APPLE
PROGRAMMER'S
AND DEVELOPER'S
ASSOCIATION

290 SW 43rd. Slreet
Renton, WA 98055
206-251-6548

APW
C Language
Reference

APDA Draft
March 9, 1987

APDA# K2SAPC

Apple IIGS Programmer’s Workshop

C Reference

APDA Draft
9 March 1987

This document contains preliminary information. It does not
include

« final editorial corrections
« final art work
* an index

It may not include final technical changes.

Apple Technical Publications, MS 22-K

Engineering Part Number: 030-3133
Marketing Part Number: A2L.6003

APPLE COMPUTER, INC.

This manual and the software
described in it are
copyrighted, with all rights
reserved. Under the copyright
laws, this manual or the
software may not be copied, in
whole or part, without written
consent of Apple, except in
the normal use of the software
or to make a backup copy of
the software. The same
proprietary and copyright
notices must be affixed to any
permitted copies as were
affixed to the original. This
exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased (with
all backup copies) may be
sold, given, or loaned to
another person. Under the
law, copying includes
translating into another
language or format.

You may use the software on
any computer owned by you,
but extra copies cannot be
made for this purpose.

© Apple Computer, Inc., 1987
20525 Mariani Ave.

Cupertino, California 95014
(408) 996-1010

© AT&T, 1987

Apple, the Apple logo, and
LaserWriter are registered
trademarks of Apple
Computer, Inc.

Macintosh and SANE are
trademarks of Apple
Computer, Inc.

UNIX is a registered trademark
of AT&T.

DEC, VAX, and PDP are
trademarks of Digital
Equipment Corporation.

IBM is a registered trademark
of International Business
Machines Company.

NS16000 is a trademark of
National Semiconductor
Corporaticn.

ZB000 and Z8070 aic
trademarks of Zilog
Corporation.

Simultaneously published in
the United States and Canada.

Apple IIGS Programmer's Workshop

C Language Reference

Contents

About this manual
The Apple IIGS road map
Introductory Manuals
The Technical Introduction
The Programmer's Introduction
The machine reference manuals
The Toolbox manuals
The Programmer's WorkshOp manual
Programming-language manuals
All-Apple manuals
How to use this manual
What this manual contains
Visual cues
New terms
Notes and warnings
Language notation
Other reference materials you'll need

e s I o e Wo MF RU P SR UV RVA Y S S

Part I: Programmer's Guide

Chapter 1: Getting Started
About The Apple IIGS Programmer's Workshop
The APW shell
The APW editor
The APW Linker
About APW C
Mode of Operation
Standard Apple Numeric Environment
Object Module Format
About the Apple IIGS system software
What you need

OO RO
AR LLRLRRL——-

1

APDA Draft Page Contents-i

9 March, 1987

APW C concepts
Relocatable load files
Program segmentation

1 Dynamic segments

2 Library files

3 Program Interactions

6 Using the APW C Libraries

Chapter 2: Using the APW C Compiler
Installing APW C
Installing APW on a hard disk
Installing APW C on a hard disk
Installing APW on two 3.5-inch disks
Writing and running a sample program
Writing the sample program
Compiling and linking the sample program
Running the sample program
A longer sample program
The APW C Compiler
The compilation process
Suspending the compilation
C compiler error messages
C compiler shell commands
Editing a source file
Compiling a program
Command Notation
Bl
CHANGE
2-8 CMPL
2-10 CMPLG
2-10 COMPILE
2-10 EDIT
2-10 LINK
2-11 RUN
2-11 Examples of these commands
2-11 Appending files
2-12 Partial compilation or assembly
2-12 The linker
2-13 Making a library
2-13 Files for compiling and linking
2-13 Include-file search rules
2-14 Library files

Chapter 3: Sample Program

General procedure

Writing and editing the sample source code
Creating object code: compiling and assembling
Creating load files: linking

- XV XV IV V. O G G ORI RY ST S S

]]] L i 1

NNNMNNMMVNNNNNNNN

[o]
)

DJUJWC.I»JU)UJUJ
N R RD

-7 Running your program
-7 Compiling, linking, and running in one step
-8 Creating a compact load file
APDA Draft ' Page Contents-ii

Contents

9 March, 1987

APW C Contents

Part II: Language Reference

Chapter 4: The APW C Language
Language definition
Variable names
Data types
Numeric constants
Type void
Type enum
Register variables
Structures
Reserved symbols
Standard Apple Numeric Environment extensions
Constants
Expressions
Comparison involving a NaN
Parameters and function results
Numeric input/output
Numeric environment
About the C SANE Library
Programming with IEEE arithmetic
Pascal-style functions
Pascal-style function declarations
Inline declarations
Inline assembly-code declarations
Pascal-style function definitions
Parameter and result data types
Global and external data types
Implementation notes
Size and byte-alignment of variables
Byte ordering
Sign extension
Variable-allocation strategy
Array indexing
Types unsigned char, unsigned short, and unsigned long
Bit fields
Evaluation order
Case statements
Language anachronisms
Assignment operators
Initialization
Compiler limitations
Performance tips
Creating load segments: the overlay command
The #append directive
Code-generation memory model

Chapter 5: The Standard C Library
5-2 About the Standard C Library

\O\D \O 00 60 00 ~1 ~d —1 =3 2O\ O\ B B U G B

p—u—-a-—no—nr—u—-t—-»—-r—u-avl—n—-»—u—-)—n—u—u—u—-n—-
o~~~ Mt b, R D RLDWNDO

[} I 1 1)] 1 1 i

-b-b-b-Ahhhh#h&h-h-b-h-hh-hAL#?##A###L##A#A#&&#-P-P-b-b»-b-

APDA Draft Page Contenss-iii | 9 March, 1987

APW C

NNMNH;—IHH:—-H»—H»—»\DOCO\NN

M= OCOURNW—OOAPRN =00V UNMWNN=RLOOYVEE~-IDDNWBIAEAND—~O

() 1 0 1 1 [

bbb bbhbbhprpbOLLOLLOLNLDDL

MML’IL’IML"IMMMMMMMMU\MMMMK{IMMMMMMMMMU"lMMMMMMMMMM

1

L Lh
oo O

5-59
5-60
5-63
5-65
5-66
5-67
5-68
5-69

Error numbers

abs
atof
atoi
close
conv
creat
ctype
dup
ecvt
exit
exp
faccess
fclose
fentl
ferror
floor
fopen
fread
frexp
fseek
getc
getenv
gets
hypot
ioctl
lseek
malloc
memory
onexit
open
printf
putc
puts
gsort
rand
read
scanf
setbuf
setjmp
sinh
stdie
string
strtol
trig
ungetc
unlink
write

APDA Draft

Page Contents-iv

Contents

9 March, 1987

APWC

Chapter 6: Shell Calls
How to make a shell call
How a program makes a shell call
Call description
DIRECTION
ERROR
EXECUTE
GET_LANG
GET_LINFO and SET_LINFO
INIT_WILDCARD
NEXT_WILDCARD
GET_VAR
READ_INDEXED
REDIRECT
SET_VAR
SET_LANG
STOP
VERSION

Appendix A: Calling Conventions
C calling conventions

Parameters

Function results

Register conventions
Pascal-compatible calling conventions

Parameters

Function results

Register conventions

Appendix B: Files supplied with APW C
C Compiler files

Standard C Library include files

Apple IIGS Interface Library include files
Standard C Library object files

Apple IIGS Interface Library object files

Appendix C: Comparison with Macintosh Workshop C
C-1 Data types
C-1 Register variables
C-1 Structured variables
C-2 Pascal-compatible function declarations
C-2 Inline assembly code declarations

Appendix D: Library Index

(= Yo Yo Yo Yo, Yo Yo Wl

?\
OO 00 00 ~1 A o o 1o 1 O R

e S ey ey

—_—— OO

> > > >
[S R

Contents

(Contains an index entry for every define, type, enumeration literal, global variable,

and function defined in the Standard C Library and the APW Shell.)

Glossary

APDA Draft Page Contents-v

9 March, 1987

APWC Contents

APDA Draft Page Contents-vi 9March 1987

About This Manual

This manual contains the information about Apple IIGS™ Programmer’s Workshop C that
you need when writing C programs for the Apple IIGS. It assumes that most readers
already know the C programming language, as defined in Kernighan and Ritchie’s The C
Programming Language. For this reason, it does not repeat their definition of the C
language, but instead defines the differences between APW C and “K and R” C.
However, this manual can also be used by those learning C for the first time. The
introductory chapters tell how to write, compile, link, and run a simple C program. From
there, one can follow Kernighan and Ritchie or any standard textbook on C.

Roadmap to the Apple IIGS Technical Manuals

The Apple IIGS personal computer has many advanced features, making it more complex
than earlier models of the Apple ™ computer. To describe the Apple IIGS fully, Apple has
produced a suite of technical manuals. Depending on the way you intend to use the

Apple 1IGS, you may need to refer to a select few of the manuals, or you may need to refer
to most of them.

The technical manuals are listed in Table P-1, Figure P-1 is a diagram showing the
relationships between the different manuals.

Table P-1

The Apple IIGS technical manuals

Title Subject

Technical Introduction to the Apple IIGS What the Apple IIGS is

Apple IIGS Hardware Reference Machine internals—hardware

Apple IIGS Firmware Reference Machine internals—firmware

Programmer’ s Introduction to the Apple IIGS Concepts and a sample program

Apple 11GS Toolbox Reference, Volume 1 How the tools work and some toolbox
specifications

Apple IIGS Toolbox Reference, Volume 2 More toolbox specifications

Apple IIGS Programmer’ s Workshop Reference The development environment

Apple IIGS Programmer's Workshop Assembler Reference Using the APW Assembler

Apple IIGS Programmer' s Workshop C Reference Using C on the Apple IIGS

ProDOS 8 Reference ProDOS for Apple II programs

Apple IIGS ProDOS 16 Reference ProDOS and loader for Apple IIGS

Human Interface Guidelines: the Apple Desktop Interface Guidelines for the desktop interface

Apple Numerics Manual Numerics for all Apple computers

APDA Draft Page Preface-1 9 March 1987

APWC

Figure P-1
Roadmap to the technical manuals

To start finding
out about
the Apple IIGS

b
i

AR A
pple IIG

To leam how the
Apple Il GS works

¢ IGSFirm
To start leaming
to program

the Apple IIGS

To use the toolbox

To operate on files

B R

To use the

development
environment

83
i

Touse C

To use assembly
language

APDA Draft Page Prefuce-2

Preface

i Technical
‘Introduction

;PIOgralnmer;s
Introduction

‘Workshop Reference

T R

&

Workshop Asscmbler

Reference
A SRS IS AN n s

’éf,

ey

9 March 1987

Preface APW C

Note: Some of the book titles in the above diagram have changed since it was drawn. A
corrected drawing is being prepared.

The following sections briefly describe the manuals listed in Table P-1 and Figure P-1.

Introductory manuals

These books are introductory manuals for developers, computer enthusiasts, and other
Apple IIGS owners who need technical information. As introductory manuals, their
purpose is to help the technical reader understand the features of the Apple 1IGS,
particularly the features that are different from other Apple computers. Having read the
introductory manuals, the reader will refer to specific reference manuals for details about a
particular aspect of the Apple IIGS.

The technical introduction

The Technical Introduction to the Apple IIGS is the first book in the suite of technical
manuals about the Apple IIGS. It describes all aspects of the Apple IIGS, including its
features and general design, the program environments, the toolbox, and the development
environment.

Where the Apple 1IGS Owner’s Guide is an introduction from the point of view of the user,
the Technical Introduction describes the Apple IIGS from the point of view of the program.
In other words, it describes the things the programmer has to consider while designing a
program, such as the operating features the program uses and the environment in which the
program runs.

You should read the Technical Introduction no matter what kind of programming you
indend to do, because it will help you understand the powers and limitations of the machine.
If you are going to be doing assembly-language or system programming, this book is
essential. To find out all about any one aspect of the Apple IIGS, you should read one of
the following specific technical manuals.

The Programmer’s Introduction

When you start writing programs that use the Apple IIGS user interface (with windows,
menus, and the mouse), the Programmer’s Introduction to the Apple IIGS provides the
concepts and guidelines you need. It is not a complete course in programming, only a
starting point for programmers writing applications for the Apple IIGS. It introduces the
routines in the Apple IIGS Toolbox and the program environment they run under. It
includes a sample event-driven program that demonstrates how a program uses the
toolbox and the operating system.

Machine reference manuals

There are two reference manuals for the machine itself: the Apple IIGS Hardware Reference
and the Apple IIGS Firmware Reference. These books contain detailed specifications for
people who want to know exactly what’s inside the machine.

If you are doing system programming or writing programs that are designed to recognize
whether they are running on the Apple IIGS or older Apple IT computers, these books are
essential.

