, and continues through to the
last me in the list, in the order that the respective MCOPYdirectives were encountered
(skipping the one that was originally in memory). If no macro with a corresponding name
is found, an error is generated.

No more than four macro libraries can be active at anyone time. Macro libraries cannot
contain COpy or APPEND directives.

MDROP . Drop Macro Library

[label] MDROP maclib [comment]

maclib The name of the library to remove from the list of macro libraries.

This directive removes the name of the library in the operand from the list of macro
libraries. If the macro library is active at the time the MDROP directive is encountered, it
remains active and is searched for macros until a search is made which loads a different
library, or until an MLOAD directive is used.

MLOAD Load Macro Library

[label] MLOAD maclib [comment]

maclib The name of the library to load into the list of macro libraries.

APDADraft 5-3 8/6/87

Chapter 5: Using Macros APW Assembler Reference

The list of active macro libraries is checked. If the specified file is not in the list, it is
placed in the list and made active, then loaded. If the filename is already in the list, it is
loaded into the macro library buffer.

Macro and Equate Directory
The APW directory, AINCLUDE is one of the files on the APW disk. AINCLUDE
contains predefined macros and equates. Macros have already been described; equates
define error codes and offsets into structures for the Apple nOS Toolbox.

Predefined Macro Files

The AINCLUDE directory contains the macro files listed in Table 5-1. These macro files
enable you to access the Apple nos Toolbox routines and ProDOS. They are all described
in the Apple JIGS Toolbox Reference, Volume 1 and Volume 2, except for M16 . UTIL.
The file M16 . UT IL contains macros that let you move bytes on to and off the stack, do
mathematical operations, and write strings to output devices. These macros are described
later in this chapter. To use any of the macro files from the directory in your program, you
need to include an MCOPY directive in your source code with the name of the the file. The
assembler searches the directory for the file that you have named. When the macro fIle is
found, its text is included in your program source code without your having to do anything
except provide the name.

Table 5-1. Predefmed Macro Files in the AINCLUDE Directory

M16.ADB
M16.CONTROL
M16.DESK
M16.DIALOG
M16.EVENT
M16.FONT
M16.INTMATH
M16.LINEEDIT
M16.LIST
M16.LOADER
M16.LOCATOR
M16.MEMORY
M16.MENU
M16. MISCTOOL
M16. NOTESYN .
M16.PRINT
M16.PRODOS
M16.QDAUX
M16.QUICKDRAW
M16.SANE
M16.SCHEDULER
M16.SCRAP
M16.SHELL
M16.S0UND
M16.STDFILE
M16.TEXTTOOL

APDADraji 5-4 816187

APW Assembler Reference

M16.WINDOW
M16.UTIL

Predefined Equates

Chapter 5: Using Macros

The AINCLUDE directory contains the equate files listed in Table 5-2. The ASM65816
Equates defIne error returns and offsets into structures for the Apple nos Toolbox. These
flies are documented in the Apple llGS Toolbox Reference, Volume I and Volume 2.

Table 5-2. Equate Files in the AINCLUDE Directory

E16.ADB
E16.CONTROL
E16.DIALOG
E16.DESK
E16.EVENT
E16.FONT
E16.INTMATH
E16.LINEEDIT
E16.LIST
E16.LOADER
E16 . LOCATOR
E16.MEMORY
E16.MENU
E16.MISCTOOL
E16.NOTESYN
E16.PRINT
E16.PRODOS
E16.QUICKDRAW
E16.SANE
E16.SCRAP
E16.SHELL
E16.S0UND
E16.STDFILE
E16.TEXTTOOL
E16.WINDOW

M16. UTIL Macros

The macros described here are all stored in the M16. UTIL file of the AINCLUDE
directory. The macros in M16 . UTIL can be divided into the following functional groups:
macros that remove bytes from the stack, those that add bytes to the stack, macros that
perform mathematical operations, those that defIne storage or formats, environmental
macros, and text tool macros.

Macros that remove bytes from the stack include

PULLLONG
PULLWORD
PULL3

APDADraft

pull the top four bytes from the stack
pull the top two bytes from the stack
pull the top three bytes from the stack

5-5 816187

Chaprer 5: Using Macros APW Assembler Reference

PULLl pull the top byte from the stack

Macros that add bytes to the stack include

PUSHl
PUSHLONG
PUSH3
PUSHWORD .

push one byte on the stack.
push long (4 byt~s) onto stack
push three bytes onto stack
push two bytes onto stack

Macros used to perfonn mathematical operations include

ADD

ADD 4
ASL4
DEC4
INC4
SUB

SUB4
LSR4

add two-byte integers
add together four-byte integers
arithmetic left-shift a four-byte number
decrement a four-byte number
increment a four-byte number by one
subtract two-byte integers
subtract four-byte integers
logical right shift four bytes

Definition macros incl ude

STR defme a string in Pascal fonnat
DP define storage for pointers

Environmental macros include

NATIVE tum on native mode.
EMULATION tum on emulation mode
LONG set memory and registers to 16 bits
LONGM set memory and A register to 16 bits
LONGX set X and Y registers to 16 bits
SHORT set memory and registers to 8 bits
SHORTM set memory and A register to 8 bits

Text tool macros include

WRITESTR write string to staIldard output device
WRITELN write string to standard output device with line terminator
WRI TECH write character to standard output device
READCH read a character from standard input device

The macros that follow are listed alphabetically. If the same macro can be used with either zero, one,
two, or three parameters, each fonn is shown. These macros are designed to work in full native

APDADraft 5-6 8/6/87

APW Assembler Reference Chapter 5: Using Macros

mode except where otherwise noted. Also in many of the macros, a parameter may include
addressing prefixes such as:

">", "<n, fil"

. The parameters in some macros may be expressions.

ADD

This macro adds numbers. ADD can be used with two or three parameters.

[label] ADD addressl,address2

[label] ADD addressl.address2.address3

If the first form of the macro is used, the two bytes in addressl are loaded into the A register and the
two bytes in address2 are added to the A register using the instructions:

LDA addressl
CLC
ADC address2

If the second form of the macro is used, the result in the A register is stored in addressJ. If the
addressl parameter is not specified, the current contents of the A register is used for the addition.

Note that either address I or address2 or both may be specified as constants. For example, the
following macro adds together the numbers 5 and 10 and stores the result (15) in locations LOC and
LOC+I:

ADD ilS, illO, LOC

ADD4

This macro adds two four-byte numbers together and stores the result in the third parameter. The
ADD 4 macro may be used with either the three parameters shown, or with the first parameter
unspecified. If the first parameter is not specified, the current contents of the A register as a two-byte
quantity is used for the addition.

[label] ADD4 addressl.address2,address3

The four bytes in addressl are added to the four bytes in address2 and the result is stored in address3
using these instructions:

LDA address I
CLC

APDADrajt 5-7 8/6/87

Chapter 5: Using Macros APW Assembler Reference

ADC address2
STA address3
LDA addressl+2
ADC address2+2
STA address3+2

Note: After adding the lower two bytes of addressl and address2, the carry is
automatically added to the addition calculation of the higher two bytes.

If the addressl parameter is not specified, the current contents of the A register as a two-byte quantity
is used for the addition. You should also be aware that when the first parameter is unspecified, the
leading comma is still required. For example

ADD4 ,LOC2,LOC3

Either addressl, or address2, or both, may be specified as constants. For example, the
following code adds together the numbers $00010000 and $00000200 and stores the
answer ($00010200) in locations LOC through LOC+3:

ADD4 f$10000,f$200,LOC

ASL4

This macro performs an arithmetic left-shift on a 4 byte number. ASL4 has two different forms:

[/abel] ASL4 address, count
[/abel] ASL4 address

If the first form of the macro is used, the four-byte number starting at location address is shifted left
count number of times using the following instroctions.

LDA address+2
LDX count

-A ASL A
ASL address
ADC 10
DEX
BNE -A
STA address+2

Both the A and X register are used in the macro. The ADC f 0 instruction is needed to add the carry
that resulted from shifting the lower two-bytes of the number to the higher two-bytes. Note that
count could be in the form of fconstant. If the second form of the macro is used, the count is
assumed to already be in the X register.

APDADraft 5-8 8/6/87

""- .

APW Assembler Reference Chapter 5: Using Macros

DEC4

This macro decrements a four-byte number. OEC4 must be used with the address parameter as
shown here.

[label] OEC4 address

The four bytes starting with address are decremented by 1 using these instructions:

DEC address
BPL -A
DEC address +2

-A ANOP

DP

This macro defines storage for four-byte pointers. OP must be used with its parameter as shown
here.

[label] DP pointer

The macro generates the following instruction.

DC 14 pointer

To generate a table offour-byte pointers between the locations LOCl and LOC2, you could use the
following code sequence:

LOCl DS 2
LOC2 DS 2

TABLE OP LOCl
OP LOC2

EMULATION

This macro generates code to put the Apple llGS's 65C816 processor in the mode in which it
functions like an 8-bit Apple II 6502 processor in all respects except clock speed. This macro also
generates assembler directives to put the APW Assembler into the same mode. EMULATION must be
specified without parameters:

[label] EMULATION

The macro generates the follOwing code:

APDADraft 5-9 816187

Chapter 5: Using Macros

SEC
XCE
LONGAOFF
LONGIOFF

INC4

APW Assembler Reference

This macro increments a four byte number. INC4 must be used with the address parameter shown
here.

[label] INC4 address

The four bytes starting with address are incremented by one using these instructions:

INC address
BNE - A .
INC address+2

-A ANOP

LONG

This macro generates code to put the processor into both 16 bit memory/accumulator and l6-bit index
register mode. It also generates assembler directives to put the APW Assembler into the same mode.
LONG must be specified without parameters:

[label] LONG

The macro generates the following code:

REP #%00110000
LONGA ON
LONGI ON

LONGM

This macro generates code to put the processor into l6-bit memory and accumulator mode. It also
generates assembler directives toput the APW Assembler into the same mode. LONGM must be
specified without parameters: .

,.
[label] LONGM

The macro generates the following code:

REP #%00100000
LONGA ON

APDADraft 5 -10 8/6/87

APW Assembler Reference Chapter 5: Using Macros

LONGX

This macro generates code to put the processor into 16-bit index register mode. It also generates
assembler directives to put the APW Assembler into the same mode. LONGX must be specified
without parameters:

[label] LONGX

The macro generates the following code:

REP *%00010000
LONG I ON

LSR4

This macro performs a logical right-shift on a four byte number. LSR4 can be used with either one or
two parameters:

[label] LSR4 address , count

[label] LSR 4 address

If the first form of the macro is used, the 4 byte number starting at location address is shifted right
count number of times using the following instructions:

LDA count
EOR $FFFF
CLC
ADC U
TAX
LDA address
LSR A
LSR address+2
BCC -B
ORA #$8000

-B INX
BNE -A
STA address

Both the A and X registers are used in the macro. Note that count could be in the form of #consr. If
the second form of the macro is used, the complement of the count is assumed to already be in the X
register.

APDADrajt 5 -11 816187

Chapter 5.' Using Macros APW Assembler Reference

NATIVE

This macro generates code to put the 65C816 processor into the 16·bit operating state. It also
generates assembler directives to put the APW Assembler into the same mode. NATIVE can be used
in either of the two forms shown:

[label) NATIVE

[/abelJ NATIVE mode

If the first form of the macro is used, the processor is set to full native mode using the instructions:

CLC
XCE
REP #%00110000
LONGA ON
LONG I ON

If the second form of the macro is used, mode specifies a processor partial native mode defined by
how memory, the accumulator, and registers are accessed. Each of these modes is described under
the name of the name used in the parameter. The following partial native modes can be specified:

NATIVE LONG
NATIVE LONGM
NATIVE LONGX
NATIVE SHORT
NATIVE SHORTM
NATIVE SHORTX

PULLLONG

This macro pulls the top four bytes from stack using the A register and optionally stores
them in memory. The PULLLONG macro has four forms:

[label] PULLLONG

[/abelJ PULLLONG address

[label) PULLLONG address1, address2

[label) PULLLONG [DirectPagel,offset

If the first form of the macro is used, the first two bytes are discarded and the last two bytes remain in
the A register. If the second form is used, the four bytes are stored using the instructions

STA address
STA address+2

APDA Draft 5·12 8/6/87

APW Assembler Reference Chapter 5: Using Macros

Because the parameter address can actually include all direct addressing modes that do not require an
index register, any of the following fonns can be used: .

STA abs
STA. dp
STA long

Absolute
Direct Page
Absolute Long

If the third fonn of the macro is used, the four bytes of data are stored at two different locations:
addressl, address2. The macro call

PULLLONGaddressl , address2

generates the code

PLA
STA addressl
STA address2
PLA
STA addressl+2
STA address2+2

The fourth fonn is a special case for the Direct Page Indirect Indexed Long addressing
mode. This fonn stores the data via indirect Y addressing, using the instruction STA
[dp],Y. Y is loaded with the value offset. !fno parameters are coded, the high-order word
remains in the accumulator and the low-order word is lost

For example

PULLLONG [100],5

generates the code

LDY i5
PLA
STA [100),Y
LDY jf7

PLA
STA [100],Y

Important: The offset in the macro call should not be preceded by a it.·

PULLI

This macro pulls the top byte from the stack using the A register and optionally stores it in
memory. PULLl has three different fonns:

APDADraft 5 -13 816187

Chapter 5: Using Macros APW Assembler Reference

[label) PULLl

[label) PULLl address

[label) PULLl address, register

All fonns of the macro first generate the instructions

SEP U00100000
PLA

set memory and A register to 8-bit mode

The last instruction of each macro form restores memory and the A register to 16-bit mode via the
instruction

REP U00100000

If the fIrst form of the macro is used, the byte being pulled from the stack remains in the A
register. If the second form is used, the byte is stored in memory using the instruction

STA address

Note that the parameter address can actually include all addressing modes that do not
require an index register. Any of the following forms can be used:

STA abs Absolute
STA dp Direct Page
STA long Absolute Long
STA (dp) Direct Page Indirect
STA [dp) Direct Page Indirect Long
STA (dp,x) Direct Page Indexed Indirect

If the third form of the macro is used, the register parameter specifIes the index register
used for the STA instruction, and therefore most of the remaining address modes can be
used.

STA abs,X Absolute Indexed by x
STA abs,Y Absolute Indexed by Y
STA dp,x Direct Page Indexed by x
STA dp,Y Direct Page Indexed by Y
STA (dp),Y Direct Page Indirect Indexed
STA [dp],Y Direct Page Indirect Indexed Long
STA dp,s S tack Relative
STA (dp,S) ,Y Stack Relative Indirect Indexed

Note: Because the parameters in the Direct Page Indexed Indirect and Stack
Relative IndireCt Indexed addtessing modes are within parentheses, the assembler
treats them as though they were a single parameter.

APDADraft 5 - 14 816187

',--,--

APW Assembler Reference Chapter 5: Using Macros

PULL3

This macro pulls the top three bytes from the stack using the A register and optionally
stores them in memory. The PULL3 macro has only one form:

[label) PULL3 address

The macro generates the instructions

SEP H00100000 set memory and A register to 8-bit mode
PLA

STA address
REP t%00100000 restore memory and A register to 16-bit mode
STA address+1

Because address can actually include all addressing modes that do not require an index
register, this parameter can take any of the following fonns:

STA abs
STA dp
STA long

PULLWORD

Absolute
Direct Page
Absolute Long

This macro pulls the top two bytes from the stack using the A register and optionally stores
them in memory. PULLWORD has three different forms

[label) PULLWORD

[labe/] PULLWORD address

[label] PULLWORD address, register

If the first form is used, the two bytes remain in the A register. If the second form is used,
the two bytes are stored using the instruction

STA address

Because the address parameter can actually include all addressing modes that do not
require an index register (you may need to prefix the address with a <, >, or I), it can take
any of the following forms:

STA abs Absolute
STA dp Direct Page
STA long Absolute Long
STA (dp) Direct Page Indirect
STA [dp] Direct Page Indirect Long
STA(dp,X) Direct Page Indexed Indirect

APDA Draft 5 -15 816187

Chapter 5: Using Macros , APW Assembler Reference

If the third fonn of the macro is used, the register parameter specifies the index register
used for the STA instruction, and therefore most of the remaining address modes can be
used:

STA abs,x Absolute Indexed by x
STA abs,Y Absolute Indexed by Y
STA dp,x Direct Page Indexed by x
STA dp,Y Direct Page Indexed by Y
STA (dp),Y , Direct Page Indirect Indexed
STA [dp],Y Direct Page Indirect Indexed
STA dp,S Stack Relative
STA (dp,s) ,Y Stack Relative Indirect Indexed

Note: Because the parameters in the Direct Page Indexed Indirect and Stack
Relative Indirect Indexed addressing modes are within parentheses, the assembler
treats them as though they were a single parameter.

PUSHLONG

This macro pushes four bytes on the stack. The PUSHLONG macro has four different fonns:

[label] PUSHLONG .constant

[label] PUSHLONG address

[label] PUSHLONG address, register

[label] PUSHLONG [DirectPage],offset

If the fltSt fonn of the macro is used, a four byte constant is pushed on the stack using the
instructions

PEA constant/-16
PEA constant

push-high order two bytes
push low-order two bytes

'Note that the constant is preceded by a # in the macro call.

If the second fonn is used, the four bytes are pushed on the stack using the instructions

LDA address+2
PHA
LDA address
PHA

Note that the parameter address can actually include all direct addressing modes that do not require an
index register:

LDA abs Absolute

APDADraft 5 -16 816187

APW Assembler Reference Chapter 5: Using Macros

LDA dp
LDA long

Direct Page
Absolute Long

If the third fOIlIl is used, the register parameter specifies the index register used for the LDA
instruction and therefore most of the remaining addressing modes can be used:

LDA abs,x Absolute Indexed by x
LDA abs,Y Absolute Indexed by Y
LDA dp,x Direct Page Indexed by x
LDA dp,Y Direct Page Indexed by Y
LDA (dp),Y Direct Page Indirect Indexed
LDA [dpj,Y Direct Page Indirect Indexed
LDA dp,S Stack Relative
LDA (dp,S) ,Y Stack Relative Indirect Indexed

The fourth fOIlIl is a special case for the Direct Page Indirect Indexed Long addressing mode. For
example the macro call

PUSHLONG [100],5

generates the code

LDY .5
LDA [100],Y
PHA
LOY t7
LOA [100],Y
PHA

Important: The offset in the macro call should not be preceded by a fl.

Note: Because the parameters in the Stack Relative Indirect Indexed addressing
mode are within parentheses, the assembler treats them as though they were a single
parameter.

PUSHl

This macro pushes one byte onto the stack. The PUSH1 macro has four different fOIlIlS:

{label] PUSH1

(labe/J PUSH1 IIconstant

(label] PUSH1 address

[/abe/J PUSHl address, register

APDA Draft 5 -17 816187

Chapter 5: Using Macros APW Assembler Reference

In all forms, the macro first generates an instruction to set memory and the A register to 8-bit mode.

SEP 11%00100000

The last instruction of all forms restores memory and the A register to 16-bit mode.

REP 11%00100000

The fIrst form of PUSH1 pushes the byte from the A register. The second form pushes the
value of a constant onto the stack. If the fourth form of the macro is used, the register
parameter specifies the X register.

PUSH3

This macro pushes three bytes on the stack. The PUSH3 macro has three different forms:

[label] PUSH3

[label] PUSH3

[label] PUSH3

!iconstant

address

address, register

If the frrst form of the macro is used. a three byte constant is pushed on the stack using the
instructions

LDA !iconstant I -8 high-order two bytes
PHA push on stack
PHB push an extra byte on stack
LDA !iconstant low order two bytes
STA 1,S store directly to stack

This code stores one of the three bytes on the stack twice, but the end result is correct. This technique
takes less code than going into 8-bit mode to push one- byte and then going back into 16-bit mode to
push the other two bytes. Also note that the constant is preceded by a # in the macro call.

If the second form is used, the three bytes are pushed on the stack using the instructions

LDA address + 1 high-order two bytes
PHA push on stack
PHB push an extra byte on stack
LDA address low-order two bytes
STA 1,S store directly to stack

The parameter address can actually include all direct addressing modes that do not require an index
register:

LDA abs Absolute

APDADraft 5 -18 8/6/87

. .

APW Assembler Reference Chapter 5: Using Macros

LDA

LDA

dp
long

Direct Page
Absolute Long

If the third form is used, the register parameter specifies the index register used for the LDA
instruction and therefore some of the remaining addtessing modes can be used:

LDA abs, X
LDA abs, Y
LDA dp, X
LDA dp, Y

PUSHWORD

Absolute Indexed by X
Absolute Indexed by Y
Direct Page Indexed by X
Direct Page Indexed by Y

This macro pushes two bytes on the stack. The PUSHWORD macro has four different forms:

[label] PUSHWORD

[label] PUSHWORD #constant

[label) PUSHWORD address

[label] PUSHWORD address, register

If the first form of the macro is used, the two bytes in the A register are pushed on the stack using the
instruction

PHA

If the second form is used, a two-byte constant is pushed on the stack using the instruction

PEA constant

If you use this form, be sure to preface the constant with a # in the macro call.

The third form of the macro loads two bytes into the A register using the instruction

LDA address

and then pushes on the stack with the instruction

FHA

The parameter address can actually include all addtessing modes that do not require an index register.
For example:

LDA abs
LDA dp

APDADraft

Absolute
Direct Page

5" 19 8/6/87

Chapter 5: Using Macros APW Assembler Reference

LOA long
LOA (dp)
LOA [dp]
LOA (dp,x)

Absolute Long
Direct Page Indirect
Direct Page Indirect Long
Direct Page Indexed Indirect

The fourth fonn of the macro uses the register parameter to specify the index register for the LOA
instruction. This means that most of the remaining addressing modes can be used:

LOA abs,x Absolute Indexed by X
LOA abs,Y Absolute Indexed by Y
LOA dp,x Direct Page Indexed by X
LOA dp,Y Direct Page Indexed by Y
LOA (dp),Y Direct Page Indirect Indexed
LOA [dp],Y Direct Page Indirect Indexed Long
LOA dp,s Stack Relative
LOA (dp,s),Y Stack Relative Indirect Indexed

READeH

This macro reads a character from the standard input device (usually the keyboard) and
either stores it in the A register, or in the memory location specified by address. There are
three fonns that it can take:

[label) READCR

[label) READCR address

[label) READCR address, register

If the first fonn of the macro is used, the character will remain in the A register and not be stored.
The second fonn of the macro calls the Text Tool function ReadChar and reads the character into the
A register. The A register is stored in location address.

PEA 0
PEA 1
LOX iI$220C
JSL $E1OOOO
PLA
STA address

The third fonn of the macro uses the instruction

ST A address,register

instead of the STA address instruction used in the second fonn. The second and third forms of the
macro can get a character using any of the available addressing modes that the instruction STA
supports.

APDADrajt 5 -20 816187

APW Assembler Reference Chapter 5: Using Macros

SHORT

This macro generates code to put the processor into both 8-bit memory/accumulator and 8 bit index
register mode. It also generates assembler directives to put the APW Assembler into the same mode.
SHORT can be specified only in the form shown:

[label] SHORT

The macro generates the following code:

REP
LONGA
LONG!

SHORTM

ft'l;001l0000
OFF
OFF

This macro generates code to put the processor into 8-bit memory and accumulator mode. It also
generates assembler directives to put the APW Assembler into the same mode. SHORTM can only be
used in the form shown:

[label] SHORTM

The macro generates the following code:

REP #%00100000
LONGA OFF

SHORTX

This macro generates code to put the processor into 8-bit index register mode. It also generates
assembler directives to put the APW AS5e'mbler into the same mode. SHORTX cannot be specified
with any parameters.

[label) SHORTX

The macro generates the following code:

REP #%00010000
LONG! OFF

STR

This macro converts a string into a Pascal type of format and stores it. The first byte of the string will
contain the number of characters in the string. The second, and succeeding bytes, are the characters

APDADraft 5 - 21 8/6/87

Chapter 5: Using Macros APW Assembler Reference

in the string itself (one byte per character). The STR macro uses one parameter. Remember to use
quotation marks if you have any spaces in your string.

[label] STR string

The macro generates the following instruction:

DC Il'L:string',C'string'

For example

STR "ABCD"

generates the following five bytes:

4 'A' 'B' 'e' 'D'

SUB

This macro subtracts two byte numbers. SUB can be used with two or three parameters:

[label] SUB address] ,address2

[label] SUB address] ,address2 ,address3

If the first form of the macro is used, the two bytes in address] are loaded into the A register and the
two bytes in address2 are subtracted from the A register using the instructions

LDA address]
SEC
DEC address2

The result is stored in the A register.

If the second form of the macro is used, the result in the A register is stored in address3. If the
address] parameter is not specified, the current contents of the A register are used for the subtraction.
In this case, as with the ADD macro, a leading comma is required:

SUB ,L0C2,LOC3

Either address], or address2, or both, may be specified as constants. For example

SUB il15,illO,LOC

subtracts the number 10 from the number 15 and stores the result (5) in locations LOC and LOC+ 1.

APDADrajt 5 - 22 8/6/87

APW Assembler Reference Chapter 5: Using Macros

SUB4

This macro subtracts one fout-byte number from another. SUB4 can only be used with either the
three parameters shown, or with the first parameter unspecified. If the first parameter is not
specified, the current contents of the A register as a two-byte quantity is used for the subtraction.

[label] SUB4 addressl ,address2 ,address3

The four bytes in address2 are subtracted from the fout bytes in addressl and the result is stored in
address3 using the instructions

LOA addressl
SEC
DEC address2
STA address3
LDA addressl+2
DEC address2+2
STA address3+2

Important: After subtracting the lower two bytes of addressl and address2, the
carry is automatically subtracted from the subtraction calculation of the higher two
bytes.

Either addressl, or address2, or both, may be specified as constants or expressions. For example

SUB4 #$lOOOO,#$200,LOC

subtracts the number $00000200 from the number $0010000 and stores the result ($OOOOFEOO) in
locations LOC through LOC+3.

WRITECH

This macro writes a character to the standard output device (usually the screen). It has fout different
fonns:

[label] WRITECH

[labe~ WRITECH address

[label] WRITECH #'character'

[label] WRITECH address, register

If the second form of the macro is used, the character in location address is written using the
instructions

APDADrajt 5 -23 816187

Chapter 5: Using Macros APW Assembler Reference

LOA address
PHA
LOX ilS180C
JSL SE10000

which call the Text Tool function WriteChar with the character. The third form of the macro uses the
instruction

LOA #'character'

instead of the instruction

LOA address

The fourth form uses the instruction

LOA address,register

Therefore the second and third fonns of the macro can be used to get a character using any of the
available addressing modes that the instruction LOA suppons. The first form of the macro assumes
that the character is already in the A register.

WRITELN

This macro writes a string followed by the line terminator (usually a carriage return) to the standard
output device (usually the screen). The macro has three different forms:

[label] WRITELN address

[label] WRITELN #"string"

[label] WRITELN

If the first form of the macro is used, the string in location address is written using the instructions

PEA address 1-16
PEA address
LOX ilS1AOC
JSL SE10000

which call the Text Tool function WriteLine with the pointer to the string.

If the second form of the macro is used, the specified string is built in the macro and that address is
used in the Text Tool call.

If the third form of the macro is used, only ,the line terminator is written.

APDADraft 5 -24 816187

APW Assembler Reference Chapter 5: Using Macros

WRITESTR

This macro writes a string to the standanl output device (usually the screen). It can be used in three
different forms:

[label] WRITESTR address

[labe/] WRITESTR #"srring"

[label] WRITESTR

If the first form of the macro is used, the string in location address is written using the instructions

PEA addressl-16
PEA address
LDX *$lCOC
JSL $E10000

which call the Text Tool function WriteSrring with the pointer to the string.

If the second form of the macro is used, the specified string is built in the macro and that address is
used in the Text Tool call.

If the third form of the macro is used. the address of the string is assumed to be in the A
and Y registers (A contains the lower two bytes).

Building Your Own Macro Library
Normally you use MacGen to build one macro file containing all of the macros that you
use. This method not only saves you macro table space when you are assembling, but it
will reduce your assembly time noticably. The assembler does not have to search through
all of the unreferenced macros to fmd the ones that you are using. This me can include
your own macros as well as APW macros. Call the MacGen utility to create your macro
file by typing in the following command:

MACGEN [+C I -C) infile outfile macrofilel [macrofile2 ...]

MacGen creates a custom macro me for your program by searching one or more macro
libraries for the macros referenced in your program and placing the referenced macros in a
single flle.

APDADraft 5 -25 8/6/87

Chapter 5: Using Macros APW Assembler Reference

+C I -C If you specify +C (the default value), all excess spaces and all comments
are removed from the macro file to save space. If you use the ON option of
the GEN directive to include expanded macros in your source listing, use the
-C parameter of the MacGen utility to improve the readability of the listing.
The same is true if you use the ON option of the TRACE directive to include
conditional execution directives in your source file listing.

infile The full or partial pathname (including the filename) of your source file.
MacGen scans this file for references to macros.

outfile The full or panial pathname (including the filename) of the macro file to be
created by MacGen.

macrofilel macrofile2 The full pathnames or partial pathnames (including the
filenames) of the macro libraries to be searched. These are the libraries that
will be searched for the macros referenced in infile . At least one library
must be specified. Wildcard characters may be used in the filenames. If
you use more than one filename, separate the names with one or more
spaces.