APDA Draft Page Preface-3 9 March 1987

APW C | Preface

The hardware reference manual

The Apple IIGS Hardware Reference is required reading for hardware developers, and it
will also be of interest to anyone else who wants to know how the machine works.
Information for developers includes the mechanical and electrical specifications of all
connectors, both internal and external. Information of general interest includes descriptions
of the internal hardware, which provide a better understanding of the machine’s features.

The firmware reference manual

The Apple 1IGS Firmware Reference describes the programs and subroutines that are stored
in the machine’s read-only memory (ROM), with two significant exceptions: Applesoft
BASIC and the toolbox, which have their own manuals. The Firmware Reference includes
information about interrupt routines and low-level /O subroutines for the serial ports, the
disk port, and for the DeskTop Bus interface, which controls the keyboard and the mouse.
The Firmware Reference also describes the Monitor, a low-level programming and
debugging aid for assembly-language programs.

The toolbox manuals

Like the Macintosh, the Apple IIGS has a built-in toolbox. The Apple IIGS Toolbox
Reference, Volume 1, introduces concepts and terminology and tells how to use some of
the tools. The Apple I1GS Toolbox Reference, Volume 2, contains information about the
rest of the tools. Volume 2 also tells how to write and install your own tool set.

Of course, you don’t have to use the toolbox at all. If you only want to write simple
programs that don’t use the mouse, or windows, or menus, or other parts of the desktop
user interface, then you can get along without the toolbox. However, if you are
developing an application that uses the desktop interface, or if you want to use the Super
Hi-Res graphics display, you’ll find the toolbox to be indispensable.

The Programmer’s Workshop manual

The development environment on the Apple IIGS is the Apple IIGS Programmer’s
Workshop (APW). APW is a set of programs that enable developers to create and debug
application programs on the Apple IIGS. The Apple IIGS Programmer’s Workshop
Reference includes information about the parts of the workshop that all developers will use,
regardless which programming language they use: the shell, the editor, the linker, the
debugger, and the utilities. The manual also tells how to write other programs, such as
custom utilities and compilers, to run under the APW Shell. (For brevity, we will usually
refer to this as the APW Reference.)

The APW reference describes the way you use the workshop to create an application and
includes a sample program to show how this is done.

Programming-language manuals

Apple is currently providing a 65816 assembler and a C compiler. Other compilers can be
used with the workshop, provided that they follow the standards defined in the APW
Reference. -~

APDA Draft Page Preface< 9 March 1987

Preface APWC

There is a separate reference manual for each programming language on the Apple IIGS.
Each manual includes the specifications of the language and of the Apple 1IGS libraries for
the language, and describes how to write a program in that language. The manuals for the
languages Apple provides are the Apple IIGS Programmer’s Workshop Assembler
Reference and the Apple IIGS Programmer’s Workshop C Reference.

Operating-system manuals

There are two operating systems that run on the Apple IIGS: ProDOS 16 and ProDOS 8.
Each operating system is described in its own manual: ProDOS 8 Reference and Apple 1IGS
ProDOS 16 Reference. ProDOS 16 uses the full power of the Apple IIGS and is not
compatible with earlier Apple II’s. The ProDOS 16 manual includes information about the
System Loader, which works closely with ProDOS 16. If you are writing programs for the
Apple IIGS, whether as an application programmer or a system programmer, you are
almost certain to need the ProDOS 16 Reference.

ProDOS 8, previously just called ProDOS, is compatible with the models of Apple II that
use 8-bit CPUs. As a developer of Apple IIGS programs, you need to use ProDOS 8 only
if you are developing programs to run on 8-bit Apple II's as well as on the Apple IIGS.

All-Apple manuals

In addition to the Apple IIGS manuals mentioned above, there are two manuals that apply to
all Apple computers: Human Interface Guidelines—The Apple Deskiop Interface; and the
Apple Numerics Manual. If you develop programs for any Apple computer, you should
know about those manuals.

The Human Interface Guidelines manual describes Apple’s standards for the desktop
interface to any program that runs on an Apple computer. If you are writing a commercial
application for the Apple IIGS, you should be fully familiar with the contents of this
manual.

The Apple Numerics Manual is the reference for the Standard Apple Numeric Environment
(SANE™), a full implementation of the IEEE standard for floating-point arithmetic. The
functions of the Apple IIGS SANE tool set match those of the Macintosh SANE packages
and of the 6502 Assembly-Language SANE™ software. If your application requires
accurate or robust arithmetic, you’ll probably want to use the SANE routines in the

Apple IIGS. The Apple 1IGS Toolbox Reference tells how to use the SANE tool set
routines in your programs. The Apple Numerics Manual is the comprehensive reference for
the semantics of the SANE routines.

How to use this manual

If you are an experienced C programmer but have never written a program for the Apple
IIGS, Chapters 1, 2, and 3 will give you enough information to get standard C programs
running. (If you have written other programs for the Apple IIGS, Chapter 1 will be
redundant.) The remaining chapters tell you what you need to write C programs that use
the capabilities of the Apple IIGS.

If you are new to C, Chapter 1 will tell you what you need to go through a C textbook,

such as Kernighan and Ritchie’s. After you are familiar with C, you can learn about the
capabilities of the C compiler and this particular implementation.

APDA Draft Page Preface-5 9 March 1987

APWC Preface

What this manual contains

This manual is divided into two major sections: Part I, “ A Programmer's Guide,” and Part
IT, “Language Reference.”

Part I, “A Programmer’s Guide,” introduces you to APW C and its programming
environment.

» Chapter 1, “Getting Started,” introduces the environment in which you'll use the C
compiler. It discusses the Apple IIGS Programmer's Workshop, ProDOS 16, the
Apple IIGS Tools, and lists the hardware and software you'll need.

» Chapter 2, “Using the C Compiler,” describes the compilation process, lists the Shell
commands you'll need working with the compiler, and discusses the linker, the
debugger, and other utilities.

« Chapter 3, “Sample Program,” takes you step-by-step through the process of building a
C program that has an assembly language subroutine.

Part IT, “Language Reference,” is a detailed description of the structure and components of
the APW C and its libraries.

» Chapter 4, “The APW C Language,” describes Apple extensions to C and clarifies
aspects of the language definition as they apply to this implementation.

» Chapter 5, “The Standard C Library,” documents functions for standard /O, string
manipulation, math routines, and other useful features not built into the language.

« Chapter 6, “The Shell Interface Library,” lists the C interfaces to the APW Shell.
» Appendix A, “Calling Conventions,” tells how to write calls between C and Pascal.

¢ Appendix B, “Files Supplied with APW C,” contains a list of all the files that are
supplied with this product.

+ Appendix C, “Comparison with Macintosh Programmer’s Workshop C,” describes the
differences between MPW C and APW C.

« Appendix D, “Library Index,” is a combined index of identifiers in the Standard C
Library and Apple IIGS Interface Libraries.

Visual cues

Certain conventions in this manual provide visual cues alerting you, for example, to the
introduction of a new term and important or useful information. These are described in this
section. Typographical conventions are described in the next section, “Language
Notation.”

New terms

When a new term is introduced, it is printed in boldface the first time it is used. This lets
you know that the term has not been defined earlier and that there is an entry for it in the

glossary.

APDA Draft Page Preface-6 9 March 1987

Preface APWC

Notes and warnings
Special messages of note are marked as such: .
« Note: Text set off in this way presents sidelights or interesting points of information.

« Important: Text set off in this way presents important information or instructions that
you should read before proceeding.

« Warning! A waming set off like this alerts you to something that cauld cause loss of
data or damage to software.

Language notation
This manual uses certain conventions in common with other Apple IIGS language manuals.

+ Words and symbols that are part of the C language, as well as anything that you type
on the keyboard or that can appear on the screen, are presented in a monospace font:

int ndigit (10]
+ Metalanguage expressions, which are used in syntax diagrams to indicate items that are
replaced by C, are in italic:

else if (condition)
statement

Here condition and statement are expressions that are replaced by actual C expressions.
The else 1if and the parentheses are C code.

In addition, the following conventions are observed:
Convention Meaning

(] Square brackets indicate that the enclosed
item 1s optional.

A horizontal ellipsis indicates that the
preceding item(s) can be repeated as
necessary.

A vertical ellipsis indicates that not all of the
statements in an example or figure are
shown.

Other reference material you'll need

In order to write C programs for the Apple IIGS, you’ll need to be familiar with these
additional reference materials:

« Apple IIGS Programmer’s Workshop Reference. This book describes the APW
environment in which the C compiler operates, including the shell, editor, linker,
~debugger, and other important utilities.

APDA Drqft Page Preface-7 9 March 1987

APW C ~ Preface

» The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie
(Prentice-Hall, 1978). This is a standard reference book for the C language in its
original form. Appendix A of this book is a formal definition of “K & R” C.

» C:AReference Manual, by Samuel P. Harbison and Guy L. Steele (Prentice-Hall,
1985). This is a complete reference book for standard C, as implemented by the
Portable C Compiler, including the Western Electric extensions to K & R C.

» Apple 1IGS Toolbox Reference, Volumes I and II. These books contain everything you
need to program using the Apple IIGS ROM and associated RAM routines. The two
volumes cover windows, alert boxes, menus, graphics, the SANE tool set, and much
more.

« Apple Numerics Manual. This book describes in detail the floating-point arithmetic
used in Apple computers. See the Toolbox Reference for a detailed description of the
calling sequence for SANE routines.

APDA Draft Page Preface-8 9 March 1987

Part I

Programmer’s Guide

APDA Draft 9 March 1987

APDA Draft 9 March 1987

Chapter 1
Overview

This chapter introduces the Apple IIGS Programmer’s Workshop (APW). The first
section, “About the Apple IIGS Programmer’s Workshop,” describes the various parts of
APW. The second section, “About Apple IIGS System Software,” describes ProDOS 16,
the System Loader, and the Memory Manager. The third section, ““What You Need,”
describes the hardware and software you need to run APW C. The fourth section, “APW
C Concepts,” describes the relationships between source, object, load, and library files.
The fifth section, “Program Interactions,” describes the process of building a program.

About the Apple IIGS Programmers Workshop

The Apple IIGS Programmer’s Workshop is a suite of software designed to assist
developers in writing Apple IIGS applications programs. This development environment
includes a command interpreter, known as the shell; a text editor; a linker; a
debugger; and a set of utilities. APW supports C and 65816/65C02 assembly-language
programming; other languages are planned. Further support for developers is provided by
a comprehensive set of routines known as the Apple IIGS Toolbox. The toolbox
routines are accessed from APW but are not considered part of APW. For a
comprehensive description of APW, refer to the Apple IIGS Programmer’s Workshop
Reference. For detailed information on the Apple IIGS Toolbox, refer to the Apple IIGS
Toolbox Reference: Volumes I and I1.

The APW shell

The APW shell provides the interface that allows you to work with the C compiler and
perform tasks such as file, directory, and disk management. The shell also acts as an
extension to ProDOS 16, providing several functions that can be called by programs
running under the shell. The C compiler can use a set of shell calls to perform the
following functions:

» pass parameters and operations flags between the shell and APW programs
» read the current language number

+ set the current language number

» return the address of the command table

» get filenames using wildcards

APW C provides C interfaces td the shell calls. The calls and their C interfaces are
discussed in Chapter 6, “Shell Calls.”

Commands most often used while working with the C compiler are described in Chapter 2,

“Using the APW C Compiler.” The APW shell is fully described in Chapters 2 and 3 of
the APW Reference.

APDA Draft Page -1 9 March 1987

APWC Chapter 1

The APW editor
The APW editor is a full-screen text editor that oi)érates under keyboard control.

You can send commands to the shell to perform tasks such as
» manipulating text

» searching for and replacing text strings

+ moving your position in the file

» scrolling the screen

+ setting and clearing tab stops

¢ defining and using keyboard macros

The APW editor is fully described in Chapters 2 and 4 of the APW Reference.

The APW linker

The APW linker takes the object files produced by the C compiler and generates load
files that the System Loader can load into memory. Although the linker is a single
program, conceptually there are two APW linuers: '

1. Normally the linker is called by a shell command, such as LINK or CMPL (compile
and link). These commands provided a limited set of options, setting other options to
default values. This linker is referred to as the standard linker.

" Alternatively, all funtcions of the APW Linker can be contorlled by compiling a file
of linker commands. The linker command language, called LinkEd, allows you to do such
things as place specific object-file segments in specific load-file segments, search specific
libraries, and control linker printout. You can append the LinkEd file to your last source
file, or you can compile and execute them separately by using the COMPILE or ALINK
commands. The aspect of the linker controlled by LinkEd files is called the advanced
linker. B

About APW C

APW C is a complete implementation of the C programming language. It consists of a C
compiler, the Standard C Library, the Apple IIGS Interface Libraries, and the C SANE

Library.