MacGen scans irifile, including all files referenced with COpy and APPEND directives, and
builds a list of the macros referenced. If there are still unresolved references to macros,
MacGen scans macrojile1, macrofile2, and so on. MacGen can handle macros that call
other macros. If there are still references to macros that are unresolved after all of the
macro flies you specified in the command line have been scanned, MacGen lists the
missing macros and prompts you for the name of another macro library. Press Return
without a filename to terminate the process before all macros have been found. After all
macros have been found (or you press Return to end the process), outfile is created.

Important: Before you assemble your program, make sure that the source code
contains the directive MCOPY outfile so that the assembler will search outfile for
your macros. If you do not supply irifile, outfile, or macrofilel when you enter the
MACGEN command, you will be prompted for the missing parameter. Remember
that MacGen assumes that the first pathname is irifile, the second'pathname is
outfile, and that the third and subsequent pathnames are macrojiles.

The following example scans the program file /APW/TEST .ASM for macro file names,
searches the macro libraries / LIB/MACROS and / APW/ AINCLUDE for the referenced
files, and creates a new macro library called /APW/MYMACROS: '

MACGEN /APW/ TEST . ASM /APW/ MYMACROS /LIB/ MACROS /APW/ AINCLUDE

Assembling a Program That Contains Library Macros

In order to assemble a program that contains library macros, do the following:

1. Write a source code program with the calls to the macros that you need and any
parameters that they require.

2. Run your program through the MacGen utility to create a macro library unique to your
program.

APDADra/t 5 - 26 8/6/87

APW Assembler Reference Chapter 5: Using Macros

3. Add a MCOPY directive at the beginning of your program with the name of the output
file created by MacGen.

4. Assemble and execute the program in the nonnal way.

Listing Options

There are two directives you can use to set specific options for your listing. These are
TRACE and GEN. If you want to see the code generated by the macros, use the GEN
directive at the beginning of your program. The TRACE ON directive instructs the APW
Assembler to print all the lines that the APW Assembler processes. This can be useful
when you are debugging macros.

APDADraft 5-27 8/6/87

APW Assembler Reference Chapter 6: Writing Macros

Chapter 6

Writing Macros
The alternative to using the macros in the libraries described in Chapter 5 is to write your .
own macros. This chapter describes the macro and conditional assembly directives,
symbolic parameters, and sequence symbols that you need to be able to write your own
macro definitions. Although symbolic parameter substitution and conditional assemblies
are valid outside of macros, these two features are so typically used within macro definition
files that they are included in this chapter.

Macro Definition
A macro is a predefined sequence of instructions and directives that acts as a template.
When the APW Assembler encounters an instruction in the operation code field that it does
not recognize as a valid 65816 instruction mnemonic or assembler directive, it assumes that
it is a macro call and searches the active macro defmition fIles (as specified by MCOP Y or
MLOAD directives in your sowce code) for a macro definition that matches the unrecognized
instruction. The assembler then does a macro expansion, substituting the program text
found in the macro defmition file for the macro calI. When you write your own macro, you
must save it in a macro fIle and then use an MCOPY directive in your source code to access
it exactly as though it were one of the predefined macros provided with APW.

You go through the same steps to save the macros that you write as you do to create any
other assembler source fIle: edit the macro, name it, and save it.

A simple macro definition looks like this:

MACRO
&LAB ATlMES10
&LABASL A

PHA
ASL A
ASL A
ADC 1, S
PLX
MEND

Each macro defmition begins with a MACRO directive and ends with a MEND directive. The
line inunediately following the MACRO directive is the macro definition statement. It
contains the macro name, in this case ATlMES 10. The name may be any sequence of
keyboard characters except a blank or an ampersand (&). The name may contain any
number of characters.

There are ~o other directives in addition to MACRO and MEND used to defme macros, they
are MNOTE and MEXIT. MNOTE is used to code an error message into a macro; MEXIT is
used to exit from the macro before the end of the definition code is reached. With the

APDADraj't 6-1 8/6/87

Chapter6: Writing Macros APW Assembler Reference

exception of MNOTE, these directives are legal only within macro definition files. If you try
to use them in source code, they will create an error.

Conditional Assembly Directives .
Conditional assemblies allow source code lines in a program to be included, excluded, or
repeated, depending upon a given condition.

The conditional assembly directives AGO and AIF are branch instructions that require·
destinations. The destinations are provided by sequence symbols, represented in this text
as .symbol. A sequence symbol is a period (.), followed by a label. Comments may
follow the label after at least one space. Sequence symbols are not printed in the assembler
listing unless TRACE ON is in effect.

One use of the conditional assembly is to push macro parameters onto the stack before
jumping to a routine, if a set of conditions are met. If the conditions are not met, a branch
is made around the code that puts the parameters on the stack.

& LAB
& LAB

.SKIP

MACRO
THEMACROS
ANOP
AIF
LDA
PHA

JMP
MEND

&VAL

C: & VAL=O, . SKIP
&VAL

[! 0]

The directive that determines whether or not the branch will be made is the AIF (Assember
IF) directive. The expression C: & VAL=O determines whether or not the symbolic
parameter & VAL has been defined. The C: preceding the & VAL is a: count attribute; it
returns a value of 0 if the parameter is undefined. 'The equal sign works as a comparison
operator, returning 0 if the comparison is not true, or I if it is true. If the expression is
nonzero, the macro processor skips the input lines up to the target label defined after the
comma (. SKIP) ; otherwise it continues processing on the next line. The following source
program and expanded assembler listing illustrates the two ways in which the macro
THEMACROS can be invoked.

0001 0000
0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
0008 0000
0009 0000 AD OE 00
0010 0003 48
0011 0004

0004
0004 DC 00 00

APDADrajt

MCOPY
GEN

MAIN START

DOVALUE ENTRY

THE MACROS
ON

LDA VALUE Initialize to 5.
PHA Pass on the stack.
THEMACROS

+ ANOP
+ JMP [!O]

6-2 8/6/87

'.,

APW Assembler Reference Chapter 6: Writing Macros

0012 0007
0013 0007 DOS ENTRY
0014 0007 THEMACROS j/ 5

0007 + ANOP
0003 A9 05 00 + LOA j/5
OOOA 48 + PHA
OOOB DC 00 00 + JMP [! 01

0015 OOOE
0016 OOOE 00 00 VALUE OS 2
0017 0010 END

This routine contains two entry points which are implemented via the two possible
expansions of the THEMACROS macro. If the entry point 0 OVAL UE is used, whatever is
stored in VALUE is pushed on the stack and the macro call is made without an operand. If
you use the entry point at DOS, the macro call is made with an operand. An immediate 5 is
always pushed on the stack before the call is made.

Symbolic Parameters

Symbolic parameters are variables that can be assigned and reassigned values. Symbolic
parameters are coded as an ampersand (&), followed by a name. The name has the same
syntax conventions as a label. Symbolic parameters are represented in this text as &spar.
There are three types of symbolic parameters: A(arithmetic), B (Boolean), and C
(character). Arithmetic and Boolean symbolic parameters are initialized to O. Arithmetic
symbolic parameters can contain any 32-bit signed value; Boolean symbolic parameters can
contain any value between 0 and 255. Zero is treated as false and any other value as true
when used in a logical expression.

Symbolic parameters are assigned values by the SETA, SETB, or SETC directives. Use
the COUNT attribute described later in this chapter to determine whether or not a symbolic
parameter is defmed.

Set Symbols
Set symbols are like assignment statements because they are used to assign values to
symbolic parameters. Set symbols are different from assignment statements because set
symbols come in types and the type of the set symbol used to make an assignment must
correspond with the declared type of the symbolic parameter. An arithmetic symbolic
parameter can only be assigned a value by the set symbol directive SETA; Boolean
symbolic parameters by SETB, and character symbolic parameters by SETC .

For example, if you attempt to assign the string: 'Here' 's a quoted string'
using SETA instead of SETC, the assembler wiIl assume that the operand is a constant
expression. The result that will be assigned to &STRING will be a 32-bit signed number
formed by evaluating the first four characters as numbers.

&STRING SETA 'Here', ' s a quoted string'

APDADraft 6-3 816187

Chapter 6: Writing Macros APW Assembler Reference

Using Symbolic Parameters
Macros become really useful when they contain symbolic parameter substitutions.
Symbolic parameter substitution allows the macro definition text to include placeholders
that are replaced by actual values when the macro expansion takes place. 'The actual values
to be used are specified in the operand field of the macro call statement in the source flle.
An example of a macro definition which includes symbolic parameters is the macro
ADD LONG. This macro adds together two 32-bit numbers and stores the result at the
address of the first number. The name of the symbolic parameter following the ampersand
has the same syntax as an APW Assembler label.

& LAB
& LAB

MACRO
ADD LONG
CLC
LDA
ADC
STA
LDA
ADC
STA
MEND

& NUMB 1 , &NUMB2

&NUMB1
&NUMB2
&NUMB1
&NUMB1+2
&"NUMB2+2
&NUMB1+2

The symbolic parameters of the macro defmition act as dummy values. They are replaced
by actual values during the expansion process. The following examples show the input
source flle that invokes the macro and the APW Assembler output listing, which shows the
code actually generated.

MCOPY MYMACS
GEN ON

MAIN START
DOADD ADD LONG BIGNUM,BIGNUM2

RTL
BIGNUM DC I4' 1234567'
BIGNUM2 DC I4' 2345678'

END

The parameters are separated by a comma in the operand field. There should be no
intervening spaces between the operand values. The output listing shows only the
generated macro code if you use the GEN ON option.

00010000
0002 0000
0003 0000 MCOPY MYMACS
0004 0000 GEN ON
0005 0000
00060000 MAIN START
0007 0000
0008 0000 DOADD ADDLONG BIGNUM,BIGNUM2
0000 18 + DOADD CLC
0001 AD 14 00 + LDA BIGNUM
0004 6D 18 00 + ADC BIGNUM2
0007 8D 14 00 + STA BIGNUM

APDADraft 6-4 8/6/87

APW Assembler Reference Chapter 6: Writing Macros

OOOA AD 15 00 + LDA BIGNUM+2
OOOD 6D 19 00 + ADC BIGNUM2+2
0010 8D 14 00 + STA BIGNUM+2

00090013
00100013 6B RTL
0011 0014
0012 0014 87 D6 12 00 BIGNUM DC 14'12345 67'
0013 0018 CE CA 23 00 B1GNUM2 DC 14'2345678'
0014001C
0015001C END

Every occurrence of the symbolic parameters &NUMl and &NUM2 is replaced in the
expansion by the values found in the corresponding positions in the operand field of the
macro call statement in the source file. In this case, the values were the labels of the
memory locations containing the two numbers to be added. Notice that another symbolic
parameter is included in the definition: &LAB. 'This parameter is coded to allow the macro
call statement to receive a label, which is then used to put a label on one of the model
statements. In other words, macro calls themselves cannot be labeled, but they can be used
to give a value to a symbolic parameter in the label field of the macro definition statement if
one is coded. This is necessary if the macro call is to be the target of a jump or call
instruction. In the example, the symbol DOADD was coded in the label field of the macro
call statement; in the expansion, the first model statement received this value as a label.

Symbolic Parameter Substitution

Symbolic parameter substitution takes place in two steps. In the first step, the string in the
label field is skipped, and substitution begins with the operation field. If the resulting
instruction in the operation field is not & SETA, &SETB, &SETC, AMID, A1NPUT, or
ASEARCH when a symbolic parameter is found in the label field, it too is replaced with its
value.

Symbolic parameters are automatically concatenated with the text following them.
However, it is often necessary to indicate where the symbolic parameter name ends and the
surrounding text begins. The period, or dot operator, can be used to indicate that the end
of symbolic parameter has been reached. In this case, the dot operator itself is not included
in the text expansion and the text that follows is concatenated with the expanded symbolic
parameter. Where a symbolic parameter name is followed immediately by an alphanumeric
character, or if a subscript is followed by a mathematical symbol or expression, the dot
operator is required.

When you use the dot operator in a logical expression, you must code the dot in addition to .
the period in the expression. This means that the expression

&LOGIC . AND.&LOGIC

will expand to valueand . value where &LOGIC contains value. The correct way to
logically AND two symbolic parameters is

&LOGIC . . AND.&LOGIC

APDADraft 6-5 8/6/87

Chaprer 6: Writing Macros APW Assembler Reference

Symbolic Parameter Scope

Symbolic parameters may be defined either for the current macro expansion or cOOe
segment, or for the entire subroutine. Defming symbolic parameters whose scope is the
entire subroutine allows macros to communicate with each other. Symbolic parameters
valid only within a macro or the cOOe segment in which they are defined are called local
symbolic parameters; those valid throughout the subroutine are called global symbolic
parameters. The scope of a global symbolic parameter is therefore equivalent to the scope
of a local assembler label. Using global symbolic parameters lets you create macros that
pass information to one another.

Assigning values to SymboliC Parameters

The APW Assembler assigns values to symbolic parameters in different ways depending
upon the kind of symbolic parameter.

Positional Parameters

In the examples so far, symbolic parameters have received their values from the macro call
statement in the source program \hat invokes the macro. These implicitly defined symbolic
parameters are called positional parameters because the values on the macro call line are
matched with the symbolic parameters in the macro defmition line by their respective
positions. When assigning actual values to positional parameters, the APW Assembler
counts the commas between parameters on the macro call line; if no value is to be given to a
parameter, the right number of commas must be included anyway;

MYMACRO A, , C

The first positional parameter will receive the value A, the second no value, and the third,
C.

In addition to the positional parameters found in the operand field of the macro call, if a
label is cooed in the macro call and macro defmition lines, it too is a positional parameter.

Keyword Parameters

A keyword parameter is another way to reference a symbolic parameter defined in the
operand field of a macro statement. The name of the macro is entered, followed by a
space. The name of the first symbolic parameter is entered, followed by an equal sign and
the value to be assigned to this parameter. Additional symbolic parameters are separated by
commas.

To invoke the ADD LONG macro by using keyword parameters, you would enter

ADD LONG &NUMB1=BIGNUM,&NUMB2=BIGNUM2

When only keyword parameter substitution is used, the order of the parameters is not
important. Positional parameter rules regarding commas and spaces apply if positional
parameters are intermixed with keywords; in other words, keyword parameters take up a

APDADraft 6-6 8/6/87

"'- ..

APW Assembler Reference Chapter 6: Writing Macros

space and are counted for determining positions when they are mixed with positional
parameters.

Character-Type Symbolic Parameters

Character-type symbolic parameters are initialized to null character strings. Remember that
character strings have both value and length. The length may be up to 255 characters. The
null string has a length of O.

Subscripted Symbolic Parameters

Symbolic parameters may be subscripted with up to 255 elements. In the case of explicitly
defmed symbolic parameters, the maximum number of subscripts must have been declared
when the symbolic parameter was defined. Only a single subscript is allowed.

Symbolic parameters defmed in the macro definition statement are subscripted by including
the subscripted variables in parentheses on the macro call line.

For example, if a macro call statement contained the following phrase in the operand field,

&SUB=(ALPHA"GAMMA)

the keyword parameter & SUB for the given expansion would have three subscripts
allowed. The initial value of each element would be

&SUB(1) 'ALPHA'
& SUB (2) null string
&SUB (3) 'GAMMA'

The most effective way to use subscripted parameters is to code the macro to detect the
number of subscripts allowed (using the count attribute) and then take an appropriate action
via conditional assembly directives.

One symbolic parameter may be used as a subscript for another symbolic parameter;
however, it cannot itself be a subscripted symbolic parameter, nor may symbolic
parameters or literal strings be concatenated to form the subscript.

These examples illustrate how previously defined subscripted symbolic parameters are set
and used.

&AR(4) SETA
&AR (&NUM) SETA

16
&AR (4)

&AR (4) and &AR (&NUM) are both set to 16.

The following example assumes that four symbolic parameters have been defined. The
maximum subscripts for each are shown with the symbolic parameter name. Next is the
type, followed by the val ue. Subscripted symbolic parameters have their values listed on
successive lines.

APDADraft 6- 7 8/6/87

Chapter 6: Writing Macros

Name

& ART
&BIN (2)

Type

A
B

& CHAR C
&CHAR2 (3) C

Value

$FE
1 (true)
o (false)
'LABEL'
'STRING1'
, , (null string)
'A'

APW Assembler Reference

The sample code that follows shows the instructions entered in a macro. Following it are
the instructions as expanded by the macro processor.

Macro file:

& CHAR

L&BIN(l)
LO&CHAR2(3)

LOA &CHAR2 (1)
STA & CHAR . &BIN (2)
LOA HART
BEQ L&BIN (1)
LOA LB&CHAR2 (2)
STA EQ&BIN (2)
ill

Expanded instructions look like this:

LABEL

L1
LOA

LOA STRING 1
STA LABELO
LOA #254
BEQ Ll
LOA LB
STA EQO '
ill

Note that the null string is valid; it is replaced by nothing.

Conditional Assembly and Macro Directives
This section describes the functions that can be perfonned using the APW conditional

assembly and macro directives.

ACTR Assembly Counter

ACTR numb [comment]

The ACTR directive is used to limit the number of loops caused by conditional assembly
branches. Each time a branch is made in a macro definition, a counter is decremented. If it
reaches 0, processing of the macro stops to protect it from infinite loops.

APDADraft 6- 8 8/6/87

APW Assembler Reference Chapter 6: Writing Macros

numb This number must be in the range of I to 255. The loop counter is set from
the value in numb.

The counter value is set to 255 automatically at the beginning of each macro. In loops with
more than 255 iterations, it must be reset within the bounds of the loop to prevent the
counter from reaching O. The ACTR directive is only printed if it contains an error or
TRACE ON is in effect.

AGO Assembler GO

AGO .symbol [comment]

The conditional assembly directive AGO causes an unconditional branch. The target of the
branch is determined by the operand .

. symbol This operand is required and it must contain a sequence symbol. The macro
definition (or subroutine if not used in a macro) is searched for a matching.
sequence symbol. Processing continues with the instruction immediately
following the sequence symbol. The period (.) in the sequence symbol
causes the APW Assembler to search forward first, then backward. If you
know that the sequence symbol appears before the AGO directive, replace
the period with a ~ character and the assembler does only the backward
search.

The search range for a source file includes the entire file, not just the subroutine containing
the AGO directive. Searching begins in the forward direction and continues until the
sequence symbol is found or the end of the file is reached. The search then begins with the.
instruction before the AGO directive and continues toward the beginning of the file.
Searches for sequence symbols will not cross into a copied or appended file; they are
limited to the file in memory.

The search process in a macro definition is similar, except that the search will not cross a
MEND or MACRO directive.

The AGO directive is not printed in the output listing unless it contains an error. Sequence
symbols appear in the output only if TRACE ON is in effect.

In the following example, the assembler encounters the initial AGO directive. Processing
continues at the sequence symbol. All lines between the AGO and sequence symbol are
ignored by the assembler.

AGO . THERE
THESE LINES ARE IGNORED .

. THERE

APDADraft 6- 9 816187

Chapter 6: Writing Macros APW Assembler Reference

AIF Assembler IF

AIF boolexp, .symbol [comment}

The Assembler If conditional assembly directive is used to do conditional branches. The
Boolean phrase in the operand is tested. If true, processing continues with the first
statement following the sequence symbol; if false, processing continues with the first
statement following the AIF directive.

boolexp The required Boolean expression part of the operand.

.symbol The required sequence symbol part of the operand.

As with the AGO directive, the period (.) in the sequence symbol may be replaced with a A

character to speed up branches in the case where the destination sequence symbol comes
before the AIF directive.

The AIF directive is not printed in the output listing unless it contains an error. Sequence
symbols appear in the output only if TRACE ON is in effect .

As an example, consider a file that contains the following statements:

&LOOP
.TOP

&LOOP

or

LCLA
SETA

ASL
SETA
AIF

&LOOP
4

A
&LOOP-l
&LOOP>O,.TOP

AIF &LOOP,~.TOP

The output listing will contain these lines:

AINPUT

&spar

ASL
ASL
ASL
ASL

A
A
A
A

Assembler Input

AINPUT [string] {comment}

The conditional assembly directive AINPUT is used to set the value of a symbolic
parameter from the keyboard during assembly.

&spar This must be a character-type symbolic parameter.

APDADraft 6-10 816187

APW Assembler Reference Chapter6: Writing Macros

[string] This operand is optional, but if coded, consists of a literal string. If the
operand is coded, the string contained in the operand is displayed on the
screen as an input prompt during pass 1 of the assembly.

When the AINPUT directive is encountered during pass I, the prompting string is
displayed if one has been coded. Then the assembler pauses. Otherwise the APW
Assembler just pauses and waits for you to enter a line at the keyboard. The string that you
enter in response to the pause is assigned to the character-type symbolic parameter specified
in the label field.

The keyboard responses made during pass 1 are saved. When the AINPUT directive is
encountered during pass 2, the response from pass 1 is again placed in the symbolic
parameter specified in the label field so that you can use it for conditional branching.

AMID Assembler Mid String

&spar AMID opstring,pos,num [comment]

This is a special character-type set symbol that allows you to extract a substring. The
character string assigned is the substring specified by the three arguments. The arguments
are separated by commas, with no intervening spaces allowed. Spaces may be included in
quoted strings.

&spar The label is required and must be a character-type symbolic parameter. This
is where the resulting string is assigned.

opstring This is the string to be operated upon. It must be a string without any
concatenations. If the string contains embedded spaces or commas, it must
be enclosed in quotation marks. Quotation marks within quotation marks
must be doubled.

pos The position within the target string of the first character to be chosen. It
must be greater than O. Characters from the target string are numbered
sequentially, starting with 1.

num The number of characters to be chosen.

If the combination pos and num results in an attempt to select a character after the last
character of the target string, the selection is terminated. Characters already selected are
still valid.

Examples:

&CHAR
& CHAR
& CHAR

AMID
AMID
AMID

TARGET, 2, 3
TARGET,S, 3
TARGET,7,3

The first example results in ARG being assigned to &CHAR; the second, in ET; the third, a
null string.

APDADraft 6-11 816187 .

Chaprer 6: Writing Macros APW Assembler Reference

ASEARCH Assembler String Search

&spar ASEARCH search,rarger,posirion [comment]

ASEARCH lets you search a string for substrings. It returns an arithmetic result, and can
therefore only be used to assign values to arithmeti- type symbolic parameters. The
arguments are separated by commas, with no intervening spaces allowed. Literal strings
containing spaces or commas must be enclosed in quotation marks; quotation marks inside
quotation marks must be doubled.

&spar The label is required and must be an arithmetic-type symbolic parameter.

search This parameter contains the string to be searched.

targer The target substring to be searched for.

position The character position within the search string where the search is to begin.

If the substring is found within the target string, the character position of the first match is
assigned to &spar. If the search string is not found in the target string, a value of 0 is
returned.

Examples:
&NUM
&NUM
&NUM

ASEARCH
ASEARCH
ASEARCH

TARGET,GE,l
&NUM,4,1
'GOT A SPACE?', ' ',I

The resulting value assigned to &NUM is 4 in the first example. In the second example,
&NUM (an arithmetic symbolic parameter) is coded. However, since all symbolic
parameters expand to characters strings when symbolic parameter substitution takes place,
the ASRCH directive considers the resulting string (the character 4 from the previous result)
in evaluating the operand. Symbolic parameter substitution always takes place before
directive argument evaluation.

In the typical case, at least one of the arguments of ASEARCH will be a symbolic parameter
simply because the use of a search string function would usually be superfluous with two
literal strings.

GBLA Define Global Arithmetic Parameter

GBLA &spar [comment]

The scope of the global arithmetic symbolic parameter defmed by GBLA is the entire
segment in which the current directive resides (both within the macro and outside of it in
the source file). GBLA has no label.

&spar The operand field consists of the name of the symbolic parameter to be
defmed. If the symbolic parameter is to be subscripted, a number in the

APDADrafr 6-12 8/6/87

APW Assembler Reference Chapter 6: Writing Macros

range 1-255 must be specified in parentheses immediately following the
symbolic parameter name.

Symbolic parameter definition statements are not printed in the output listing unless they
contain errors, or if the TRACE ON directive is in effect

Suppose that you have defined the following macro and stored it in a macro file:

&VERSION

MACRO
VERSION
GBLA &VERSION
SETA 3
MEND

Your source code program can invoke the VERS ION macro and then use the global
symbolic parameter &VERSION. For example:

MAIN START
VERSION
LDA #&VERSION

END

GBLB Define global Boolean parameter

GBLB &spar {comment]

The scope of the global Boolean symbolic parameter defmed by GBLB is the entire code
segment in which the current directive resides (both within the macro and outside of it in
the source code). GBLB has no label.

&spar The operand field consists of the name of the symbolic parameter to be
defined. If the symbolic parameter is to be subscripted, a number in the
range 1-255 must be specified in parentheses immediately following the
symbolic parameter name.

Symbolic parameter definition statements are not printed in the output listing unless they
contain errors, or if the TRACE ON directive is in effect.

For example, the statement

GBLB &BOOL

defines a global Boolean symbolic parameter and initializes it to zero.

APDADraft 6- 13 816187

Chapter 6: Writing Macros APW Assembler Reference

GBLC Defme Global Character Parameter

GBLC &spar . [comment]

The scope of the global character symbolic parameter defmed by GBLC is the entire code
segment in which the current directive resides. GBLC has no label.

&spar The operand field consists of the name of the symbolic parameter to be
defmed. If the symbolic parameter is to be subscripted, a number in the
range 1-255 must be specified in parentheses immediately following the
symbolic parameter name.

Symbolic parameter defmition statements are not printed in the output listing unless they
contain errors, or if the TRACE ON directive is in effect.

For example, the statement

GBLC &STR

defines a global character symbolic parameter and initializes it to a null string. The
statement

GBLC &STRING(lO)

defmes &STRING (1) through & STRING (10) all as global character symbolic parameters,
initialized to null strings.

LCLA Defme Local Arithmetic Parameter

LCLA &spar [comment]

LCLA defines a local arithmetic symbolic parameter. The parameter is valid only within the
macro or source code segment in which it is defined. LCLA does not contain a label.

&spar The operand field consists of the name of the symbolic parameter to be
defmed. If the symbolic parameter is to be subscripted, the name must be
followed immediately by a number in the range 1-255 enclosed in
parentheses.

Symbolic parameter defmition statements are not printed in the output listing unless they
contain errors, or if the TRACE ON directive is in effect.

For example, the statement

LCLA &NUM

defines the local arithmetic symbolic parameter &NUM and initializes it to O.

APDADraft 6-14 8/6/87

APW Assembler Reference Chapter6: Writing Macros

LCLB Define Local Boolean Parameter

LCLB &spar [comment]

LCLB defines a local Boolean symbolic parameter. The parameter is valid only inside the
macro or within the source code segment in which it is defined. The LCLB statement has
no label.

&spar The operand field consists of the name of the symbolic parameter to be
defmed. If the symbolic parameter is to be subscripted, the name must be
followed immediately by a number in the range 1-255 enclosed in
parentheses.

Symbolic parameter definition statements are not printed in the output listing unless they
contain errors, or if the TRACE ON directive is in effect.

For example, the statement

LCLB &BOOL

defmes a local Boolean symbolic parameter and initializes it to zero.

LCLC Define Local Character Parameter

LCLC &spar [comment]

LCLC defmes a local character symbolic parameter. The parameter is valid only within the
macro, or source code segment in which it is defined. LCLC has no label.

&spar The operand field consists of the name of the symbolic parameter to be
defined. If the symbolic parameter is to be subscripted, the name must be
followed immediately by a number in the range 1-255 enclosed in
parentheses.

Symbolic parameter definition statements are not printed in the output listing unless they
contain errors, or if the TRACE ON directive is in effect.

For example, the statement

LCLC &STR

defmes a local character symbolic parameter and initializes it to a null string.

APDADraft 6-15 8/6/87

Chapter 6: Writing Macros APW Assembler Reference

MACRO Begin a Macro Definition

MACRO [comment]

Each macro defmition begins with a MACRO directive. This directive is coded in the
operation field. No operand or label is needed, and any present is ignored. The macro
defmition that begins with this directive extends to a MEND directive.

MEND End a Macro Definition

MEND [comment]

The MEND directive tenninates a macro definition. MEND is coded in the operation field and
has neither operand nor label. If MEND appears outside of a macro defmition, it generates
an error.

MEXIT Exit Macro

MEXIT [comment]

The MEXIT directive indicates that a macro expansion is complete. MEXIT is used to exit
from the macro before the end of the definition code is reached. Unlike MEND, it does not
indicate the end of a macro definition. The directive is coded in the operation field. It has
no operand and uses no label.

You can see in the example that follows how the code is grouped in the PULLLONG library
macro by the use of MEXI T •

MACRO
&LAB PULLLONG &ADDR1, &ADDR2
& LAB ANOP

&C

AIF
AIF
LCLC

AMID

C:&ADDR1=O, .a
C : &ADDR2=O, . b
&C
paramete r
&ADDRl,l,l

Branch if n o parameter
Branch if 1 parameter
Define local symbo l i c

Get 1st character o f 1st
parameter.

AIF "& C"=" [", .directpage Assume direct page

PULLWORD
STA
PULLWORD
STA
MEXIT

APDADraft

&ADDR1
&ADDR2
&ADDRI+2
&ADDR2+2

6-16

indirec t long addressing.
Call pullword macro for 2
parameter c ase.