The C Programming Language by Kernighan and Ritchie is an authoritative written
definition of C in its original form: we refer to this C as K & R C. However, the language
has changed in several ways since the book was written. In addition, numerous details of
the language definition are open to interpretation, with the result that the de facto standard
definition of C differs in several ways from the language originally defined by Kernighan
and Ritchie. This de facto standard is loosely defined by the most widely used
implementation of C, the Portable C Compiler (PCC).

In this manual, we use the term Standard C for C as defined and implemented by the
Berkeley 4.2 BSD VAX implementation of PCC, including the documented Western

APDA Drqft Page 1-2 9 March 1987

Chapter 1 | APW C

Electric extensions: type void, enumeration data types, and structures as function
parameters and results. C: A Reference Manual, by Harbison and Steele, describes
Standard C fully. APW C is based on this de facto standard and not on the proposed ANSI
standard currently under development.

Apple has extended Standard C to facilitate writing programs for the Apple IIGS. In
addition to the Western Electric extensions, APW C includes a function modifier that
allows calls to and from Pascal programs and the Apple IIGS Interface Libraries. APW C
also supports the Standard Apple Numeric Environment, described later in this chapter.

Mode of operation

The APW C compiler, and APW C itself, operates in the Apple IIGS’s native mode. In
native mode, the full instruction set of the 65816 processor is available. The 91
instructions combined with 25 addressing modes make 256 opcodes available to the
compiler. The register set can be used for either 8- or 16-bit operations. The accumulator
can be set to either a 16-bit register or two 8-bit registers. The advantage of using a
processor with 16-bit registers as compared to one with 8-bit registers is that you can write
shorter programs with more compact code and faster execution.

Standard Apple Numeric Environment

The APW C compiler provides full support for the Standard Apple Numeric Environment
(SANE™), APW C together with the C SANE library compose a fully conforming
implementation of extended-precision binary floating-point arithmetic as specified by IEEE
Standard 754. This standard specifies data types, arithmetic, and conversions, as well as
tools for handling exceptions such as overflow and division by zero. SANE supports all
requirements of the IEEE standard and goes beyond the specifications of the standard by
including a library of high-quality scientific and financial functions. Thus SANE provides
a numeric environment sufficient for a wide range of applications.

Source programs using only the float and double types and standard C operations
compile and run without modification.

Object module format

The object module format (OMF) on the Apple IIGS is the general format used in
object files, library files, and load files. On the Apple Ilc and Ile, there is only one
loadable file format, called the binary file format, which consists of one absolute memory
image along with its destination address. On the Apple IIGS, object module format allows
dynamic loading and unloading of load segments containing program code and data
while a program is running. Additionally, each APW language produces its object code in
the object module format, allowing you to link together subroutines written in different
languages.

APDA Drqft Page 1-3 9 March 1987

APWC Chapter 1

About the Apple IIGS system software

System tasks are handled by ProDOS 16, the System Loader, and the Mémory
Manager. ProDOS 16 is the core, or kernel, of the Apple IIGS’s operating system. It
provides file management and input/output capability.

The System Loader works closely with ProDOS 16. It is responsible for loading all code
and data into the Apple IIGS memory. It is capable of static and dynamic loading and
relocating of load segments.

The Memory Manager is responsible for allocating memory. It provides space for load
segments, tells the System Loader where to place them, and moves segments within
memory when additional space is needed.

ProDOS 16 and the System Loader are documented in the Apple IIGS ProDos 16
Reference. The Memory Manager is documented in both the Apple IIGS ProDos 16
Reference and the Apple IIGS Toolbox Reference: Volumes I and 11.

What you need

In order to use the Apple IIGS Programmer’s Workshop, you must have the following
hardware and software. A list of Apple IIGS manuals that you will find useful is given in
the Preface.

« An Apple IIGS computer, or an Apple Ile computer with an installed Apple IIGS-
upgrade, with 256K bytes of RAM.

+ An installed Apple IIGS memory-expansion card with 512K bytes of RAM. With this
card the Apple IIGS has 768K bytes of RAM.

« The 3.5-inch Apple IIGS System Disk.

+ The two 3.5-inch APW disks.

» The 3.5-inch APW C disk, containing the files shown in Appendix B.
» Two 800K disk drives (one if you have a hard disk).

« Disks containing any other APW languages you intend to use with this system. The
files on these disks must be installed on the Apple 1IGS disk as described in the
manuals that came with them.

The following hardware is highly recommended, especially if you intend to do multi-
language development or develop large programs:

« An Apple IIGS memory-expansion card with one megabyte of RAM. With this card
_installed, the Apple IIGS has 1.25 Mbytes of RAM.

+ A hard disk, such as the Apple HardDisk 20 SC, or a third 800K disk drive.

Many developers find that an additional Apple IIGS memory-expansion card is very useful.
You can use the card for a large RAM disk on which you can place library files, compilers
and assemblers, the linker, and utility programs. Since these programs are loaded into
memory from disk each time they are used, placing them on a RAM disk can speed up the
system’s operation during program development. '

APDA Draft Page 14 9 March 1987

Chapter 1 APW C

Note: If you haven’t yet read “About this Manual,” go back and read it now. In
addition to providing a list of the manuals you’ll need to develop programs for the
Apple 1IGS, it explains the layout of this book, the interrelationships of the books in
the Apple IIGS Technical Library suite, and the conventions used to describe
commands in this book.

The APW C disk contains the files shown in Appendix B. Use the index of this manual to
get more information on any of these files. To examine the contents of your APWC disk,
boot the disk, type CAT and press Return. To examine the contents of a subdirectory,
include the pathname of the subdirectory; for example, to obtain a listing of the files in the
subdirectory /APWC/LIBRARIES, use the following command:

CAT /APWC/LIBRARIES
To obtain a listing of all the files in the volume /APWC, use the command
FILES -L -R /APWC

This prints the contents of all the directories in the volume, the files in each directory
indented below it, with information about each file.

APW C concepts

This section describes a variety of features and concepts that you must understand in order
to write application programs for the Apple IIGS computer. While some of these concepts
may be familiar to you from work with other computers, you must still be familiar with the
way in which they are implemented on the Apple IIGS to get the most out of the Apple IIGS
Programmer’s Workshop and to use the operating system and the memory of the

Apple IIGS effectively.

Relocatable load files

The Apple IIGS Programmer’s Workshop deals with three fundamental types of files:
source files, object files, and load files. Source files are ASCII files consisting of
the text of your program, and follow the conventions of a particular programming
language; object files and load files are binary files conforming to the Apple IIGS object
module format (OMF) defined in Chapter 8 of the APW Reference.

A C source file consists of C statements, preprocessor directives, function definitions and
declarations, and so forth, together with variable declarations, which may include initialized
data. In the source code, specific functions, variables, and data structures are each labelled
with a name. You can refer to the name in another part of the program: for example, you
execute a function by using its name in a statement. A name or label of code or data used
in this way is referred to as a symbolic reference (that is, a symbol that can be
referenced or referred to). In high-level programming languages, like C, symbolic
references are usually the only means available to jump from one place in a program to
another. ‘

C uses a special kind of source file—a header file, or include file—containing code
shared by many programs: for instance, lists of constants or interfaces to libraries. The

APDA Draft Page 1-5 9 March 1987

APWC Chapter 1

header file is named in an #include statement in your source file, and the C compiler
copies the header file in place of the #include statement before doing the actual
compilation.

In assembly language it is possible to specify actual locations in the computer’s memory to
which you want the program to jump: that is, to write absolute code. The APW C
compiler only produces relocatable code segments: that is, code that can be loaded into
any location in memory. Note that such a program can be relocated only when it is loaded:
once loaded, it can’t be moved. (A program or block of code that can be moved from one
location in memory to another while the program is running is called position
independent.)

The Apple IIGS system software and APW are both designed to support relocatable code.

When a source program is compiled, the compiler converts the source code into 65816
machine-language instructions, data declarations, and symbolic references. Before the
program is actually run, the symbolic references must be resolved; that is, the routine
being referenced must be found, and the reference must be replaced with code that the
loader can use to relocate the code at load time. The program that resolves the symbolic
references is called the APW Linker. (The linker gets its name from the fact that it can
combine, or link together, several object files and library files to create a single executable
load file.)

The conversion of a source file into 65816 machine language and data resident in memory
is done in several steps, as follows (see Figure 1.1, below):

1. The source code is compiled. The APW C compiler first executes preprocessor
directives, such as inserting include files, before compiling the source code and
writing out one or more object files. Object files, then, consist of machine-language
instructions plus unresolved symbolic references to other routines.

Your program can consist of several source files, and each source file can be in any
of the APW programming languages. Each source file is converted into one or more
object files by the APW assembler and compilers.

2. The object files are input to the APW Linker, which combines all of the object files
into a single load file and resolves symbolic references. The linker verifies that
every routine referenced is included in the load file. If there are any routines that the
linker has not found when it has finished processing all of the object files, then it
searches through any available library files for the missing routines. The linker
removes symbolic references and replaces them with entries in special tables it
creates called relocation dictionaries. The load file consists of blocks of
machine-language code that can be loaded directly into memory (called memory
images), plus relocation dictionaries that contain the information necessary to patch
addresses into the memory images when the program is loaded into memory.

3. At program execution time, the load file is loaded into memory by the System
Loader. The loader calls the Apple IIGS Memory Manager to request blocks of
memory for the load file, loads the memory images, and uses the relocation _
dictionaries to patch the actual memory addresses into the machine-language code in
memory. The entire load file is not necessarily loaded into memory at one time; all
OMEF files are divided into segments, which can be processed independently.
OMF-file segmentation is a fundamental Apple IIGS concept, which we consider
next.

APDA Draft Page 1-6 9 March 1957

Chapter 1 APW C

The Memory Manager is the Apple IIGS toolset that allocates blocks of memory as
needed, and keeps track of which blocks of memory are available.

“-[_[C source file ||-u 65816 source file

1

ul_[1'c include file
’ '

APW
C cornpuler assembler
/
objec\i file object file

AN
(Linker j

v

1

lo:adI file

l

Systeml Loader)

executable code
in memory

Figure 1.1. Creating an Executable C Program on the Apple 1IGS

)

APDA Draft Page 1-7 9 March 1987

APW C Chapter 1

Program segmentation | .

In general, any computer program that consists of more than a few lines of code contains
one or more subroutines; you may also choose to segregate large blocks of data into
separate parts of the program.

In APW C, each subroutine (called a function) is translated into a segment in the source

file: the function name is the segment name. As illustrated in Figure 1.2, when you
compile the program, each source-code segment is translated into one object segment.

C Source File ‘Object File

objectseg main

-mE T R W W W M R oW W W OE W oW W Wy

object seg Dave
b i e i i .

Marek ()

{ object seg Marek

objectseg Jason

- W A wmom o oW M M omomoOEm OE M eomeomom o

object seg last

Figure 1.2. Creating Object Segments in Your Source Code

The object segment is the smallest linkable unit; for example, it can be selected from an
object file for independent linking with a LinkEd command. It is also possible for a
compiler to compile a segment (function) independently: a process called partial
compilation.

Note: The APW C compiler does not perform partial compilation: if you request a partial
compilation, the entire file will be compiled.

In addition to creating one code segment per function compiled, the APW C compiler also
creates two data segments for each object file created (that is, for each source file
compiled). These are used for storage of any global variables declared in the
corresponding source file. Global scalar variables are stored in a segment called
~globals, and global array and structure variables are stored in a segment called
~arrays. Although this means that each file will therefore have the symbols ~arrays
and ~globals defined, they are flagged as private symbols, meaning they can only be
accessed from within the object module they are contained in. The symbols for the
variables themselves contained with the segments, of course, are public. The compiler
needs to generate two different data segments for the two different types of variables s
becauses it uses two different kinds of addressing—sixteen bit and twenty-four bit,
respectively—to access them. The general implications of the code-generation memory

APDA Draft Page 1-8 9March 1987

Chapter 1 APW C

model are discussed in Chapter 4; the implications for use with the advanced linker are
discussed in Chapter 4.

Apple IIGS load files are also segmented. Each load-file segment can incorporate any
number of object-file segments. You can use a LinkEd command file to create load
segments and to specify which object segments go in each load segment. Altematively,
APW C lets you specify load-segment names in the source code, by using the segment
command. If you do not use a LinkEd file, all code segments with the same load-segment
name are placed by the linker into the same load segment. The data segments ~globals and
~arrays are automatically identified as belonging to load segments of the same name; these
must be collected into their own load segments so that the system loader can be assurred of
loading the ~globals segment within a single bank as required by the code-generation
model, and so that the data segments can be re-loaded independently of the code when a
program is re-started. Again, the linker does this automatically unless you use a LinkEd
file to control your link. Use of source-file load-segment names are illustrated in Figure
1.3

C Source File Object File
segment FIRST
main () objectseg main
{ load seg FIRST
s L e s i R &
Dave () ! objectseg Dave

load seg FIRST

{
_“}‘ ________________ :D objectseg Marek
load seg FINISH

segment FINISH

?arek []

} objectseg Jason
.................... ioad seg SECOND

t SECOND
Jeen 7
S objectseg last
—— load seg FINISH

}

segment FINISH ’-

%ast {)

1

Figure 1.3. Assigning Load Segments in Your Source Code

The relationship of object segments to load segments is illustrated in Figure 1.4.

APDA Draft Page 1-9 9 March 1987

APWC Chapter 1
Object File Load File
object seg main :
load seg FIRST . Segment FIRST
Contains: main
Dave
object seg Dave /
fload seg FIRST
; rSegment SECOND
objectseg Marek Contains: 3
load seg FINISH : ason
objectseg Jason Segment FINISH
load seg SECOND Contains: Marek
last
objectseg 1last
load seg FINISH
Segment ~GLOBALS
objectseg ~globals _/—?Con’roins; ~globals
load seg ~GLOBALS
objectseg ~arrays Segment ~ARRAYS
load seg ~ARRAYS 41'Con’rc:lns: ~arrays

Figure 1.4. Relationship Between Object Segments and Load Segments

Every OMF file consists of one or more segments, each comprising a segment header
and a segment body. The segment header is divided into fields described in the section
“Segment Header” in Chapter 8 of the APW Reference .

The header of a load segment contains the name of the segment; the header of an object
segment contains the name of the segment and the name of the load segment into which it
goes. The name of the object segment is used by the linker in resolving function
references; also, you specify the names of object segments when using the advanced linker
to extract specific segments for linking (see the section “Using the Advanced Linker” in
Chapter 5 of the APW Reference).

Each segment in a program must have a unique object-segment name: in APW C, each
function is compiled to a separate object segment, whose name is the function name. Each
object segment is also assigned a load-segment name. As illustrated in Figure 1.4, APW C
lets you assign your own load-segment name to an object segment. Any number of object
segments can have the same load-segment name. The standard linker places all object
segments that share the same load-segment name into the same load segment (as long as
they will fit into 64K).

For example, suppose your object file contains the following segments:

0. Object Segment Name: main
Load Segment Name: FIRST

9 March 1987

APDA Draft Page I-10

Chapter 1 APWC

. Object Segment Name: Dave
Load Segment Name: FIRST

. Object Segment Name: Marek
Load Segment Name: FINISH

. Object Segment Name: Jason
Load Segment Name: SECOND

. Object Segment Name: last
Load Segment Name: FINISH

. Object Segment Name: ~globals
Load Segment Name: ~globals

. Object Segment Name: ~arrays
Load Segment Name: ~arrays

When the standard linker processes this file, object-segment names main, Dave,
Marek, Jason,and last are treated as references that must be resolved. Object
segments main and Dave are placed in the same load segment, named FIRST; object
segments Marek and last are placed in the same load segment, named FINISH; and
object segment Jason is placed in a separate load segment, named SECOND.
Additionally, the object segment ~globals is placed in the load segment ~globals,
and the object segment ~arrays is placed in the load segment ~arrays.

On the Apple IIGS computer, no single block of code can occupy more than 64 Kbytes of
contiguous memory. To load a larger program than that, you must split it up into two or
more load segments. When much of memory is already in use, it may be possible to load a
program that is divided into several small load segments even if the same program in one or
two load segments wouldn’t fit. The Apple IIGS Memory Manager takes care of assigning
each segment to a block of memory; the System Loader keeps track of where in memory
the segment has been loaded, and patches intersegment calls in each segment as it is loaded.

Dynamic segments

On the Apple IIGS computer, the combination of load segments together with the System
Loader and Memory Manager makes possible the creation of dynamic segments. A
dynamic segment can be loaded automatically by the loader and Memory Manager during
program execution simply by calling a function contained within the dynamic segment; if
the segment is not currently in memory, the loader will load it automatically. A dynamic
segment that is not needed at a given time can be removed, freeing the memory used to
allow room in which to load another dynamic segment, or indeed, for any other purpose.
Additionally, the loader and Memory Manager actually purge a dynamic segment from
memory only if the memory is needed for something else; otherwise, the segment remains
in memory and need not be reloaded the next time it is called, even if the user has
“unloaded” it.

A segment that is not dynamic is static. A static segment is loaded at program boot time,
and is not unloaded or moved during execution. The first segment of any program that is
loaded is static; any other segments may be static, but (especially for large programs) the
system will be more memory efficient if all infrequently-used segments are dynamic.
These may make development of large applications for smaller memory configurations

APDA Draft Page 1-11 9 March 1987

APW C Chapter I

practical. In order to specify that a load segment is dynamic, you must use a LinkEd
command, or specify the dynamic option to the segment command.

Library files

Library files contain routines that are useful to many different programs. On the Apple
IIGS, all library files are in object module format, regardless of the language of the source
file. An Apple IIGS library file (ProDOS file type $B2) can therefore be used by a program
written in any source language. Some languages, such as APW C, come with a set of
library files used by that language. When the linker processes one or more object files and
cannot resolve a symbolic reference, it assumes that it is a reference to a segment in a
library file. If you use the standard linker, it automatically searches all the library files in
the APW library prefix (2/). (If you use a LinkEd command file, then the advanced linker
searches only the library files that you specify.) Unless you are using the advanced linker,
you do not even need to know the names of the library files in order to use them: the
standard linker automatically finds the files and extracts the segments it needs.

You can create your own library files from one or more object files by using the MakeLib
APW utility program. Figure 1.5 illustrates the process of creating a library file. You
specify one or more object files to be included in the library file. MakeLib concatenates the
files and creates a special segment at the beginning of the file called the library

dictionary segment. The library dictionary segment is the first segment of a library file;
it contains the names and locations of all the global symbols in the file. (A global
symbol is a label in one segment that can be referenced in another segment, as opposed to a
local symbol, which can be used only within the segment in which it is defined.) The
linker uses the library dictionary segment to find the segments it needs.

The library dictionary segment makes it possible for the linker to search a library file for
global symbols much more rapidly than it can search an object file. Consequently, the
linker will search a library dictionary segment multiple times if necessary to find segments
referenced by other segments in the library file. The sequential order of the segments in a
library file is therefore not important. If you were to use several library files, on the other
hand, the order in which the files were searched would be important: if the linker first
searched file A and then file B, for example, it could resolve a reference made in file Ato a
global symbol in file B, but could not resolve a reference made in file B to a symbol in file
A. Itis for that reason that MakeLib allows you to include several object files in a single
library file.

APDA Draft Page 1-12 9 March 1987

Chapter 1

Oblject!

seqi

seq’Z

segJ

seqgd

Object2

o

segz
sed

Oblect3

I —

3—997—5

segd

Figure 1.5, Relationship Between Object Files and Library Files

Program interactions

Libflile

Lbrary
Dictionary
Segment

seg

APW C

List of object files

Cross reference
between filenames,
segments, and
symbol names

List of symbol nc_:mesL

Makelib

N

This section illustrates the interactions among the various programs in the Apple IIGS
Programmer’s Workshop by presenting a typical sequence of procedures and events. For
this purpose, we assume that you are developing an application written mostly in C, with
some routines written in 65816 assembly language. In this section, only the sequence of
operations is listed; see Chapter 3 for an actual example of the sequence described here.
The process described here is illustrated in Figure 1.6. See the Apple IIGS ProDOS 16
Reference manual for a complete description of the program load process.

APDA Draft

Page 1-13

9 March 1987

APWC

ASM65816
programs

e,
&

Chapter 1
Shell: set Sheli: call Shell: call
language APW Editor C
0 C Compiter
.:S" Editor: C Compiler:
P wrl’rﬁ c | C complle C c
L rou
g outines Source rograms Object
R Shell: call
i APW Linker
f tinker: link
! Shell: call files into @
! fShell: set Shell: call ASM65816 load file
i |language to APW Edltor Assembler
i \ASM65816
: < ‘Assembler?
PN ditor: write assemble
P4 ASMb5816 gaalo
\
‘l

Source

»,

*a

e
-
-
=

-
s

Shell: run
program

Load
e Debugger: Program File
Trrmeso..d debug)| F——— i [| . -
program memory

Figure 1.6. Program Interactions

1. Using an APW Shell command, set the current language for APW to CC. (Every

APW file has an APW language type; if you open a new file, it is given the current
APW language type.)

2. Call the APW Editor and open a new file.

3. Use the editor to write the C-language routines. You can divide the program among as
many files as you wish. You do not have to return to the shell between files; you can
save one file and open another within the editor. In APW C, you can use the
segment command to specify which object segments go in which load segments.

Until you use a shell command to change it, or open a non-C file, the current language
Temains CC.

Quit the editor, change the current language to ASM65816, call the editor, and open a
new file. You can divide the 65816 assembly-language routines among as many files
and as many segments per file as you wish. The APW Assember lets you specify
which object segments go in which load segments. Make the assembly-language

routines relocatable; that is, use no absolute addresses—use labels and relative
addressing only.

If you have used macros in your assembly language program, you can run the MacGen
utility to generate a custom macro file for the program.

APDA Draft Page 1-14 9 March 1987

Chapter 1 APW C

Until you use a shell command to change it, or open a non-assembly-language file, the
current language remains ASM65816.

5. Quit the editor, call the APW Assembler to assemble the 65816 assembly-language
routines, and call the APW C Compiler to compile the C routines. You can use the
same command for both.

6a. Use the APW Linker to link the object files into a load file. Normally, you can use the
standard linker to link the program. The standard linker places all object segments with
the same load-segment name into a single load segment.

To compile and link the entire program in one operation, do the following:

a. Using the editor, tie all of your source files together by placing an APPEND directive
(in assembly language) or a #append function (in C) at the end of each file but the
last.

b. From the shell, execute the compile-and-link command (CMPL).

The shell checks the language type of the first file, and calls the C compiler. When the
compiler gets to a 65816 file, it returns control to the shell, which calls the APW
Assembler. When the assembler is finished, it returns control to the shell again, which
calls the standard linker. The object files output from the C compiler and those output
from the APW Assembler are all in the same format, and so are indistinguishable to the
linker. The linker combines the object files, resolves references, writes the load file,
and returns control to the shell.

6b. If you want to change load-segment assignments, or if you want to use dynamic load
segments, you must use the advanced linker. Write a LinkEd file like a language
source file: first set the system language to LINKED, then use the editor to write the
file.

To compilé and link the entire program in one operation, do the following:

a. Using the editor, tie all of your source files together by placing an APPEND directive
(in assembly language) or a #append directive (in C) at the end of each file.

b. Put an APPEND or #append directive that references the LinkEd file at the end of
the last file in the program.

c. In the shell, execute the COMP ILE command.

The shell checks the language type of the first file, and calls the C compiler. When
the compiler gets to a 65816 file, it returns control to the shell, which calls the
assembler. When the assembler gets to the LinkEd file, it returns control to the shell
again, which calls the advanced linker. The advanced linker, controlled by the
commands in the LinkFd file, can do the following:

combine the object files
resolve references
assign object segments to load segments
label certain load segments as dynamic
» search libraries
+ and write the load file.

When it is finished, the linker returns control to the shell.

7. Run the program by typing in the name of the load file and pressing the Return key.
(You can also automatically execute a program after linking by using the CMPLG
command.) When a program is run on the Apple IIGS, the following events occur:

®e & & @

APDA Draft Page 1-15 9 March 1987

APW C Chapter 1

a. The System Loader loads the first segment into memory (calling the Memory
Manager to request the block of memory it needs). This segment is static; that is, it
remains in memory during the execution of the program. The loader uses the
relocation dictionary of the segment to relocate the code to its present location in
memory.

b. The loader loads all other static segments into memory, relocating them as necessary.

¢. The loader passes control of the system to the program, and the program begins to
execute.

d. When a reference to a subroutine in a dynamic segment is encountered, control is
returned to the System Loader through the jump table. If the segment is already in
memory, the loader transfers control to the segment. If not, the loader uses the jump
table to locate the load file, segment, and offset of the subroutine, loads the segment
into memory, and transfers control to the segment. The System Loader creates and
maintains a table (the memory segment table) to keep track of all the segments in
memory.

8. If the program does not run correctly, you can use the APW Debugger to step through
or trace the code, to insert breakpoints, to disassemble the machine code, and to
examine the contents of registers and memory locations. You can modify the code in
memory and rerun the program until the bug is fixed.