8/6/87

APW Assembler Reference Chapter 6: Writing Macros

. A

. B

PULLWORD
PULLWORD
MEXIT

PULLWORD
PULLWORD
MEXIT

. DIRECTPAGE

&ADDR1
&ADDR1+2 .

No parameter case .
Throwaway 2 words on
stack, then exit

One parameter case .
Call pullword macro
Pass 1st parameter

Direct page case .
LDY
PULLWORD
LDY
PULLWORD
MEND

it&ADDR2
&ADDRl,y
it&ADDR2+2
&ADDR1,y

Load Y using 2nd parameter
Save Y at addrl

MNOTE Macro Note

[label] MNOTE'message'[,numb] [comment]

A macro defInition may include a MNOTE directive . .

'message' The operand of a MNOTE directive contains a character string with a
message. The assembler prints the message on the output device as a
separate line.

[,numb] This optional parameter, if included, is preceded by a comma. The
parameter itself is a number that represents the severity code for an error.

For example, the following statements might appear in a program:

* MNOTE FOLLOWS
MNOTE

The listing contains these lines:

0432 10FE
ERROR!

'ERROR! ' , 4

* MNOTE FOLLOWS

Assuming that there were no other errors in the assembly, the maximum error level found
(printed at the end of the assembly) would be four.

MNOTE is designed for use when conditional assembly directives are used to scan
parameters passed via a macro call for syntax that you defme. Although MNOTE statements
are intended for use inside macros, they are legal inside of a source program.

APDADraft 6-17 816187

Chapter 6: Writing Macros APW Assembler Reference

SETA Set Arithmetic Parameter

&spar SETA cexpress [comment]

The Set Arithmetic Parameter directive sets the value of an arithmetic parameter. SETA functions
like an assignment statement.

&spar The label is requITed and must be an arithmetic-type symbolic parameter.

cexpress The operand field consists of a constant expression which resolves to a 32-
bit signed number. The result is assigned directly to &spar.

Examples:
&NUM
&NUM2

SETA
SETA

4
&NUM+LABEL*4

The same expression evaluation rules as for absolute addresses are used in resolving the operand
of a SETA directive. This means that Boolean expressions are allowed as well.

SETB Set Boolean Parameter

&spar SETB boolexp [comment]

The SETB directive functions like an assignment statement to set the value of a Boolean symbolic
parameter.

&spar The label is required and must be a Boolean-type symbolic parameter.

boolexp The operand field consists of a constant expression in the range from 0 to
255. The result is stored as an 8-bit unsigned value.

Normally, only Boolean operators are used in the SETB operand, resulting in boolean results (0
for false and I for true). However, if arithmetic results are produced, any nonzero value will be
treated as true if the symbolic parameter is used in a Boolean expression.

Examples:

&FLAG
&LOGIC
&LOGIC

APDADraft

SETB
SETB
SETB

A<&NUM
&NUM>O
1

6-18 816187

APW Assembler Reference Chapter6: Writing Macros

SETC Set Character Parameter

&spar SETC cstring [comment}

The SETC directive fWlctions like an assignment statement to set a character-type symbolic
parameter.

&spar The label is required and must be a character-type symbolic parameter.

cstring The operand of SETC is evaluated as a character string and assigned to the
symbolic parameter in the label field.

Examples:

&STRING (4) SETC
&STR SETC
&STRING SETC

&STRING
&FKENAME' • OBJ'
'Here"s a quoted string'

Whenever a character-type symbolic parameter is given a value, either via a macro call
parameter or by a set symbol statement, special considerations apply. The key point to
remember is that the string will be evaluated by the APW Assembler at least twice: first in
the source line or macro expansion line where the character-type symbolic parameter is set,
and a second time, after symbolic parameter substitution occurs and the newly formed line
is evaluated by the assembler.

In general, whenever strings are used in the assembler (for example, within a character
type DC statement), embedded spaces are not allowed. When character-type symbolic
parameters are given values, literal strings containing spaces, commas, single or double
quotation marks, or plus signs must be enclosed in quotation marks. Either single or
double quotation marks are allowed, provided that the same enclosing characters are used
to start and stop the string. If the literal string must contain quotation marks, then double
quotation marks must be used to contain single quotation marks, and single quotation
marks to contain double quotation marks, or the quotation mark must be repeated.

An example of repeated single and double quotation marks:

DC
DC

C 'don' 't forget!'
CllunWhat?"f1n

The triple quotation marks in the second line are a single double quotation followed by a
repeated double quotation. The resultant string is "What?". When quotation marks are
repeated, a problem results if the literal string will be evaluated by the assembler more than
once. This is because each time the string is evaluated, double quotation marks are reduced
to single quotation marks. This occurs when literal, quoted strings are passed to macros.

The following convention is recommended to deal with the problem of what kind of
quotation marks to use where: always use single quotation marks in source files, repeating
them as necessary, and always use double quotation marks within macro defmitions.

For example, a macro PUTSTR, invoked as follows:

APDADraft 6-19 816187

Chapter 6: Writing Macros APW Assembler Reference

PUTSTR 'a string with ""some"" quotation marks'

might include the statement

DC C"&PARMl"

The value assigned to & P ARMl will have no leading or trailing single quotation marks, and,
because the double quotation character was not used as the string delimiter, the repeated
double quotation characters are passed through to the model statement expansion. When
the DC statement is finally evaluated by the assembler, it encounters the repeated double
quotation marks and reduces them to single quotation marks in the generated object code
because within the macro definition, double quotation marks are used as the string
start/stop characters.

Whenever character symbolic parameters are being given values, the plus character (+) may
be used to concatenate two literal strings.

For example:

&STR SETC '&'+'STR'

results in a symbolic parameter with the value & STR. Normally this value would be
impossible to enter literally because the ampersand (&) involves symbolic parameter
substitution.

&SYSCNT Subroutine Counter

&SYSCNT

&SYSCNT is a predefined symbolic parameter. The value of &SYSCNT is set to 1 at the
beginning of each subroutine and is incremented at the beginning of each macro expansion.
It is used to prevent labels defined inside of a macro from being duplicated if the same
macro is used more than once in the same subroutine. This is done by concatenating
& SYSCNT to the end of any labels used within the macro definition itself.

&LAB ADD LONG &NUMB1,&NUMB2

The macro fJ.1e is a delay loop that does successive decrements of the accumulator to use up
time.

&lab
&lab

top&syscnt

APDADraft

MACRO
WAIT &delay
ANOP
LDA jI&delay

DEC a
BNE top&syscnt

MEND

Setup symbolic parameter for
delays.
Load A with the value in
&delay.
Decrement the value in A by 1.
Branch back to decrement
instruction.

6-20 816187

APW Assembler Reference Chapter 6: Writing Macros

The source me calls the delay macro and sets a different delay value for each pass
through the program.

MCOPY WAIT
GEN ON

MAIN START
WAIT 5 Set delay loop to 5.
WAIT 4 Set delay loop to 4.
WAIT 3 Set delay loop to 3.
END

The assembled program shows how the macro me is expanded.

0001 0000 MCOPY WAIT
0002 0000
0003 0000 GEN ON
0004 0000
0005 0000 MAIN START
0006 0000
0007 0000 WAIT 5
0000 +
0000 A9 05 00 + LDA '5
0003 3A +TOP2 DEC A TOP 1 set before entry.
0004 DO FD + BNE TOP2 Fall through at O.
0008 0006
0009 0006 WAIT 4
0006 +
0006 A9 04 00 + LDA 14
0009 3A +TOP3 DEC A
OOOA DO FD + BNE TOP3
0010 OOOC
0011 OOOC WAIT 3
OOOC +
OOOC A9 03 00 + LDA t3
OOOF 3A +TOP4 DEC A
0010 DO FD + BNE TOP4
0012 0012
0013 0012 END

13 source lines
3 macros expanded
12 lines generated

&SYSDATE System Date

&SYSDATE

&SYSDATE is a predefined symbolic parameter. It returns the date in the dayhnonth/year
format:

APDADraJt 6- 21 816187

Chapter 6: Writing Macros APWAssembler Reference

DDMMMYY

For example

04JUL87

&SYSNAME Segment Name

&SYSNAME

& SYSNAME is a predefined symbolic parameter. It returns the name of this current load
segment.

&SYSTIME System Time

&SYSTIME

&SYSTlME is a predefined symbolic parameter. It returns the current time in the format:

llli:MM:

Attributes and Symbolic Parameters
In order to use the conditional assembly directives effectively, you need a way of getting
information about a symbolic parameter in addition to its value. This information is
provided by means of attributes, which may be thought of its functions that return
information about the symbolic parameter. Attributes are resolved during expression
evaluation rather than expanded when symbolic parameter substitution takes place. This
means that the following line is not expanded:

LDA jiC : &FOO

it is not expanded. Instead &FOO is examined and the hexadecimal value of the code that is
stored reflects the correct number of subscripts.

The form of an attribute is

X: &spar

where the attribute X can be represented by the characters C, L, T, or S, as follows:

C Count attribute
L Length attribute

APDADra/t 6-22 816187

APW Assembler · Reference Chapter 6: Writing Macros

T Type attribute

Attributes can be used in operands in the same ways that you use constants.

Couut Attribute

The count attribute is used to tell whether or not a symbolic parameter has been defined,
and if so, how many subscripts are available. It is nonnally used to find out if a multiple
argument has been assigned to a symbolic parameter by a macro call The count attribute of
an undefined symbolic parameter is O. The count attribute of a defmed symbolic parameier
that is not subscripted is 1. The count attribute of a subscripted symbolic parameter is the
number of subscripts available. The count attribute is used in the following loop to
initialize a niunericarray for a symbolic parameter that mayor may not be defmed.

&N
AIF
.TOP
&ARRAY (&N)
&N

.PAST

LCLA &N
SETA C: &ARRAY
&N=O, .PAST

SETA &N
SETA &N-1
AIF &N, . TOP

Although it seems like poor programming not to know if a symbolic parameter has been
defmed, there are two common uses for the count attribute. The first is when a macro will
define a global symbolic parameter to communicate with any future versions of itself. In
that case, the macro can test to make sure that the parameter has not been defined already.
The following macro uses this method to defme a sequence of integers. You don't need to
count the macros; they count themselves.

MACRO
&LAB COUNT
AIF C:&N>O, .PAST
GBLA &N
.PAST
&N SETA &N+1
&LAB DC I'&N'

MEND

If already defined, proceed.
If no, define &N on 1st pass.

Increment &N by 1.
Generate 2 bytes containing
value in &N.

The second use is to check to make sure that a parameter was passed. In the following
example, if the count of &NUM3 is 0, processing nioves to .PAST. Otherwise &NUM3 is
defined as a local parameter and assigned the value in &NUM1.

MACRO
& LAB ADD &NUM1, &NUM2, &NUM3

&NUM3
. PAST

APDADraft

AIF C: &NUM3, . PAST Is there a 3rd parameter?
LCLC &NUM3 . If no, define &NUM3 and set

its value to the 1st
parameter.

SETC &NUMl

6-23 · 816187

Chapter 6: Writing Macros APW.Aasembler.· Reference :.

&LAB CLC
LOA &NUMl
ADC &NUM2.
STA &NUM3
LOA &NUM1+1
ADC &NUM2+1
STA &NUM3+1
MENO

Length Attribute

The length attribute of an arithmetic symbOlic parameter is four. The length attribute of a
Boolean symbolic parameter is one. FQT a character string symbolic parameter. the length
attribute is the number of characters of the string. If the symbolic parameter is subscripted.
the subscript of the desired element should be specified; otherwise. the first element is
assumed.

In the following example. if LEN is equal to • ABC •• this macro will generate LOA it 3: .

MACRO
LEN &STR
LOA tL:&STR
MENO

Type Attribute .

The type attribute is used to distinguish between the following kinds of symbolic
parameters:

x Arithmetic symbolic parameter .
Y Boolean symbolic parameter
Z Character symbolic ParlllIleter

A character can be tested logically as in

AIF T : &label='x', . a

where if the character is an arithrnetic symbolic parameter. processing continues at . a .

APDADrajt . 816187

Part III

Appendixes

., ~

APW Assembler Reference AppelldU: A: Operand Fonnats

65861

Appendix A
65816 Instruction Mnemonics

and Addressing Modes

Addressing Number of
Mnemonic Modes Bytes

ADC Absolute 3
Absolute Indexed, X 3
Absolute Indexed, Y 3
Absolute Long 4
Absolute Long Indexed, X 4
Direct Page (DP) 2
DP Indexed Indirect, X 2
DP Indexed, X 2
DPindirect 2 .
DP Indirect Indexed, Y 2
DP Indirect Long 2
DP Indirect Long Indexed, Y 2
Immediate 2·
SR Indirect Indexed, Y 2
Stack Relative (SR) 2

AND Absolute 3
Absolute Indexed, X 3
Absolute Indexed, Y 3
Absolute Long 4
Absolute Long Indexed, X 4
DireCt Page (DP) 2
DP Indexed Indirect, X 2
DP Indexed, X 2
DPindirect 2
DP Indirect Indexed, Y 2
DP Indirect Long 2
DP Indirect Long Indexed, Y 2
Immediate 2·
SR Indirect Indexed, Y 2
Stack Relative (SR) 2

ASL Absolute 3
Absolute Indexed, X 3
Accumulator 1
Direct Page (DP) 2
DP Indexed, X 2

BCC Program Counter Relative 2
BCS Program Counter Relative 2
BEQ Program Counter Relative 2
BIT Absolute 3
BIT Absolute Indexed 3

Direct Page (DP) 2
DP Indexed, X 2

APDA Draft A -1 816187

AppendqA: Operand F OnnalS APW Assembler Reference
..