9. Correct the source code and recompile (or reassemble) the program.
10. Relink the program and rerun it.

11. When the program is completely debugged, you can use the CRUNCH command to
compress the files created by partial assemblies into two object files, then link the
program one last time. Using CRUNCH is optional: if you have performed several
partial assemblies, compressing the object files speeds up the link process.

Using the APW C libraries

APW C programs can use the Standard C Library, The Apple Ilgs Toolbox, the APW

- Shell, and ProDOS to talk to the Apple IIgs hardware. All of the interface code to make
these calls is contained in the file CLIB which is installed in the APW library prefix (/2).
(Any header files containing declarations needed needed to make the calls are installed in
the CINCLUDES directory in the library prefix.) Figure 1-7 shows how these libraries
interact. Your application can make calls to the Standard C Library, the APW Shell, the
Apple lIgs Toolbox, or ProDOS. The Standard C Library contains a number of high-level
routines familiar to C programmers, which deal with file handling, memory management,
and so on. The Standard C Library in turn calls the Toolbox or ProDOS. You can also
make calls to the APW Shell. The shell intercepts the call: if it is a ProDOS call, the shell
passes it through unchanged; if it is a shell call, the shell makes ProDOS calls, or talks to
the hardware directly, to execute it. :

APDA Draft Page 1-16 9March 1987

Chapter 1

APWC

S (Application

)

J.

l

Standard C
Library

APW Shell j

l

;

v l 4
(Apple IGS TooIboxJ (ProDOS

)

[— Apple IIGS hardware

Figure 1.7. APW C Library Interactions

APDA Draft Page 1-17

9 March 1987

APWC Chapter 1

APDA Draft Page 1-18 9 March 1987

Chapter 2
Using the APW C Compiler

This chapter describes how to use the APW C compiler. The first section, “Installing APW
C,” tells you how to install APW C on your system. The second section, “Writing and
running a sample program,” leads you through a sample session, giving you a fast way to
become acquainted with compiling, linking, and executing a program. The third section,
“The APW C Compiler,” discusses the compilation process. The fourth section, “C
Compiler Shell Commands,” describes the Shell commands you’ll use when working with
the C compiler. The fifth section, “Source Files, Object Files, and Listing Files,” tells how
to use the various files used in building a program.

Installing APW C

Before you can do any of the things described in this chapter, you must install APW C.
First install APW and then install C, as described below:

Installing APW on a Hard Disk

Before doing anything else, make a backup copy of your APW disk and put the original in
a vault.

We will assume your hard disk is called harddisk. First, insert the APW disk in a drive
and start up APW, then type these commands:

COPY —-C /APW/= /harddisk/APwW/

COPY -C /APW/SYSTEM/= /harddisk/SYSTEM/

These steps take several minutes, as they involve copying hundreds of files.

Now insert the most recent Apple IIGS System Disk and type

COPY -C /SYSTEM.DISK/= /harddisk/

This will take a few minutes.

When you are done, you have APW installed. It will work fine, but several files are
duplicated: the copies in the directory /harddisk/APW will never be used. You can save
space by typing these commands:

DELETE /harddisk/APW/PRODOS

DELETE /harddisk/BPW/SYSTEM/P16

DELETE -C /harddisk/APW/SYSTEM/SYSTEM.SETUP/=

APDA Draft Page 2-1 9 March 1987

APWC Chapter 2

DELETE /harddisk/BPW/SYSTEM/SYSTEM, SETUP
DELETE ~C /harddisk/BAPW/SYSTEM/DESK.ACCS/=
DELETE /harddisk/APW/SYSTEM/DESK.ACCS
DELETE -C /harddisk/APW/SYSTEM/TOQOLS/=

DELETE /harddisk/BAPW/SYSTEM/TOOLS

Installing APW C on a Hard Disk

Before doing anything else, make a backup copy of your APW C disk and put the original
in a vault. We will assume you have already installed APW in a directory called APW on a
disk called harddisk.

First, launch APW from your hard disk. To install APW C, type these commands:

COPY -C /APWC/LANGUAGES/= /harddisk/ARPW/LANGUAGES /

COPY -C /APWC/LIBRARIES/= /harddisk/APW/LIBRARIES/

These steps also take some time.

Next, add this command to your LOGIN file:

ccC

Installing APW C on two 3.5-inch disks

Before doing anything else, make a backup copy of your APW and APW C disks and put
the originals in a vault. To install C, you will have to replace some of the files on the APW
disk, and delete files not needed for C. (Two 3.5-inch disks will not hold all the files you
need to program in both assembly language and C.) Type these commands:

COPY -C /APW/LANGUAGES/LINKED /APWC/LANGUAGES/

DELETE —-C /APW/LANGUAGES/=

DELETE /APW/LANGUAGES/

COPY -C /APW/LIBRARIES/= /APWC/LIBRARIES/

DELETE ~-C /APW/LIBRARIES/=

DELETE /APW/LIBRARIES/

Next, add these commands to your LOGIN file:

PREFIX 2 /APWC/LIBRARIES/

APDA Draft Page2-2 9 March 1987

Chapter 2 APW C

PREFIX 5 /APWC/LANGUAGES/

CcC

Writing and running a sample program

Here is how to write, compile, link, and run a trivial sample program.

Writing the sample program

First set the current language to C by typing CC and pressing Return. Now create a new
file named SHE . SELLS by typing EDIT SHE.SELLS and pressing Return. You are
now in the APW editor, so type a program: for example,

main ()
{
printf ("She sells C shells by the C shore.\n");

}

Now press Apple-Q and then S to save the program, then press E et exit the editor.

Note that APW does not require the usual C filename extension “. c”, because APW uses a
unique file type for source files of each language. You can end a filename with “. ¢, but
the APW C compiler regards the *. c” as part of the name, rather than as an extension. In
particular, when forming an object filenames, the compiler appends an extension to the

“. ", rather than replacing it. Using “. ¢” on a source filename can be confusing, as some
object filenames have a “. ¢” extension.

Compiling and linking the sample program

To compile your program, use the COMP ILE command; to compile and link it, use the
CMPL command. This command takes the source file and load file names (KEEP) as
arguments: they must be different, or your load file will overwrite your source file.

For example, to compile and link SHE . SELLS, creating an object file C . SHELLS . ROOT
and a load file C . SHELLS, type the following, and then press Return:

CMPL SHE.SELLS KEEP=C.SHELLS

Note: If you get the error message ProDOS: File not found, make sure you’ve
typed the command correctly. If you had typed COMPL rather than CMPL, for example,
the APW shell would give you this message, because it knew no command named COMPL
and couldn’t find any file of that name. You could spend hours hunting for missing
libraries and include files (described in the section “Files for Compiling and Linking” at the
end of this chapter), when the real problem was a misspelled command.

APDA Draft Page2-3 , 9 March 1987

APWC Chapter 2

Running the sample program

To run your program under the APW shell, type C . SHELLS and press Return. You will
see

She sells C shells by the C shore.

on the screen.

A longer sample program

A more interesting sample program, written in both C and assembly-language, is in
Chapter 3.

The APW C compiler

This section discusses the compilation process, how compilation is suspended or aborted,
and error messages.

The compilation process

The APW C compiler is a one-pass compiler. In one pass, it resolves preprocessor
macros, scans the source files, and generates code into a code buffer, and then writes the
code out to an object file. Each C function is assigned to a separate object segment: the
object-segment name is the function name. The default load-segment name is MAIN.

The segment command can be used to assign an object segment or group of segments to
a load segment. The command

segment "segname" [, dynamic]

assigns all objects following it, up to the next segment command or the end of file, to the
load segment named segname. (Note that the quotation marks are required.) By default,
this command creates a static load segment, The dynamic option creates a dynamic
segment.

No listing is printed. The compiler prints errors to the screen.

Object code output is in object module format (OMF). Each APW language outputs object
code in object module format, allowing you to link together subroutines written in different
languages. Object module format is discussed in detail in Chapter 8, “File Formats,” of the
Apple lIGS Programmer’s Workshop Reference.

If there are no more subroutines to compile, the C compiler returns control to the Shell.
Depending on the command you used to invoke the C compiler, the Shell either passes
control to the linker or returns with the Shell prompt. If the linker is called, it uses the
object modules produced by the C compiler as input. These are relocated and global
labels are resolved, giving an executable binary file as output.

APDA Draft Page24 9 March 1987

Chapter 2 APW C

Suspending or aborting the compilation
You can suspend the compilation by pressing any key; pressing any key again causes

compilation to resume. Note that you can suspend the compilation only while error
messages are being printed. To abort the compilation, press Apple-period.

C compiler error messages

If the C compiler detects an error in the source code, an error message is printed on the
screen: each error message includes the source file name, the line number, and the text of
the offending line of code. In other cases, the compiler will print a waming message rather
than an error. Error messages can be redirected, as explained in the section “Redirecting

Input and Qutput” in Chapter 3 of the APW Reference. If no errors or warnings are
detected, the compiler runs without comment.

C compiler shell commands

This section discusses the commands you'll use most often when working with the C
compiler. With these commands, you can perform the following tasks:

» Edit new and existing files

» Compile, link and execute your program |
» Make a library file

* Debug your program

Editing a source file
You will need three shell commands when you edit a new or existing source file:

e Change the default language to C
EDIT filename Edit an new or existing file
CHANGE filename CC Change the type of an existing file to C source file

The CC command sets the default language to C: any new files you create with the editor
will automatically get the appropriate type for a C source file. The EDIT command edits
an existing file or creates a new file. The CHANGE command changes the type of a file
from one language to another: this is useful if you have imported an ASCII file from some
other implementation of C, such as MPW, and the file type is not set for APW C, or if you
had edited a C source file what the default language was not C.

Compiling a program

You’ll need five commands when compiling, linking, and running your program:

APDA Draft Page 2-5 9 March 1987

APWC . Chapter 2

COMPILE Compile a program

CMPL Compile and link a program

CMPLG Compile, link, and execute a program
RUN Compile, link, and execute a program
LINK Link a program

In its simplest form, the COMPILE command compiles the source file, but saves no
object file: it simply verifies the program’s correctness. To create an object file, use the
KEEP option or the KEEPNAME shell variable, both described below.

The COMPILE command is a synonym of the ASSEMBLE command. Either of these
commands can be used interchangeably to compile or assemble programs. Similarly,
CMPL isasynonymof ASML and CMPLG and RUN are synonyms of ASMLG.
Synonymous commands have the same options, but one language processor may ignore
options that another recognizes. For example, the C compiler ignores the +L|-L and
+S|-S options.

Note: The CMPL, CMPLG, and RUN commands cannot be used if you're developing a
program whose main entry point is not written in C.

Command Notation

The following notation is used to describe commands:

UPPERCASE Uppercase letters indicate a command name or an option that must be
spelled exactly as shown. The Shell is not case sensitive; that is, you
can enter commands in any combination of uppercase and lowercase

letters.
italics Italics indicate a variable, such as a filename or address.
prefix This parameter indicates any valid directory pathname or partial

pathname. It does not include a filename. If the volume name is
included, prefix must start with a slash (/); if prefix does not start with
a slash, then the current prefix is assumed. For example, if you are
copying a file to the subdirectory SUBDIRECTORY on the volume
VOLUME, then the prefix parameter would be

/VOLUME /SUBDIRECTORY/. If the current prefix were /VOLUME /,
then you could use SUBDIRECTORY for pathname .

The device numbers .D1, .D2,Dn can be used for volume
names; if you use a device number, do not precede it with a slash. For
example, if the volume VOLUME in the above example were in disk
drive .D1, then you could enter the prefix parameter as

.D1/SUBDIRECTORY/.
filename This parameter indicates a filename, not including the prefix. The unit
names . CONSOLE and . PRINTER can be used as filenames.
pathname This parameter indicates a full pathname, including the prefix and

filename, or a partial pathename, in which the current prefix is assumed.
For example, if a file is named FILE in the subdirectory DIRECTORY
on the volume VOLUME, then the parhnarme parameter would be

APDA Draft Page2-6 9 March 1987

Chapter 2 APWC

[

/VOLUME/DIRECTORY/FILE. If the current prefix were
/VOLUME/, then you could use DIRECTORY/FILE for pathname . A
full pathname (including the volume name) must begin with a slash (/);

do not precede pathname with a slash if you are using a partial

pathname.

The unit names . CONSOLE and . PRINTER can be used as filenames;
the device numbers .D1, .D2,Dn can be used for volume
names.

A vertical bar indicates a choice. For example, +1.| -L indicates that
the command can be entered as either +L or as - L.

1 Parameters enclosed in square brackets are optional.

Elipses indicate that a parameter or sequence of parameters can be
repeated as many times as you wish.

The following pointers will help you use the APW Shell command interpreter:

You must separate the command from its parameters by one or more blanks.