Immediate 2· - ,

BMI Program Coupter Relative . 2
BNE Program Counter Relative 2
BPL Program Counter Rel'ative 2
BRA PrograIn Counter Relative 2
BRK Sfaclcllil'tertupt '. 2··
BRL Program Counter Relative Long 3
BVC Program Counter Relative 2
BVS Program Counter Relative 2
CLC Implied I
aD Implied I
CLI Implied I
CLV Implied I
CMP Absolute 3

Absolute Indexed, X 3
Absolute Indexed, Y 3
Absolute Long 4
Absolute Long Indexed, X 4
Direct Page (also DP) 2
DP Indexed Indirect, X 2
DP Indexed, X 2
DPIndirect 2
DP Indirect Indexed,Y 2
DP Indirect Long 2
DP Indirect Long Indexed, Y 2
Immediate 2·
SR Indirect Indexed, Y 2 -
Stack Relative (also SR) 2

COP Stack/lnterrupt 2··
CPX Absolute 3

Direct Page (also DP) 2
Immediate 2t

CPY Absolute 3
Direct Page (also DP) 2
Immediate 2t

DEC Absolute 3
Absolute Indexed, X 3
Accumulator 1
Direct Page (also DP) 2
DP Indexed, X 2

DEX Implied I
DEY Implied 1
DrA SR Indirect Indexed, Y 2
EOR Absolute 3

Absolute Indexed. X 3
Absolute Indexed. Y 3
Absolute Long 4
Absolute Long Indexed, X 4
Direct Page (also DP) 2
DP Indexed Indirect, X 2
DP Indexed, X 2
DPIndirect 2
DP Indirect Indexed, Y 2
DP Indirect Long 2

APDADraft . A-2 816187

APW Assembler Reference Appendix A: Operand Formats

DP Indirect Long Indexed Y 2
Immediate 2·

'~ SR Indirect Indexed. Y 2
Stack Relative (also SR) 2

INC Absolute 3
Absolute Indexed. X 3
Accumulator 1
Direct Page (also DP) 2
DP Indexed. X 2

INX Implied 1
INY Implied 1
IMP Absolute 3

Absolute Indexed Indirect 3
Absolute Indirect 3
Absolute Indirect Long 3
Absolute Long 4

ISR Absolute 3
Absolute Indexed Indirect 3
Absolute Long 4

IDA Absolute 3'
Absolute Indexed. X 3
Absolute Indexed. Y 3
Absolute Long 4
Absolute Long Indexed. X 4
Direct Page (also DP) 2
DP Indexed Indirect. X 2
DP Indexed. X 2
DPlndirect 2

-, DP Indirect Indexed. Y 2
DP Indirect Long 2
DP Indirect Long Indexed. Y 2
Immediate 2
Stack Relative (alsoSR) 2

lDX Absolute 3
Absolute Indexed, Y 3
DP Indexed. Y 2 ,
Direct Page (also DP) 2
Immediate 2t

IDY Absolute 3
Absolute Indexed. X 3
Direct Page (also DP) 2
DP Indexed. X 2
Inunediate 2t

LSR Absolute 3
Absolute Indexed. X 3
Accumulator 1
Direct Page (also DP) 2
DP Indexed. X 2

MVN Block Move 3
MVP Block Move 3
NOP Implied 1
ORA Absolute 3

Absolute Indexed. X 3

APDADraft A-3 816187

App~n*A: Oper~ Formats

PEA
PEl
PER
PHA
PHB
PHD
PHK
PHP
PHX
PHY
PLA
PLB
PLD
PLP
PLX
PLY
REP
ROL

ROR

RTI
R1L
RTS
SBC

APDADrajt

Absolute indexed. Y
Absolute Long
Absolute Long Indexed. X
Direct Page'(also DP)
DP Indexed Indirect, X
DP Indexed. X
DPIndirect
DP Indirect Indexed. Y
DP Indirect Long
DP Indirect Long. Indexed
Immediate
SR Indirect Indexed. Y
Stack Relative (also SR)
Stack (Absolute)
Stack (Direct Page Indirect)
Stack (PC Relative Long)
Stack (push)
Stack (Push)
S tack (push)
Stack (Push)
Stack (Push)
Stack (push)
Stack (Push)
S tack (Pull)
Stack (Pull)
Stack (Pull)
Stack (Pull)
StacklPull
StacklPull
Immediate
Absolute
Absolute Indexed. X
Accumulator
Direct Page (also DP)
DP Indexed. X
Absolute
Absolute Indexed. X
Accumulator
Direct Page (also DP)
DP Indexed. X
Stack/RTI
Stack (R1L)
Stack (RTS)
Absolute
Absolute Indexed. X
Absolute Indexed. Y
Absolute Long
Absolute Long Indexed, X
Direct Page (also DP)
DP Indexed Indirect. X
DP Indexed. X
DP Indirect
DP Indirect Indexed. Y
DP Indirect Long

A - 4

APWAssembler Rfjerence

3
4
4
2
2
2
2
2
2
2
2·
2
2"
3
2
3
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
3
1
2
2
3
3
1
2
2
1
1
1
3
3
3
4
4
2
2
2
2
2
2

816187

APW Assembler Reference Appendix A: Operand Formats

DP Indirect Long Indexed. Y 2
Immediate 2·
SR Indirect Indexed. Y 2
Stack Relative (also SR) 2

SEC Implied 1
SED Implied 1
SEI Implied 1
SEP Immediate 2
STA Absolute 3

Absolute Indexed. X 3
Absolute Indexed. Y 3 .
Absolute Long 4
Absolute Long Indexed. X 4
Direct Page (also DP) 2
DP Indexed Indirect. X 2
DPIndirect 2
DP Indirect Indexed. Y 2
DP Indirect Long Indexed. Y 2
DP Indirect Long 2
DP Indexed. X 2
Stack Relative (also SR) 2
SR Indexed. Y 2

STP Implied 1
STX Absolute 3

Direct Page 2
Direct Page Indexed. Y 2

STY Absolute 3
. Direct Page 2
Direct Page Indexed. X 2

STZ Absolute 3
Absolute Indexed. X 3
Direct Page 2
Direct Page Indexed. X 2

TAX Implied 1
TAY Implied 1
TCD Implied 1
TCS Implied 1
TDC Implied 1
TRB Absolute 3
TRB Direct Page 2
TSB Absolute 3
TSB Direct Page 2
TSC Implied 1
TSX Implied 1
TXA Implied 1
TXS Implied 1
TXY Implied 1
ITA Implied 1
TYX Implied 1
WAI Implied 1
WDM reserved 2

,~

APDADraft A-5 816187

Appendix A: Operand Formats

XBA hnplied
XCE Implied

.. Add one byte if m=O (l6-bit memory/accumulator)

APW Assembler Reference

I
I

U The operation code is one byte, but the program counter value pushed onto the stack is
incremented by 2 allowing for an optional signature byte.

t Add one byte ifx=O (l6-bit index registers)

APDADrajt A-6 8/6/87

.. ~

APW Assembler Reference Appendix B: ASCll Character Set

Appendix B

The ASCII Character Set

Cbar Dec Oct Hex Cbar De< Oct Hex Cbar Dec Oct Hex Cbar Dec Oct Hex
nul 0 0 0 sp 32 40 20 @ 64 100 40

,
96 140 60

soh I I I ! 33 41 21 A 65 WI 41 a 97 141 61
.Ix 2 2 2 34 42 22 B 66 102 42 b 98 142 62
elx 3 3 3 /I 35 43 23 C 67 103 43 e 99 143 63
eol 4 4 4 $ 36 44 24 0 68 104 44 d 100 144 64
enq 5 5 5 % 37 45 25 E 69 105 45 e 101 145 65
aek 6 6 6 & 38 46 26 F 70 106 46 f 102 146 66
bel 7 7 7 39 47 27 G 71 107 47 g 103 147 67
bs 8 10 8 (40 50 28 H 72 110 48 h 104 150 68
hi 9 II 9) 41 51 29 I 73 III 49 105 151 69
If 10 12 A • 42 52 2A I 74 112 4A j 106 152 6A
VI II 13 B + 43 53 2B K 75 113 4B k 107 153 6B
If 12 14 C 44 54 2C L 76 114 4C I 108 154 6C
or 13 15 0 45 55 2D M 77 115 40 m 109 155 60
so 14 16 E 46 56 2E N 78 116 4E n 110 156 6E
si 15 17 F 1 47 57 2F 0 79 117 4F 0 III 157 6F

die 16 20 10 0 48 60 30 P 80 120 50 p 112 160 70
del 17 21 11 1 49 61 31 Q 81 121 51 q 113 161 71
de2 18 22 12 2 50 62 32 R 82 122 52 r 114 162 72
dc3 19 23 13 3 51 63 33 S 83 123 53 s 115 163 73
dc4 20 24 14 4 52 64 34 T 84 124 54 I 116 164 74
nak 21 25 15 5 53 65 35 U 85 125 55 u 117 165 75
syn 22 26 16 6 54 66 36 V 86 126 56 v 118 166 76
elb 23 27 17 7 55 67 37 W 87 127 57 w 119 167 77
can 24 30 18 8 56 70 38 X 88 130 58 x 120 170 78
em 25 31 19 9 57 71 39 Y 89 131 59 Y 121 171 79
sub 26 32 IA 58 72 3A Z 90 132 5A z 122 172 7A
esc 27 33 IB 59 73 3B [91 133 5B (123 173 7B

fs 28 34 IC < 60 74 3C \ 92 134 5C I 124 174 7C
g. 29 35 1D = 61 75 3D 1 93 135 50) 125 175 7D
r. 30 36 IE > 62 76 3E A 94 136 5E 126 176 7E
us 31 37 IF 1 63 77 3F 95 137 SF del 127 177 7F

Cbar Dec Oct Hex Cbar Dec Oct Hex Cbar Dec Oct Hex Cbar Dec Oct Hex

-~- -

APDADraft B-1 816187

. -
.~ . ..•.

APW Assembler Reference Appendix C: Error Messages

Appendix C

Error Messages

When a program is assembled into object files. the APW Assembler checks for a variety of
problems. These problems are flagged with severity codes to let you know how serious
the problem is. The APW Assembler can report the four possible error levels described in
the table which follows. The APW Assembler prints the highest error level found at the
end of the assembly.

Severity

2

4

8

16

Meaning

Warning - things may be ok.

Error - an error was made, but the assembler thinks it
knows the intent and has corrected the mistake. Check
the result carefully!

Error - code was processed, but your program
probably will not run. Level 8 errors do not take you
back to the APW Editor.

Error - it was not even possible to tell how much space
to leave. You will need to reassemble to fix the problem.

Source program errors fall into two broad categories: those that cause the assembler to
terminate inadvertently (fatal errors) and those that do not (non-fatal errors).

Non-Fatal APW Assembler Errors

When the assembler finds an error that it can recover from, it prints the error on the line
after the source line that contained the error. Only one error per line is flagged, even if
there is more than one error in the line.

The error message is a brief description of the error. In the sections that follow, each of the
error messages is listed, in alphabetical order. The error message description is also given
with ways to correct the problem.

ACTR Count Exceeded [16]

More than the allowed number of AlF or AGO directives were encountered during a macro
expansion. Unless changed by the ACTR directive, only 255 AlF or AGO branches are
allowed in a single macro expansion. This is a safeguard to prevent infinite loops during

APDADrajr C -1 8/6/87

Appendix C: Error Messages APW Assembler Reference

macro expansions. If more than 255 branches are needed, use the ACTR directive inside
the loop to keep the count sufficiently high.

Address Length Not Valid [2]

An attempt was made to force the assembler to use an operand length that is not valid for
the given instruction. For example, indirect indexed addressing requires a one-byte
operand, so forcing an absolute address by coding

LDA (I 2),Y

would result in this error.

Addressing Errors [16]

The program counter when pass 1 defined a label was different from the program counter
when pass 2 encountered the label. There are three likely reasons for this to happen. The
first is if, for some reason, the result of a conditional assembly test was different on the
two passes; this is actually caused by one of the remaining errors. The second is if a label
is defmed using an EQU to be a long or direct page address; then the label is used before the
EQU directive is encountered. The last reason is if a label has been defmed as direct page or
long using a GEQU directive, then redefined as a local label. On the first pass in both of
these cases, the assembler assumes a length for the instruction which is then overridden
before pass 2 starts.

An intra-segment reference was made while an OBJ directive as in effect and the reference
was not forced to absolute long addressing mode.

Duplicate Label [4]

I . Two or more local labels were defined using the same name. The first such label gets
flagged as a duplicate label; subsequent redefinitions are flagged as addressing errors. Any
use of the label will result in the first defmition being used.

2. Two or more symbolic parameters were defined using the same name. Subsequent
definitions are ignored.

Duplicate Ref In MACRO Operand [2]

A parameter in a macro call was assigned a value two or more times. This usually happens
when both a keyword and positional parameter set the same symbolic parameter. For the
macro

APDADraft C-2 816187

-~'.

APW Assembler Reference

MACRO
EXAMPLE
MEND

the call

EXAMPLE

&Pl,&P2

A,Pl=B

Appendix C: Error Messages

would produce this error because, P 1 is set to A as a positional parameter, then to B as a
keyword parameter.

Duplicate Segments [8]

Two segments have appeared during the same assembly with the same segment name. The
assembler flags the second and all subsequent segments with level 8 errors.

Error In Expression [8]

Either the expression contains an error, such as mismatched parentheses, or the expression
had too many terms for the assembler to handle. There is no fixed limit to the number of
terms or level of parentheses in an expression, but generally the assembler will handle as
many terms as will fit on a line, and about twenty levels of parentheses. Check for any
kind of syntax error in the expression itself.

Error Too Complex [8]

l. An expression contained a label whose value was defined with an EQU or GEQU that
contained an expression. The expression also contained a label defined in the same way,
and so on, for ten levels. You need to reduce the level of expressions by coding some of
the terms in long hand.

2. Too many parentheses were used. The exact number of parentheses allowed depends
upon the type of expression that you use, but is generally twenty levels. If this error
occurs, reduce the number of parentheses you are using in the expression.

3. A subscripted symbolic parameter was used to specify the index of another symbolic
parameter, as in

&A(&B (4))

Subscripts for symbolic parameters cannot themselves contain subscripted symbolic
parameters. Eliminate one of the subscripts by assigning the value to a different symbolic
parameter, as in

&C SETA &B (4)

Then you can use &A (& C).

4. An ORG, OBJ, or DIRECT directive had an expression in its operand that did not
resolve to a constant at assembly time. Replace the expression with a constant.

APDADraft C-3 8/6/87

Appendix C: £"or Messages APW Assembler Reference

5. A GEQU directive appeared outside of a segment with an operand that did not resolve to
a constant. You need to move the GEQU inside of the segment. Be sure that this segment is
reassembled on all partial assemblies.

Invalid Operand [8]

An operand contains an addressing mode not valid for this instruction.

Label Syntax [16]

1. The label field of a statement contained a string that does not conform to the standard
label syntax. A label must begin in column I, and cannot contain imbedded spaces. Each
label starts with an alphabetic character (A to Z), tilde character (-), or underscore L), and
can be followed by zero or more alphabetic characters, underscores, or tildes. Labels are
significant up to 255 characters in length. There must be at least one space between the
label and the operation code.

2. A macro model statement had something other than a symbolic parameter in the label
field. If anything occupies the label field of the statement immediately following a MACRO
directive, it must be a symbolic parameter.

Length Exceeded [4]

I. An expression was used in an operand that requires a direct page result, and the
expression was not in the range 0 to 255. If external labels are used in the expression, and
the result will resolve to direct page when the linker resolves the references, force direct
page addressing by preceding the expression with a < character. For example

LDA «LABEL) , Y

If the expression is a constant expression, correct it so that it is in the range 0 to 255.

2. A directive which requires a number in a specific range received a number outside that
range in the directive. See specific directive descriptions for allowed parameter ranges.