You can use the right-arrow key to expand command names as described in the
“Entering Commands” section in Chapter 2 of the APW Reference, you can use the
Up- and Down-Arrow keys to scroll through previously-entered commands.

- There are no abbreviations for command names (unless you add aliases to the

SYSCMND file).

All commands and parameters (except for segment names) can be entered in any
combination of uppercase and lowercase characters.

For case-sensitive source languages, like C, segment names must be entered exactly as
they appear in the source code.

When a parameter in a command line conflicts with a source-code command, the
command-line parameter takes precedence. When neither a source-code command nor
a command-line parameter has been used, the default parameter is used.

If you fail to enter a required parameter, you are prompted for it.
Any of these commands can be placed in an Exec command file for automatic

execution; Exec files are described in the section “Exec Files” in Chapter 3 of the APW
Reference.

The APW Shell and C compiler recognize the following commands. The options for each
command are described below it.

Cc

This command sets the shell default language to APW C. Any file created by the APW
editor while this command is in effect will have the file type identifying it to APW asa C

APDA Draft Page2-7 9 March 1987

APWC Chapter 2

source file. (This command is described in thc section “Command Descnpnons in
Chapter 3 of the APW Reference)

CHANGE

CHANGE filename CC Change the typc'of an existing file to C source file

This command changes the file type of an existing file named filename so that APW will
recognize it as a C source file. It is useful when you have imported a C source file from
another development system, such as MPW, that does not identify the language of a source
file by a unique file type. (This command is described in the section “Command
Descriptions” in Chapter 3 of the APW Reference.)

CMPL

CMPL [+LI-L]) [+sl—sj filel [file2..]] [KEEP=outfile] [NAMES= (segl[seg2[...]])]
[languagel= (option ...) [language2= (option ...} ..]]

This command compiles (or assembles) and links a source file or group of files. Its
function is identical to that of the ASML command. The APW Shell checks the language of
the source file and calls the appropriate compiler or assembler. If the maximum error level
returned by the compiler or assembler is less than or equal to the maximum allowed (0 by
default), then the resulting object module is linked, producing a load module with the
filename outfile. The linker is described in Chapter 5 of the APW Reference.

Note: The commands CMPL, CMPLG, ASML, ASMLG, and RUN cannot be used if
you’re developing a program whose main entry point is not written in C. In this situation,
you must use COMPILE or ASSEMBLE, then LINK.

The options peculiar to APW C are described fully below. The other options are described
briefly: they are described fully in Chapter 3 of the APW Reference.

Important: If you are using a LinkEd file to take advantage of the advanced link-edit
capabilities it provides, do not use the CMPL command. Instead, use the COMPILE
command to compile your program. You can process the LinkEd file automatically by
appending it to the end of your program with an #append directive (or the equivalent), or
you can process it independently with the ALINK command.

Note: You can use #append directives (or the equivalent) to tie together source
files written in different computer languages; APW compilers and assemblers check
the language type of each file and return control to the Shell when a different
language must be called. Sce the section “Compiling (or Assembling) and Linking
a Program” in Chapter 2 of the APW Reference for a description of the assembly
and compilation process.

+L|-L (The APW C compiler ignores this option.)
+S|-S (The APW C compiler ignores this option.)

APDA Draft Page 2-8 9 March 1987

Chapter 2

APWC

filel file2... The full pathname or partial pathname (including the filename) of the

source files to be compiled (or assembled). Multiple files (source, object,
or library) can be listed, but at least one must be a source file.

KEEP=outfile You can use this parameter to specify the pathname or partial pathname

(including the filename) of the object file to be produced. If this is a partial
assembly or if several source files with different programming languages
are being compiled, then other filename extensions may be used; see the
section “Partial Assemblies or Compiles” in Chapter 3 of the APW
Reference. If the assembly is followed by a successful link, then the load
file is named outfile.

Important: Keep the following points in mind regarding the KEEP
parameter:

* If you use neither the KEEP parameter nor the KeepNames shell
variable, the object modules are not saved at all. In this case, the link
cannot be performed, because there is no object module to link.

» The filename you specify in outfile must not be over 10 characters long.'
This is because the extension .ROOT is appended to the name, and
ProDOS 16 does not allow filenames longer than 15 characters.

» If aload file named outfile or an object file with root filename oufile
already exists, it is overwritten without a warning when this command
is executed. If a source file named outfile exists, it will not be
overwritten: the link will fail.

NAMES=(segl seg2 ..) (The APW C compiler always compiles the whole source

file.)

languagel=(option ...) ... This parameicr allows you to pass parameters directly to

specific APW compilers or assemblers. For each compiler or assembler for
which you want to specify options, type the name of the language (exactly
as defined in the Command Table), an equal sign (=), and the string of
options enclosed in parentheses. The contents and syntax of the options
string is specified in the compiler or assembler reference manual; the APW
Shell does no error checking on this string, but passes it through to the
compiler or assembler. You can include option strings in the command line
for as many languages as you wish; if that language compiler is not called,
then the string is ignored.

Note: No blanks are permitted immediately bcfore or after the equal sign
in this parameter.

CC=(option ...) This is a special case of the languagel=(option ...) option, defined

above. This option’s options are as follows:

-Dname=value This parameter defines name as if a #define had occurred
at the top of the file; name is given the value value if “=value” is
present.

-Ipath This parameter adds path to the include-file path list. For
example:

-I/APW/LIBRARIES/CINCLUDE/

Listings and error messages are sent to the screen unless you include a PRINTER ON
directive (or equivalent) in the source file; or redirect output to a disk file or the printer.

APDA Draft

Page2-9 9 March 1987

APW C Chapter 2

Output redirection is described in the section “Redirecting Input and Output” in Chapter 3
of the APW Reference.

CMPLG

CMPLG [+LI-L] [+8I-8] filel [file2...] [KEEP=outfile] [NAMES= (seg![seg2[...]1)]
[languagel= (option ...) [language2= (option ...) ...]]

This internal command compiles (or assembles), links, and runs a source file or group of
files. Its function is identical to that of the ASMLG command. See the CMPL command for
a description of the parameters.

Note: The commands CMPL, CMPLG, ASML, ASMLG, and RUN cannot be used if
you're developing a program whose main entry point is not written in C. In this situation,
you must use COMPILE or ASSEMBLE, then LINK.

COMPILE
COMP ILE [+LI-L] [+8|-8] filel [file2...| [KEEP=outfile] [NAMES= (segl[seg2[...]])]

[languagel= (option ...) [language2= (option ...) ...]]

This internal command compiles a source file or group of files. Its function is identical to
that of the ASSEMBLE command. See the CMPL command for a description of the
parameters.

EDIT

EDIT filename

This command does one of two things. If a file named filename already exists, the
command EDIT filename calls the editor and opens the file filename. The editor uses the
language the file is already in. If a file named filename does not already exist, the
command EDIT filename calls the editor and a new file called filename. The editor uses
the default language established by the last language command (CC, ASM65816, or
whatever).

LINK

LINK [+LI-L] [+SI-8] 2/STARTfilel [file2...] [KEEP=outfile] [NAMES= (segl[seg2[
..]) 1 [languagel = (option ...) [language2= (option ...) ...]]

This command links an object file or group of files. If youusea COMPILE command
followed by a LINK command and if your main entry point is written in C, you must

APDA Draft Page 2-10 9 March 1987

Chapter 2 , APW C

include the pathname 2/START inthe LINK command. (The linker is described in .
Chapter 5 of the APW Reference.)

RUN

RUN [+LI-L] [+SI-8] filel [file2...] [KEEP=outfile] [NAMES= (segl[seg2[...]1])]
[languagel= (option ...) [language2= (option ...) ...]]

This internal command compiles (or assembles), links, and runs a source file or group of
files. Its function is identical to that of the CMPLG command. See the COMP ILE command
for a description of the parameters.

Note: The commands CMPL, CMPLG, ASML, ASMLG, and RUN cannot be used if
you're developing a program whose main entry point is not written in C. In this situation,
you must use COMPILE or ASSEMBLE, then LINK.

Examples of these commands

The following command compiles and links a source file named MYF ILE, and writes the
load file to disk as the file MYPROG. No source listing or symbol table is produced unless
called for by directives in MYF ILE:

CMPL MYFILE KEEP=MYPROG

The following command compiles the segments TOOLCALL and TEXT OUT in the source
file named MYF I LE, links the program, and writes the load file to disk as the file MYPROG.

CMPL MYFILE KEEP=MYPROG NAMES=(TOOLCALL TEXT OUT)
The following command compiles the source file named MYCF ILE.
CMPL MYCFILE KEEP=MYPROG CC=(-Ddebug -I/APW/MYINCLUDES)

Because MYCFILE is a C program, two C-compiler options are passed to the C compiler:
the -Ddebug option defines a compiler flag that you can use to conditionally compile .
debugging code; and the -I/APW/MYINCLUDES option tells the compiler where to
search for additional include files. After the program is assembled or compiled, it is linked
and the load file is written to disk as the file MYPROG,

Note: The ASML, ASMLG, CMPL, and CMPLG commands first assemble or

- compile the source file (or files), then send the object file specified in the KEEP
parameter (or in a KEEP directive in the source file) to the linker as its only input.
These commands cannot be used to send several object files with different root
filenames to the linker. To link two or more object files, use the LINK command.

Appending files

APDA Drqft Page2-11 9 March 1987

APWC Chapter 2

When APW sees a #append directive in a file, it checks the language type of the appended
file: if it is not CC, the compiler returns control to the shell, which brings in the appropriate
compiler or assembler to open the file. If the appended file is in the same language, the
effect is the same as if they had been concatenated into one file. If they are in different
lalflguages, APW begins a new assembly or compilation. This has curious effects, as we’ll
show.

Let’s take three files, two in C and one in assembly language, each appended to the
preceding file:

ci
c2
asml

When you use the COMP ILE command, c1 and c2 will be compiled together, then asm1
will be assembled. All symbolsin c1 will be available while ¢2 is being compiled.

Something very different happens when we compile the same files, appended in a different
order:

cl
asml
c2

When you use the COMPILE command, c1 is compiled, then asml is assembled, then the
C compiler is called afresh to compile c2. Since the compilations were separate, the
compiler knows nothing about symbols in c1 when compiling c2.

Partial compilation or assembly

Program development can often be speeded by compiling or assembling only the part of a
program that you have changed most recently. The APW assembler has an option NAMES
(to the ASSEMBLE, ASML, ASMLG, COMPILE, CMPL, CMPLG, and RUN
commands) that lets you do partial assemblies, and future APW compilers may also
support this option. APW C does not support partial compilation. The compiler will
execute a COMPILE command with the NAMES option, but it will compile the entire
source file, as if you had omitted the NAMES option.

The linker

The linker takes object files and file segments created by the C compiler and generates load
files. The linker resolves external references and creates relocation dictionaries which
allow the system loader to relocate code at load time. The linker supports data, code,
dynamic, and static segments, and library files.

Normally, the linker is called by the Shell command LINK which provides a limited
number of options. Additionally, you can control all functions of the linker by using a
language-like set of commands called LinkEd. LinkEd is for advanced programmers who
require maximum flexibility from the system; for most purposes, the ordinary Link
commands are adequate. LinkEd commands are described in Chapter 5 of the APW
Reference; other APW commands are in Chapter 5 of that book.

APDA Draft Page 2-12 9 March 1957

Chapter 2 APWC

When you use CMPL to compile and link a series of files in different languages, the last file
in the append sequence must be a C file. The files under the library prefix (prefix 2) are
searched for unresolved references.

To link manually and search all libraries, use this command:

LINK 2/START objectfilename KEEP=loadfilename

The objectfilename parameters do not have .ROOT extensions. For example, the
command

LINK 2/START FILEl FILEZ FILE KEEP=LOADNAME

links the files FILE1.ROOT, FILE2.ROOT,and FILE3.ROOT with the file
2/START .ROOT.

The linker searches every library (file of filetype LIB)in the library prefix (/2).

Making a library

The MAKELIB utility allows you to make a library file. Libraries are useful for storing
often-used code, as the linker can search a library much faster that an ordinary object file.
The APW Reference explains how to use MAKELIB.

Files for co'mpiling and linking

To create a program from source files, the compiler usually needs include files and the
linker usually needs libraries. Include files, or header files, must be named in #include
statements in the source files. Library files are either searched implicitly or can be named in
LINK statements or in LinkEd files.

Include-file search rules

Appendix B, “Files Supplied with APW C,” contains a list of include files to be used with
APW C. If the include-file name is a full pathname, the compiler uses that name. A full
pathname begins with a slash (/) and contains at least one embedded slash. A partial
pathname does not begin with a slash. (For more information about pathname syntax, refer
to the Apple IIGS Programmer’ s Workshop Reference and the Apple IIGS ProDOS 16
Reference.)