Macro File Not In Use [2]

An MDROP was found that specified a macro fllename that was never opened with an
MLOAD or MCOP Y, or that has already been closed with an MDROP. Remove the extra
MDROP .

MACRO Operand Syntax Error [4]

The operand of the macro model statement contained something other than a sequence of
undefined symbolic parameters separated by commas. If this line has an operand at all, it
must consist of a list of symbolic parameters separated by commas, with no imbedded
spaces.

APDADraft C -4 8/6/87

~.

APW Assembler Reference Appendix C: Error Messages

Missing Label [2]

1. A DATA, ENTRY, EQU, GEQU, PRIVATE, PRIVDATA, or START directive was
found that did not have a label. Because the purpose of these directives is to define a label,
a label is required.

2. A SETA, SETB, or SETC directive was found that did not have a symbolic parameter in
the label field. Since the the purpose of these directives is to set the value of the symbolic
parameter in the label field, a symbolic parameter is required.

Missing Operand [16]

The operation code was one that required an operand, but no operand was found. Make
sure that the comment column has not been set to too Iowa value; see the description of the
SETCOM directive. Remember that the assembler requires the A as an operand for the
accumulator addressing mode.

Missing Operation [16]

There was no operation code on a line that was not a comment Make sure that the
comment column has not been set to too small a value; see the SETCOM directive. Keep in
mind that the operation codes cannot start in column 1.

Misplaced Statement [16]

1. A statement that must appear inside of a code segment was used outside of a code
segment. Only the following directives can be used outside a code segment:

AGO ERR MCOPY 65C02
AIF EXPAND MDROP 65816
ALIGN GEN MERR SYMBOL
APPEND GEQU MLOAD TITLE
CODECHK IEEE MSB TRACE
COPY KEEP ORG
DATACHK LIST PRINTER
DYNCHK LONGA RENAME
EJECT LONGI SETCOM

The way to remember this list is that any directive or instruction that generates code or
places information in the object module must appear inside a code segment.

2. A KEEP directive was used after the first START or DATA directive, or two KEEP
directives were used for a single assembly. Only one KEEP directive is allowed in each
source code segment, and it must come before any code is generated.

3. A RENAME directive was used inside a program segment. The RENAME directive must
appear outside of the program segment. .

APDADraft C -5 8/6/87

Appendix C: Error Messages APW Assembler Reference

4. An ORG directive was used incorrectly. The problem could be any of the following:

a. An ORG directive with a constant operand was used inside a program segment.
b. An ORG directive that was not a displacement from the location c~>unter was used

outside a program segment.
c. Two ORG directives were used in front of the same code segment.

See the description of the ORG directive for details on its use.

5. More than one ALIGN directive was used for the same program segment.

Nest Level Exceeded [8]

Macros were nested more than four levels deep. A macro may use another macro,
including itself, provided that the macro used resides in the same macro file as the macro
that is using it, and provided that the calls are not nested more than four levels deep.

No MEND [4]

The attempt was made to expand a macro which did not have a MEND directive. All macro
defmitions must have MEND directives as their last lines.

Numeric Error In Operand [8]

1. An overflow or underflow occurred during the conversion of a floating-point or double
precision number from the string form in the source file to the IEEE representation for the
number. Floating-point numbers are limited to a calculated value of about J E ·38 to 1E38,
while double-precision numbers are limited to a calculated vallie or about lE-308 to 1E308.
If this error occurs, the APW Assembler inserts the IEEF. fvrmat representation for 0 on an
underflow, and infmity for an overflow.

2. A decimal number was found in the operand field that was not in the range minus
2147483648 to plus 2147483647. Because all integers are represented as four-byte signed
numbers, decimal numbers must be in this range.

3. A binary, octal. or hexadecimal constant was found that required more than 32 bits to
represent. Constants are represented by a maximum of four bytes.

Operand Syntax [16]

This error covers a wide range of possible problems in the wayan operand is written.
Generally. a quick look at the operand field will reveal the problem. If this does not help.
reread the section of the manual that describes the instruction. directive. or macro in error.

Operand Value Not Allowed [8]

1. An AL I GN directive was used with an operand that was not a power of two.

APDADrafl C -6 8/6/87

.'---,

--"'.

~.

APW Assembler Reference Appendix C: Error Messages

2. An ALI GN directive was used in a program segment that was either not itself aligned, or
was not aligned to a byte value greater than or equal to the ALIGN directive used in the
program segment. For example,

ALIGN 4
T START

ALIGN 4
END

is acceptable, but

ALIGN 4
T START

ALIGN 8
END

will cause an error.

Rei Branch Out Of Range [8]

A relative branch has been made to a label that is too far away. For all iustructions except
BRL, relative branches are limited to a I-byte signed displacement from the end of the
instruction, giving a range of 129 bytes forward and 126 bytes backward from the
beginning of the instruction. A 2-byte displacement is used for the BRL instruction, giving
a range of 32770 bytes forward and 32765 bytes backward from the beginning of the
instruction. The BRL instruction is only available in native mode.

Sequence Symbol Not Found [4]

A branch was attempted using an AIF or AGO directive, but the sequence symbol named in
the operand field could not be found. A sequence symbol serves as the destination for a
conditional assembly branch. It consists of a period in column I, followed by the sequence
symbol name starting in column 2. The sequence symbol name follows the same
conventions as a label, except that symbolic parameters may not be used.

Set Symbol Type Mismatch [4]

The set symbol type does not match the type of the symbolic parameter being set. There
are three types of symbolic parameters: A (arithmetic), B (Boolean), and C (character). All
symbolic parameters defined in the parameter list of a macro call are C (character type).
SETA and ASEARCH directives must have an arithmetic symbolic parameter; SETB
directives must have a boolean symbolic parameter; and SETC, AMID, and AINPUT
directives must have a character symbolic parameter in the label field,

Subscript Exceeded [8]

A symbolic parameter subscript was larger than the number of subscripts defined for it.
For example,

APDADraft C-7 816187

Appendix C: Error Messages

&NUM(5)
LDA
SETA

&NUM (4)
1

APW As~embler Reference

would cause this error since NUM is defmed for 4 subscripts and the attempt is being made
to use it with 5. A subscript of 0 will also cause this error.

Too Many MACRO Libs [2]

A MCOPY or MLOAD directive was encountered, and four macro libraries were already in
use. The best solution is to use MACGEN and combine all the macros you need during an
assembly into a single file. Not only does this get rid of the problem, it makes assemblies
much faster. Another remedy is to use MDROP to get rid of macro libraries that you no
longer need.

Too Many Positional Parameters [4]

The macro call statement used more parameters in the operand than the macro model
statement had defmitions for. Keep in mind that keyword parameters take up a position.
For example, the following macro calls must all be to a macro defmition with at least three
parameters defmed in the macro model statement operand.

CALL L1,L2,LL3

CALL , ,

CALL L1" L3

CALL ,L1=A,L3

Undefined Directive In Attribute [8]

The settings attribute was requested for an undefined operation code, or for an operation
code that does not use ON or OFF as its operand. The settings attribute is only defined for
these directives:

ABSADDR
CASE
ERR
EXPAND
GEN

IEEE
INSTIME
LIST
LONGA
LONGI

Undefined Symbolic Parameter [8]

MSB
NUMSEX
OBJCASE,
PRINTER

SYMBOL
TRACE
65C02
65816

An ampersand (&) character followed by an alphabetic character was found in the source
line. The assembler tried to fmd a symbolic parameter by the given name, and none was
defined.

APDADrajt C - 8 8/6/87

APW Assembler Reference Appendix C: Error Messages

Unidetified Operation [16]

1. An operation code was encountered that was not a valid instruction or directive, nor
was it a defined macro. If you are using 65C02 or 65816 instructions, make sure that they
are enabled using the 65C02 and 65816 directives. Make sure MCOPY direcnves have
been used to make all needed macros available at assembly time.

2. The first operation code in a RENAME directive's operand could not be found in the
current list of instructions and directives.

3. A MACRO, MEND, or MEXIT directive was encountered in a source fIle.

Unresolved Label Not Allowed [2]

1. A directive operand contrins an expression that must be explicitly evaluated to ped"orm,
the assembly, but a label whose value could not be determined was used in the expression.
In most cases, local labels cannot be used in place of a constant Even though the .
assembler knows that the local label exists, it does now know where the label will finally
be located by the linker.

2. The length or type attribute of an undefined symbolic parameter was requested. Only
the count attribute is allowed for an undefmed symbolic parameter.

Fatal Errors
Some errors are so severe that the APW Assembler cannot keep going; these are called fatal ·
eiTors. When the assembler encounters a fatal error, it prints the error message and then
waits for you to press a key. When you have pressed a key, the assembler passes control to
the APW Editor, which loads the me that the assembler was working on and places the line
that caused· the fatal error at the top of the display screen.

File Could Not Be Opened

A ProDOS error occurred during an attempt to open a source or macro fIle.

This is usually caused by a bad fIle of some type, or a file that is missing entirely. Begin
by carefully checking the spelling in the offending statement Make sure that the me can be
loaded with the listed fIlename using the editor. It is important to specify the patlmame the
same way as it is listed in the assembler command when doing this check. If the error
occurs in a strange place where no files are asked for, keep in mind that a macro file is not
loaded into memory unnl a macro is found and the error is probably in one of the MCOP Y or
MLOAD directives.

Keep File Could Not Be Opened

Either there was not enough memory to open the output file or a ProDOS error was
encountered during an attempt to open the output file. Check the filename used in the
KEEP directive for errors. This error will occur if the mename of the keep file exceeds ten

APDADraft C-9 8/6/87

Appendix C: Error Messages APW Assembler Reference

characters, because the assembler must be able to append . ROOT to the keep filename, and
ProDOS restricts fIle names to fIfteen characters.

Out of Memory

The assembler ran out of memory. Add more memory, reduce the size of the source fIles,
reduce the size of the macro files, or reduce the number of symbols that you are using.

ProD OS Errors

The APW Assembler aborts if a ProDOS error is encountered while doing a fIle read or
write. The ProDOS error message is reported.

No END

The APW Assembler aborts if it encounters a segment that does not have a closing END
directive.

Symbol Table Overnow

The list that follows outlines the uses made of the symbol table. One or more of the uses
will have to be reduced to avoid this error.

1. Each macro in the macro fIle that is currently open requires 12 bytes. Because only one
macro fIle is open at a time, splitting a macro fIle into shorter fIles can help. It is not the
length of a macro or the macro fIle that is a problem, but rather the actual number of macros
in a file.

2. Each symbol defined using the GEQU directive requires 17 bytes of symbol table space.
This space is not released at the end of each subroutine. The GEQU directive is only needed
for specifying fixed direct page or long addresses; using the EQU directive in a data area
and issuing a USING directive for the data area in the subroutine will do just as well for
other pUIposes, and the used symbol table space is released as soon as the data area has
been assembled.

3. Each local label in a segment requires seventeen bytes of space. This space is released
as soon as the segment has been assembled. Shorter segments reduce the total number of
local symbols in each.

4. Symbolic parameters require a variable amount of symbol table space. Reducing the
total number or cutting down on the depth of macro calls can help.

5. The AINPUT directive saves the answers typed from the keyboard in the symbol table.
These answers are removed when the segment where the AINPUT directive appears has
been assembled. Two ways exist to reduce this kind of use: either split the segment so that
fewer AINPUT directives are in anyone segment, or answer the questions posed by the
directive more briefly.

APDADraft C -10 816187

APW Assembler Reference Appendix C: Error Messages

Unable To Write To Object Module

A ProDOS error was encountered while writing to the object module. This error is usually
caused by a full disk, but could also be caused by a disk drive error of some son.

APDADraft C-ll 8/6/87

--~

APW Assembler Reference Glossary

Glossary

absolute code: Program code that must be loaded at a specific address in memory and
never moved.

absolute segment: A segment that can be loaded only at one specific location in
memory.

accumulator: The register in the 65C816 microprocessor where most computations are
perforIl"l:ed. This register is set to 8-bits for 65C02 instructions and 16-bits for 65816
InstructIOns.

addressing mode: A method of determining an effective address. The APW Assembler
supports the 26 addressing modes of the 65816 instruction set.

Apple IIGS Toolbox: A collection of built-in routines on the Apple IIGS that programs
can call to perform many commonly needed functions. Functions within the toolbox are
grouped into tool sets.

Apple IIGS Debugger: The Apple IIGS Debugger works with 65816 assembly
language code. You can either step through your program one instruction at a time, or
execute a program at full speed. You can set break points, which cause program execution
to halt The contents of registers, memory, direct page, and the stack can be examined
while the program is halted.

APW Editor: The program that allows you to enter, modify, and save assembly
language source code programs.

APW Linker: The program that processes the object mes generated by the APW
Assembler to produce load meso The linker searches libraries, Tf'~d·;"s all symbolic
references, and generates a me that can be loaded into memory and executed.

APW Shell: The program that accesses ProDOS 16 and the toolbox directly, and that can
be called or exited via the QUIT call.

assembly: The process of translating source code into object code.

bank: A 64K (65,536-byte) portion of the Apple IIGS internal memory. An individual
bank is specified by the value of one of the 65C816 microprocessor's bank registers.

binary file format: A file in binary file format has ProDOS file type $06 and is referred
to as a BIN file. The System Loader cannot load BIN files. Machine-language programs
and pictures are stored in binary files.

branch: (v) To pass program control to a line or statement other than the next in
sequence. (n) A statement that performs a branch. See conditional branch,
unconditional branch.

byte: A unit of information consisting of a sequence of 8 bits. A byte can take any value
between 0 and 255 ($0 and $FF hexadecimal). The value can represent an instruction,
number, character, or logical state.

APDADraft Glossary -1 8/6/87

Glossary APW Assembler Reference

carry flag: A status bit in the microprocessor, used as an additional high-order bit with
the accumulator bits in addition, subtraction, rotation, and shift operations.

case sensitivity: The ability to distinguish between uppercase characters and lowercase
characters. Programming languages are case sensitiVe if they distinguish between
uppercase and lowercase. With the APW Assembler, you can use the CASE directive to
turn case sensitivity ON or OFF in the source flle and OBJCASE to set case sensitivity in
the object me produced by the assembler.

code segment: A segment that contains program code. The APW Assembler recognizes
segments that begin with START or PRIVATE directives and terminate with END directives
as code segments. See data segment.

comment: Source text intended for the user, ignored during assembly.

comment line: A source text line reserved for comments.

compiler: A program that produces object files (containing machine-language code) from
source flles written in high-level languages such as C.

concatenate: Literally, to chain together. To combine two or more strings into a single,
longer string by joining the beginning of one to the end of the other. Also, to combine two
or more files.

conditional assembly: A feature of an assembler that allows the programmer to define
macros or other pieces of code such that the assembler assembles them differently under
different conditions.

conditional branch: A branch whose execution depends on the truth of a condition or
the value of an expression. Compare unconditional branch.

constant: A constant is either a name set equal to a value by a EQU or GEQU directive, or
a binary, octal, or hexadecimal number, or characters.

data segment: A source or object segment that consists solely of data. The APW
Assembler recognizes segments that begin with DATA or PRIVDATA directives and
terminate with END directives as source data segments.

debul:ger: A utility program that allows you to analyze an application program for errors
that cause it to malfunction. See the Apple IIGS Debugger.

default prefix: The pathname prefix attached by ProDOS 16 to a partial pathname
when no prefix number is supplied by the application. The default prefix is equivalent to
prefix number 0 / .

desktop: The visual interface between the computer and the user-the menu bar and the
gray area on the screen. You can have a number of documents on the desktop at the same
time.

direct page: A page (256 bytes) of bank $00 of Apple IIGS memory, any part of which
can be addressed with a short (one-byte) address because its high address byte is always
$00 and its middle address byte is the value of the 65C8l6 processor' s direct register. Co
resident programs or routines can have their own direct pages at different locations. The
direct page corresponds to the 6502 processor's zero page. The term direct page is often
used informally to refer to the lower portion of the direct page/stack space.

APDADraft Glossary - 2 8/6/87

--

0.

APW Assembler Reference Glossary

direct-page/stack space: A pornon of bank $00 of Apple IIGS memory reserved for a
program's direct page and stack. Initially, the 65C816 processor's direct register
contains the base address of the space, and its stack register contaitis the highest
address. In use, the stack grows downward from the top of the direct-page/stack space,
and the lower part of the space contains direct-page data.

dot operator: Indicated by a period (.), the dot operator is used to concatenate symbolic
parameters.

dynamic segment: A segment that can be loaded and unloaded during execution as
needed. Compare static segment.

e flag: One of three flag bits in the 65C816 processor that programs use to control the
processor's operating modes. The setting of the e flag determines whether the processor is
in native mode or emulation mode. See also m flag and x flag.

effective address: The address of the memory location on which a particular
instruction operates. This address may be arrived at by using one of the assemblers
addressing modes, for example, Absolute Indexed Indirect addressing or some other
addressing method.

emulation mode: For 65C816 processor of the Apple IIGS, the state in which it
functions like a 6502 processor in all respects except clock speed For the Apple IIGS
computer, the state in which the computer functions like an 8-bit Apple II.

external reference: A reference to a symbol that is defined in another segment.
External references must be to global symbols.

fatal error: an error serious enough that the computer must halt execution.

filename: The string of characters that identifies a particular file within a disk directory.
ProDOS 16 filenames can be up to 15 characters long, and can specify directory files,
subdirectory files, text files, source files, object files, load files, or any other ProDOS 16
file type. Compare pathname.

file number: A reference number assigned to a specific file. The loader assigns a file
number to each load file in a program; the MakeLib utility program assigns a file number to
each object file incorporated mto a library file.

fixed-point: A method of representing numbers in which the decimal point (more
correctly, the binary point) is considered to occur at a fixed position within the number.
Typically, the point is considered to lie at the right end of the number so that the number is
interpreted as an integer.

floating-point: A method of representing numbers in which the decimal point (more
correctly, the binary point) is permitted to "float" to different positions within the number.
Some of the bits within the number itself are used to keep track of the pOint's position.

fuIl pathname: The complete name by which a file is specified. A full pathname
always begins with a slash (I), because a volume directory name always begins with a
slash. See path name. _

global label: A label in a source segment that is either the name of the segment or an
entry point to it. Globailabels may be referenced by other segments. Compare with local
label.

APDADraft Glossary -3 816187

Glossary APW Assembler Reference

high-order: The most significant part of a num,er,ical quantity. In nonnal representation,
the high-order bit of a binary value is in the lefnrioSt position; the high-order byte of a
binary word or long word quantity consists of the leftmost eight bits.

index: The variable component of an indexed address, contained in an index register and
added to the base address to fonn the effective address . .

index register: A register that holds an index for use in indexed addressing. The
65C816 microprocessor has two index registers: the X register and the Y register.

instruction: A unit of a machine-language or an assembly-language program
corresponding to a single action for the processor to perform.

library file: An object fIle containing object segments; each of which can be used in any
number of programs. The APW Linker can search through the library file for segments
that have been referenced in the program source file.

LinkEd: A command language that can be used to control the APW Advanced Linker.

linker: A program that combines fIles generated by compilers and assemblers, resolves
all symbolic references, and generates a fIle that can be loaded into memory and executed.

link map: A listing, produced by the linker, that gives the name, length, and starting
location of each segment in a load fIle .

. load file: The output of the linker. Load fIles contain memory images that the system
loader can load into memory and execute without further processing.

load"segment: A segment in a load file. Any number of object segments can go into
the same load segment.

local label: A label defined only within an individual segment. Other segments cannot
access the label. Compare with global label.

long word: A double-length word. For the Apple lIas, a long word is 32 bits (4 bytes)
long.

low-order: The least significant part of a numerical quantity. In normal representation,
the low-order bit of a binary number is in the rightmost position; likewise, the low-order
byte of a binary word consists of the rightmost eight bits.

macro: A sequence of 65816 assembly-language source code that will be inserted into the
source code program when the macro is expanded.

macro call: A request to expand a macro.

macro definition: Assembly-language source code that begins with a MACRO directive
and ends with a MEND directive. .

macro expansion: The insertion of the macro definition into the program source code.
The APW Assembler marks each line of the macro expansion with a plus sign (+) if you
use the GEN ON directive.

macro header: In a macro definition, the directive MACRO.

macro model statement: The line in an APW macro immediately following a MACRO
d~ective. .

APDADrajt Glossary - 4 8/6/87

""-

APW Assembler Reference Glossary "

main segment: The first static segment (other than initialization segments) in the initial
load me of a program. It is loaded at startup and not removed from memory until the
program terminates.

MakeLib utility: A program that creates library files from object files .

Memory Manager: " A program in the Apple IIGS Toolbox that allocates blocks of
memory as needed, and keeps track of which blocks of memory are available. All
applications should request blocks of memory from the Memory Manager rather than
loading data directly into a preselected memory location.

m nag: One of three flag bits in the 65C8l6 processor that programs use to control the
processor's operating modes. In native mode, the setting of the m flag determines
whether the accumulator is 8 bits wide or 16 bits wide. See also e nag and x nag.

microprocessor: A central processing unit that is contained in a single integrated circuit.
The Apple IIGS uses a 65C8l6 microprocessor.

mnemonic: A sequence of characters that designate an instruction or directive.

native mode: The l6-bit operating state of the 65C8l6 processor.

object file: The output from the APW Assembler and input to the APW Linker. An
object file conforms to APW object module format: it contains 65816 instructions plus the
information the linker needs to resolve symbolic references. Any number of object files
can be combined into a single load file. An object file must be processed by the linker to
create a load file: it cannot be executed directly.

object module format (OMF): The general format used in object files, library mes,
and load files.

object segment: A segment in an object file.

operand: The information that the operation code uses to perform its function. In the
case of 65816 instructions, the operand follows the operation code and is separated from it
by at least one space. The operand is an expression that resolves to an address.

operation code: The part of a machine-language, or source code instruction that
specifies the operation to be performed.

page: A portion of memory 256 bytes long and beginning at an address that is an even
multiple of 256. Memory blocks whose starting addresses are an even multiple of 256 are
said to be page-aligned. The ALIGN directive can be used to start a segment at the
beginning of a page.

partial assembly: A procedure that assembles only specific segments of a program.
The APW Assembler will assemble only the segments specified by the NAME parameter in
the APW Shell Commands: RUN, ASMLG, ASML, and ASSEMBLE.

partial path name: A pathname that includes the filename of the desired file but
excludes the volume directory name (and possibly one or more of the subdirectories in the
path). It is the part of a pathname following a prefix-a prefix and a partial pathname
together constitute a fulI pathname. A partial pathname does not begin with a slash
because it has no volume directory name.

pass one: The APW Assembler resolves local labels during the first assembly pass.

APDADraft Glossary -5 816187

Glossary APW Assembler Reference

pass two: The APW Assembler produces objeet code; assembly listings,and external
labels during the second pass of the assembly.

pathname: The complete name by which a file is specified. A pathname is a sequence of
filenames separated by slashes, starting with the f1lename of the volume directory f1le and
including every subdirectory fIle that the operating system must search to locate the file. in
descending sequence ofthe subdirectory hierarchy. A full pathname always begins with a
slash (/) to indicate that the first name is a volume directory. See also full pathname.
partial pathname, prefix. .

pipeline: (v) To automatically execute two or more programs in sequence, where the
output of the first file is the input to the next fIle and so·on. (n) The entire sequential set of
programs executed.in this way. A program or fIle being processed by this sequence of
programs is said to be in the pipeline or in the pipe.

pop: To remove the top entry from a stack, moving the stack pointer to the entry below
it. Synonymous with pull. Compare push.

prefix: A pathname starting with a volume name and ending with a subdirectory name.
It is the part of a full pathname that precedes a partial pathname---a prefix and a partial
pathname together constitute a full pathname. A prefix always starts with a slash (/)
because a volume directory name always starts with a slash.

prefix number: A code used to represent a particular prefiX. Under ProDOS 16, there
are nine prefix numbers, each consisting of a numeral followed by a slash: 0/, 1/, ... 8/, and
*/.

ProDOS 8: A disk operating system developed for standard Apple II computers. It runs
on 6502-series microprocessors and on the Apple llGS when the 65C816 processor is in
6502 emulation mode.

ProDOS 16: A disk operating system developed for 65C816 native mode operation on
the Apple llGs. It is functionally similar to ProDOS 8 but more powerful.

program counter: A pointer to the memory location of the instruction to be executed
next.

program segment: One or more code segments and optionally data segments assembled
together to perform a function.

pull: To remove the top entry from a stack, moving the stack pointer to the entry below
it. Synonymous with pop. Compare push.

push: To add an entry to the top of a stack, moving the stack pointer to point to it.
Compare pop.

rela tiona I operator: An operator, such as >, that operates on numeric values to
produce a logical result. .

relocatable code: Code that is location independent.

segment: A component of an OMF file, consisting of a header and a body. .In object
files, each segment incorporates one or more subroutines. In load files, each segment
incorporates one or more object segments.

sequence symbol: The branching destinations for the conditional assembly directives
AGO and AIF. The format consists of a period (.) followed by a label (the label may not

APDADraft Glossary-6 8/6/87

APW Assembler Reference Glossary

contain any symbolic parameters). They an: not printed in the assembler listing unless the
TRACE ON option is in effect

shel.1 call: A request from a program (or the assembler) to the APW Shell to perform a
specific function.

Standard Apple Numeric Environment: The standard Apple data types, arithmetic
operations, conversions, expression evaluations, and comparisons. What they an: and
how they are derived an: described in the Apple Numerics Ma/IUiJl.

65C816: The microprocessor used in the Apple IIGs. The 65C816 is a CMOS device
with 16-bit data registers and 24-bit address registers. ·

65C02: A CMOS version of the 6502; the microprocessor used in the Apple nc and in
the enhanced Apple ne.

6502: The microprocessor used in the Apple IT, in the Apple n Plus, and in early
models of the Apple ne. The 6502 is an MOS device with 8-bit data registers and 16-bit
address registers.

source files: A source file for the APW Assembler consists of 65816 or 65C02
instructions, APW directives, macros, or data. The APW assembler converts source files
into object files.

stack: An area of dedicated memory that is accessed by push and pull instructions. The
area is used by these instructions for temporary data storage.

stack register: The stack register points to the next available location on the system
stack.

standard Apple II: Any computer in the Apple n family except the Apple nGS. That
includes the Apple IT, the Apple n Plus, the Apple ne, and the Apple nco

static segment: A segment that is loaded only at program boot time, and is not unloaded
during execution. Compare dynamic segment.

string: An item of information consisting of a sequence of text characters.

su bstring: A string that is part of another string.

symbol: A character or string of characters that represents an address or numeric value; a
symbolic reference or a variable.

symbol table: A table of symbolic references created by the linker when it links a
program. The linker uses the symbol table to keep track of which symbols have been
resolved. At the conclusion of a link, you can have the linker print out the symbol table.

symbolic parameter: A variable character or character string that represents addresses
or values declared in the prototype statement of a macro defmition. There are three types of
symbolic parameters: A(arithmetic), B (Boolean), and C (character). Symbolic parameters
are assigned values by the SETA, SETS, or SETC directives.

symbolic reference: A name or label, such as the name of a subroutine, that is used to
refer 10 a lOCation in a program. When a program is linked, all symbolic references are
resolved; when the program is loaded, actual memory addresses an: patched into the
program to replace the symbolic references.

APDADraft Glossary - 7 816187

Glossary APW Assembler Reference

System Loader: The part of the operating system that reads the files generated by the
linker, relocates them (if necessary), and loads them into memory. The System Loader
works closely with ProDOS 16 and the Memory Manager.

text file format: The Apple IIGS standard format for text files and program source files .

toolbox: A collection of built-in routines on the Apple IIGS that programs can call to
perform many commonly needed functions. Functions within.the toolbox are grouped into
toolsets.

tool set: A group of related routines (usually in firmware) that perform necessary
functions or provide programming convenience. They are available to applications and
system software. The Memory Manager, the System Loader, and QuickDraw II are Apple
IIGS tool sets.

unconditional branch: A branch that does not depend on the truth of any condition.
Compare conditional hranch.

utility: In general, an application program that performs a relatively simple function or set
of functions such as copying or deleting files. An APW utility is a program that runs under
the APW Shell, and that performs a function not handled by the shell itself. MakeLib is an
example of an APW utility.

variable: The symbol used in a program to represent a memory location where a value
can be stored. Compare constant.

volume: An object that stores data; the source or destination of information. A volume
has a name and a volume directory with the same name; information on a volume is stored
in files. Volumes typically reside in devices; a device such as a floppy disk drive may
contain one of any number of volumes (disks).

wildcard character: A symbol that may be used as shorthand to represent any character
(or sequence of characters) in a pathname. In APW, the equal sign (=) and the question
mark (?) can be used as wildcard characters.

word: A group of bits that is treated as a unit. For the Apple IIGS, a word is 16 bits (2
bytes) long.

x flag: One of three flag bits in the 65C816 processor that programs use to control the
processor's operating modes. In native mode, the setting of the x flag determines
whether the index registers are 8-bits wide or 16-bits wide. See also e flag and m flag.

X register: One of the two index registers in the 65C816 microprocessor.

Y register: One of the two index registers in the 65C816 microprocessor.

zero page: The first page (256 bytes) of memory in a standard Apple II computer (or in
the Apple IIGS when running a standard Apple II program). Because the high-order byte
of any address in this pan of memory is zero, only a single byte is needed to specify a zero
page address. Compare direct page.

APDADraft Glossary· 8 816187