If the include-file name is a partial pathname, the compiler searches for include files using
the rules shown in Table 2-2. The first file successfully opened using these rules is
included.

Table 2-2. Include-file search rules

Include-File Name Example Search for Partial Pathname

In double quotes. "CONSTANTS.H" Look in the following directories:

APDA Draft Page 2-13 9 March 1987

APW C | Chapter 2

(1) The directory of the source file that
contains the include statement.

2) The current prefix (0/) at the time the
compiler was invoked.

(3) Directories specified by the —I
option, in the order given.

(4) 2/CINCLUDE/

In angle brackets. <CTYPE.H> Look in the directories described under (3),
or (4) if there is no —I option.

Note that ProDOS filenames are not case-sensitive. By convention, filenames and
pathnames are notated in uppercase.

Library files

Appendix B, “Files Supplied with APW C,” contains a list of library files to be used with
C. (If you use the CMPL or CMPLG command, the files under the library prefix are
searched, and you can’t specify any others). For more information on linking C programs,
refer to Chapter 5, “The Linker” of the APW Reference.

You can control which library files are to be searched by using a LinkEd script. If you
specify library files, you will usually want to specify

+ all the Standard C Library files listed in Appendix B

« only the particular Toolbox files you refer to in your program.

APDA Draft Page 2-14 9 March 1987

Chapter 3
Sample Program

This chapter provides a tutorial example that illustrates the creation of a program in the
APW environment. The program includes a main routine in C and a subroutine in
assembly language. You are shown how to use the APW Editor to create source files in
both languages, as well as how to compile, assemble, link, and run the program.

The purpose of this chapter is to give you a tutorial introduction to compiling and linking a
simple multilanguage program in the APW environment. This example is placed in the
APW C Reference, rather than in the APW Reference, because both APW and APW C are
needed to run the example, and only owners of APW C can be assumed to have both.

Note: The instructions in this chapter assume that you have both the APW
Assembler and the APW C compiler installed in your system. Assembly language
is included on your APW disks; the C compiler is on the APW C disk. See Chapter
2 for instructions on installing APW and APW C in your system.

If you have a hard disk, the instructions in this chapter are straightforward. If you
have two 3.5" drives, you may have to do some disk swapping, and tweaking of
prefixes, to follow these instructions.

General procedure

This section describes the general procedure that we follow in this chapter. A simpler
procedure for compiling, linking, and running a single-language program is given in the
section “Writing and Running a Simple Program” in Chapter 2.

Note: For simplicity’s sake, the words compiler and compile are used in this
chapter to include assembler and assemble.

1. Set the system language to the language type of the source code you intend to write,
open a file for editing, and write the source code for the first part of your program.
Save the file to disk.

2. Execute the shell COMPILE (or ASSEMBLE) command.

You now have several files on disk: the source-code file and one or more object-
code files (the root file and files with alphabetic extensions such as .).

4, Write the next part of the program. This part need not be in the same programming
language as the first part. Give this part a different source filename than the first part
and a different KEEP filename.

5. Execnte the shell COMPILE command. Debug the program and recompile as
necessary until successful.

6. Repeat steps 4 and 5 for each part of the program, until you are sure that each part
compiles successfully.

7. Execute the LINK command, specifying the root filenames of all of the object files in
the program.

APDA Draft Page 3-1 9 March 1987

APWC Chaprer 3

8. If you wish, execute the COMPACT command to create a more compact version of
the load file.

If you prefer, you can write the entire program, including parts in several languages, and
compile and link them all at once. Use the CMPL command to compile and link the
program. Each source file except the last can end in an APPEND directive (or the
‘equivalent), or you can specify multiple source files in the CMPL command. Every time an
APW compiler executes an APPEND directive, it checks the APW language type of the file
being appended. If the language doesn’t match that of the compiler, then the compiler
returns control to the shell, which calls the appropriate compiler to continue processing the
program. If all compiles are successful, the APW Linker is called automatically. The
linker processes the file, writes out any errors, and (if the link was successful), writes the
load file to disk.

Note: The compiler may check the language type of a file when executing a COPY
directive, but does not return control to the shell; instead, the compiler returns an
error if any file being copied into the program does not match the language of the
compiler.

Writing and editing the sample source code

The sample program shown in Figures 3.1 and 3.2 takes input from the keyboard, converts
every letter to uppercase, and prints the result to the screen. It is written with a main
segment in C and a subroutine in assembly language. The C routine handles the input and
output. The assembly language routine does the lowercase to uppercase conversion.

Use the following steps to write the source code for the C routine shown in Figures 3.1
and 3.2:

1. Boot APW and type the following command to set the system default language (the
current language) to C. (To execute an APW command, press the Return key.)

CcC
2. Call the editor to open a file called SAMPLEC with the following command:

EDIT SAMPLEC

3. Type in the program in Figure 3.1. Use the cursor keys to move around in the file.
The Delete key deletes the character to the left of the cursor. The Tab key moves the
cursor for indenting subroutines. Other basic editor commands are given in
Table 2.3.

4. Press G-Q to quit the editor. Press S to save the file to disk, then press E to exit the
editor and return to the shell.

APDA Draft Page 3-2 9 March 1987

Chapter 3 APW C

/* Convert all characters taken from standard input to uppercase */

/* and write the result to standard output. */
X oL *y
/* NOTE: Control-C terminates the input *

#include <stdio.h>
$define MAXLEN 1024
extern void UPSTR():
char *gets(});

main(argc, argv)
int arge:
char *argvl(};
{
char str[MAXLEN]:;
while (gets(str) != NULL)
{
UPSTR({str);
printf ("%$s\n™, str);

}
Figure 3.1. Sample C Source Code

5. Type the following command to set the current language to 65816 assembler.
ASM65816

6. Call the editor to open file called SAMPLEA with the following command:
EDIT SAMPLEA

7. Type in the program in Figure 3.2. Note that the default tab stops are different for
assembly language than for C.

8. Press 3-Q to quit the editor. Press S to save the file to disk, then press E to exit the
editor and return to the shell.

LONGA ON Set long accumulator
LONGI ON Set long index registers
UPSTR START Start first object segment

Stack at beginning of routine:

U T 1

Bank of pointer to character string

h High byte of character-string address
H Low byte of character-string address
H Bank of return address

F High byte of return address

: Low byte of return address

: Stack pointer

TSC Transfer stack pointer to accumulator

CLC Clear carry flag (required before addition)

ADC #50003 Add 3 to accumulator

TCS Transfer accumulator to stack pointer. Stack pointer

; ‘ is now above return address.

APDA Draft Page 3-3 9 March 1987

APWC

PLA

STA
SEP
LONGA
PLA

STA

REP
LONGA
TSC
SEC
SBC
TCS

END

LOOP START
LDA
AND
CMmP
BEQ
cMpP
BLT
CMP
BEQ
BGE
UPPER SEC
SBC
SEP
LONGA
LONGI
STA
REP
ITERATE LONGA
LONGI
INC
BNE
BRA
END
FINISH START
RTL
END

$AA
#3520
OFF

$SAC

#3520
ON

#50006

[$BA]
#S00FF
#30000
FINISH
#50061
ITERATE
#S007A
UPPER
ITERATE

#50020
#3520
OFF
ON
[$AA]
#520
ON
ON
$SAA
LooPp
LOOP

Chapter 3

Pull word off stack into accumulator. This is first
two bytes of pointer to character string.

Store accumulator in direct page at SAA

Set 8-bit accumulator

Set long addresses off

Pull next 8 bits into accumulator. This is bank
address of pointer to character string.

Store accumulator into $AC Full 3-byte pointer
to character string is now in direct page starting
at SAA.

Set 1l6é~bit accumulator

Set long addresses on

Transfer stack pointer to accumulator

Set carry flag (required before subtraction)

Subtract 6 from accumulator

Transfer accumulator to stack. Stack pointer is now
back where it was when control was transferred to
this routine.

End of first object segment

Start of second object segment

Load accumulator with the value of the character
Extract the value of the character

Is it end of string?

If it is then go to FINISH

Compare accumulator to 'a' ($61)

Character is smaller than 'a' - go to the next one
Compare accumulator to 'z' ($7A)

If equal then convert to upper case

Character is greater than 'z' - go to the next one
Set carry

Convert the character in accumulator to upper case
Set 8-bit accumulator

Switch to short addresses

Switch to long integers

Store accumulator (8-bit only!) to string element
Reset m status bit

Set long addressing on

Set long integers on

Increment by one (go to the next char)

Branch non-zero to 52

Perform the next iteration of the LOOP

End of second object segment

Start of third object segment
Return to C routine
End of third object segment

Figure 3.2. Sample 65816 Source Code

Creating object code: compiling and assembling

To compile and assemble your programs, use the following commands:

COMPILE SAMPLEC KEEP=SAMPLEC.O

APDA Draft

Page 34 9 March 1987

Chapter 3 APW C
ASSEMBLE SAMPLEA KEEP=SAMPLEA.O
Note: If you have a two 3.5" drives and no hard disk, you will have to compile
using the APW C disk and assemble using the APW assembler disk. - You may
have to restart APW from the APW assembler disk before you can assemble. Once

you have compiled and assembled your source files, you can link the object files
using either the APW assembler disk or the APW C disk.

If an APW compiler finds a fatal error (one that prevents the compile from continuing), it
writes out an error message to standard output (normally the screen) and waits for you to
press any key. When you press a key, the compiler passes control to the APW Editor,
whieh loads the source file that the compiler was working on, placing the line that caused
the error at the top of the screen.

If the compiler finds a nonfatal error, it finishes processing the program, writes out the
error messages, and returns control to the shell.

If your first attempt was not successful, correct the source code and try again. Repeat this
process until the module compiles successfully. Remember to save the source file each
time you make changes: the disk file is updated only when you save it.

When the compiler processes the file, it takes the first segment that will be executed when
the program is run and places it in an object file with the root filename you specified and the
extension . ROOT (some compilers do not append any filename extension to the root file).
All other segments (if any) are placed in a second object file with the same root filename
and the extension .A. _
The following files should be on your disk after using these commands:

* SAMPLEC C source code

*+ SAMPLEA 65816 source code

* SAMPLEC.O.ROOT object segment created by the C compiler

« SAMPLEA.O.ROOT first object segment created by the assembler

e SAMPLEA.O.A the rest of the object segments created by the assembler

Note that since the C routine contains only one function call, there is only one segment in
the object file created by the C compiler and hence only the root file is created.

Alternatively, you can compile both files in one operation. To do this, you can add a line to
the file SAMPLEC as follows:
1. Reopen the file in the editor with the following command:
EDIT SAMPLEC
2. Press G-9 to jump to the end of the file. Add the following line to the file:
#append “"SAMPLEA™
3. Press G-Q to quit the editor, S to save the file, and E to exit the editor.

4. Now when you use the following command, the shell calls the C compiler to
compile the C routine, then calls the APW Assembler to assemble the 65816 routine:

APDA Draft Page 3-5 9 March 1987

APWC Chapter 3
COMPILE SAMPLEC KEEP=SAMPILE.OQO
The following files should be on your disk after using this command:

¢ SAMPLEC C source code

* SAMPLEA 65816 source code

* SAMPLE.O.ROOT first object segment created by the C compiler
* SAMPLE.O.A object segments created by the assembler

Creating load files: linking

When you execute the LINK command, the APW Linker combines all object segments that
have the same load segment name into the same load segment, and places the entire
program into a single load file with the KEEP filename you specified. (For a discussion of
object segments and load segments, see the section “APW C Concepts” in Chapter 1.)

Important: Be sure to include the KEEP parameter in the LINK command. If
you do not specify a KEEP filename in the LINK command, no load file is
saved to disk.

Here are two ways to link the object files you have just created:

1. If you did not add the #append directive to the end of the C routine, use the
following command to link the object files into a single executable load file:

LINK 2/START SAMPLEC.O SAMPLEA.O KEEP=SAMPLE

The first file listed links the file START . ROOT in the library prefix. This file must
be linked to the beginning of every program when the main segment is in C.

The load file is named SAMPLE.
The following files should be on your disk after using this command:
* SAMPLEC C source code
» SAMPLEA 65816 source code
» SAMPLEC.O.ROOT first object segment created by the C compiler
» SAMPLEA.O.ROOT first object segment created by the assembler
* SAMPLEA.O.A the rest of the object segments created by the assembler
* SAMPLE load file

2. If you did add the #append command to the end of the C routine, use the following
command to link the object files into a single executable load file:

LINK 2/START SAMPLEC.CO KEEP=SAMPLE

APDA Draft | Page 36 9 March 1987

Chapter 3 APWC
The following files should be on your disk after using this command:

* SAMPLEC C source code

* SAMPLEA 65816 source code .

* SAMPLE.O.ROOT first object segment created by the C compiler
* SAMPLE.O.A object segments created by the assembler

¢+ SAMPLE load file

Running your program
To run the program you just created, use the following command:
SAMPLE

Each character you type is printed on the screen as you type it. Press Return to have the
program retype the line in all uppercase. Press Control-C to terminate the program. The
following sequence illustrates the use of this routine. The characters in boldface are the
ones you type (remember to press Return at the end of each line you type):

#SAMPLE '
Now is the Time for aLL good PeoPle to Buy an Apple II gs
NOW IS THE TIME FOR ALL GOOD PEQPLE TC BUY AN APPLE II GS

Granny Smith is always getting her apples into a Jjam
GRANNY SMITH IS ALWAYS GETTING HER APPLES INTO A JAM

Control-C

#

You can use I/O redirection to use this routine to convert the characters in a file to
uppercase. The following command converts all the characters in the file TEXT. IN to
uppercase and writes them out to the file TEXT .OUT:

SAMPLE <TEXT.IN >TEXT.OUT

The file TEXT.OUT contains the output that would have appeared on the screen; that is,
each line of text in the file TEXT . IN is printed, followed by the same line converted to
uppercase.

Compiling, linking, and running in one step

***Note: In the present (B3) incarnation of APW, this example does not
work. This must be tested hefore the final draft to make sure it works as
described.***

If you are using a hard disk, you can use a single APW command to compile, link, and run
your program in one step. Here are two ways to do so:

1. If you did not add the #append directive to the end of the C routine, use the
following commands to compile, link, and run the program:

3

SET KEEPNAME %.0

APDA Draft Page 3-7 9 March 1987

APWC Chapter 3
RUN SAMPLEC SAMPLEA

The SET KEEPNAME command establishes a default filename for output files. The
percent sign (%) is a wildcard character that APW replaces with the source filename;
the default root filename for the file SAMPLEC is thus SAMPLEC. 0. The load file is
given the same name as the root filename of the first object file created. For this
command, for example, the first object file created has the name
SAMPLEC.O.ROOT and the load file has the name SAMPLEC.O

The first file listed links the file START . ROOT in the library prefix (be sure to use
the correct prefix for your system). This file must be linked to the beginning of
every program when the main segment is in C.

The following files should be on your disk after using this command:
* SAMPLEC C source code
*+ SAMPLEA 65816 source code
*+ SAMPLEC.O.ROOT first object segment created by the C compiler
« SAMPLEA.O.ROOT first object segment created by the assembler
* SAMPLEA.O.A the rest of the object segments created by the assembler
+ SAMPLEC.O load file

2. If you did add the #append command to the end of the C routine, use the following
' command to compile, link, and run the program:

RUN SAMPLEC KEEP=SAMPLE
The following files should be on your disk after using this command:

*+ SAMPLEC C source code

* SAMPLEA 65816 source code

¢ SAMPLE.ROOT first object segment created by the C compiler
» SAMPLE.A object segments created by the assembler

* SAMPLE load file

When you use the RUN command, APW automatically executes the program after the
compile and link processes are complete.

Creating a compact load file
As a final step in program development, you can run the Compact utility program.

Compact converts a load file to the most compact form provided by the object module
format. If your load file is named SAMPLE, type the following line and press Retumn:

COMPACT SAMPLE SAMPLE.CMPCT

Compacted load files take up less space on disk and load faster than noncompacted load
files. The SAMPLE program you created here, for example, should be about 31 blocks in
size (as shown in a catalog listing), while SAMPLE . CMPCT should be about 25 blocks.

APDA Draft Page 3-8 9 March 1987

Chapter 3 APW C

The Compact utility writes to the screen an account of the records it has converted. If you
are interested in understanding the format and use of these records, see the section
“Segment Body” in chapter 8 of the APW Reference.

Not all load files are significantly improved by compacting, however, so you may want to
test both a compacted and noncompacted version of your program before releasing it.

Important: In order to load a compacted load file, you must have version 1.2 or
later of the System Loader on your boot disk.

APDA Draft Page 3-9 9 March 1987

APWC Chapter 3

APDA Draft Page 3-10 9 March 1987

Part 11

Language Reference

APDA Draft o 9 March 1987

APDA Draft 9 March 1987

Chapter 4
The APW C Language

The information provided in this chapter supplements The C Programming Language by
Kemighan and Ritchie. Where their language definition leaves choices to the
implementers, this chapter describes how these aspects of C have been implemented on the
Apple IIGS. Where Apple has modified or extended their language definition, this chapter
documents the changes.

Language definition

This section describes the APW C language, including language extensions such as type
void, type enum, the SANE data types, and calling Pascal-compatible functions.

Variable names

The compiler limits the length of each local variable name to 1000 characters. Global
variable names and function names are limited to 250 characters by the object-module
format. Therefore, different function names whose first 250 characters are identical will be
treated as different functions by the compiler but will be treated as the same function by the
linker.

Data types

Table 4-1 lists the arithmetic and pointer types available in APW C and shows the number
of bits allocated for variables of these types. Types short and long represent 16-bit
and 32-bit integers, respectively. The machine type int isa 16-bit integer on the Apple
IIGS: it is the type the 65C816 uses most efficiently. Pointers require 32 bits.
Enumeration types require 16 bits. Types char, short, int,and long use two’s-
complement representation. Note that The Apple IIGS has no signed 8-bit type: char
and unsigned char are identical. Naturally, a prudent programmer will make no
assumption about features not guaranteed to be portable.

APDA Draft Page4-1 9 March 1987

APWC Chapter 4

Table 4-1. Size and range of data types

Data type Bits Description

char - - 8 " Raage 0.t0 255 -
unsigned char 8 Range 0 to 255

short e _ 16 - Range —32,768 to 32,767
unsigned short 16 Range 0 to0 65,535

int | 16, Range 32,768 to 32,767
unsigned int 16 Range 0 to 65,535

long 32 Range -2,147,483,648 to 2,147,483,647
unsigned long 32 Range 0 to 4,294,967,295
enum _ 16 Range 0 to 65,535

* A 32 Pointer types . |

float 32
double 64 IEEE double-precision floating point
comp L 64 SANE signed integral values

| 80 IEEE extended-precision floating point

IEEE single-precision floating point

extended
Note: Some programs assume that
sizeof (int) = sizeof (char *)

These programs may not work properly under APW C, because an int is 2 bytes long and
a pointer is 4 bytes.

You can find more information on types in Table 4-2.

Numeric constants

Integer constants in the range of long are treated as type long. Integer constants in the
range of uns igned long are treated as type unsigned long. Integer constants
outside the union of the ranges of the long and unsigned long types are treated as
type extended. For example, the initialization statement

long i = 4000000000;

is incorrect because 4,000,000,000, being too big fora long, is interpreted as an
extended value. However, the initialization statement

unsigned long i = 4000000000;

is correct because 4,000,000,000 is within the range of unsigned long values.

APDA Draft Page4-2 9 March 1987

Chapter 4 | APW C

Type void

The void keyword tells the compiler that the function being declared does not return a
value. Calls to functions of type void may not be used in expressions, where a value is
required. (See “Pascal-Style Functions™ later in this chapter.)

Type enum

Type enum is a type analogous to the enumeration types of Pascal. Its syntax is similar to
that of the st ruct and union declarations:

enum-specifier:
enum { enum-list)
enum enwmeration-tag | enum-list }
enum enumeration-tag

enumeration tag:
identifier

enum-list;
envumeration-declaration
enumeration-declaration , enwm-list

enumeration-declaration:
identifier
identifier = constant-expression

The optionalenumneration-tag in enum-specifier, like the structure tag in a struct-specifier,
names a particular enumeration type, and allows you to define other objects of that type.
For example,

enum color {(chartreuse, burgundy, claret, winedark}:;

enum color *cp, col;

This enumeration makes color the enumeration-tag of a type describing various colors
and then declares cp as a pointer to an object of that type and col as an object of that
type. The identifiers in enum-list are declared as constants and may appear wherever
constants are required.

If no enumerators with a constant-expression appear, the values of the constants begin at 0
and increase by 1 as the declaration is read from left to right. Each enumerator with a
constant-expression is given the value indicated. Each enumerator without a constant-
expression is given a value one greater than the enumerator before it. This means that two
or more enumerators with constant-expressions can be assigned the same constant value,
and that an enumerator without a constant-expression may have the same value assigned by
the compiler as one with a constant-expression in the same enumeration list. Let us

‘consider some examples:

enum digit {zero,one,two,three, four,five,six,seven,eight,nine } num;

has the values 0, 1, 2,3,4,5,6,7, 8,9

APDA Draft Page4-3 9 March 1987

APWC Chapter 4

enum mixedup {a,b,c,d = 1,e,f) mix;
has the values 0, 1,2, 1, 2, 3
enum zapped {g = 1, h,i,3j =2,k,1] zap;
has the values 1, 2,3, 2,3, 4
enum ok {m=45,n,0,p=100,q,r};
has the values 45, 46, 47, 100, 101, 102
It you declare values, it is safest to declare all of them.

Each enumeration-tag and enumeration-constant must be unique. They are drawn from the
set of ordinary identifiers, unlike structure tags and members. Objects of a given
enumeration type have a type distinct from objects of all other types.

Enumeration types are allocated the amount of space required by the smallest predefined
type that allows representation of all of the literal values specified by the enumeration. The
prgdefined types considered are unsigned char (8 bits) and unsigned short

(16 bits).

Register variables

Most versions of C support register variables. Their function is undefined in The Apple
IIGS as a result of the small number of registers available on the 65C816 microprocessor.
Use of the register declaration causes the compiler to generate code at least as efficient
as that generated by the same program without register declarations.

Structures

Structures may be assigned, passed as parameters, and returned as function results. The
left and right sides of a structure assignment must have identical types. Similiarly, actual
and formal parameters must have identical types. Equality comparison for structures has
been implemented, provided the structures have the same type. (The equality test may give
unpredictable results if the structure contains a union.)

Since the 65C816 is a byte-oriented machine, data structures can be aligned on byte
boundaries. For this reason, APW C does not pad structures to ensure word alignment.

Important: In functions that return structures, if an interrupt occurs during the
return sequence and the same function is called reentrantly during the interrupt, the

value returned from the first call may be corrupted. The problem can occur only in
the presence of interrupts. Recursive calls are quite safe.

Reserved symbols

LINE is areserved preprocessor symbol whose value is the current line number
within the current source file.

APDA Draft Page44 9 March 1987

Chapter 4 APWC

__FILE _is areserved preprocessor symbol whose value is a character string
consisting of the current file name.

__LINE_ and _FILE begin and end with two underscore characters.

The symbol AppleIIgs is predefined for use in conditional compilation, It can be
used to distinguish C code written for the APW C compiler from C code written for, say,
the MPW C compiler. The symbol has the value 1, as if a statement of this form had
appeared at the beginning of the source code:

#define Applellgs 1

The symbol APW is predefined for use in conditional compilation. It can be used to
distinguish C code written for the APW C compiler from C code written for some other
compiler.The symbol has the value 1, as if a statement of this form had appeared at the
beginning of the source code:

#define APW 1

The symbol WD65816 is predefined for use in conditional compilation. It can be used
to distinguish C code written to run on the Western Design Center 65SC816 from C code
written to run on some other microprocessor, even for some other flavor of 65816.The
symbol has the value 1, as if a statement of this form had appeared at the beginning of the
source code:

#define WD65816 1

Any of these can be tested by an ifdef statement.

Standard Apple Numeric Environment extensions

APW C has built-in support for the Standard Apple Numeric Environment (SANE). In
combination with the C SANE library the language composes a scrupulously conforming
extended-precision implementation of the IEEE Standard for Binary Floating-Point
Arithmetic (754). SANE provides an extra data type for storing large integral values and
basic functions for application development. APW C recognizes the SANE data types,
uses SANE for all C floating-point operations and conversions, and correctly handles
NaNs (Not-a-Number) and infinities in comparisons and in ASCII-binary conversions.
Furthermore, source programs from other C implementations, if they are written using only
float and double types and standard C operations, will compile and run under APW C
without modification.

Much of SANE is provided through the run-time library CLIB and the include file
SANE.H. However, to use extended-precision arithmetic efficiently and effectively, and to
handle IEEE NaNs and infinities, some extensions to standard C are required, including
use of the extended data type.

A change from double to extended as the basic floating-point type is the most
important difference from standard C. Since C was originally developed on the DEC
PDP-11, the PDP-11 architecture is reflected in standard C in the use of £loat and
double as floating-point types, with double as the basic type: floating-point

APDA Draft Page4-5 9 March 1987

APW C Chapter 4

expressions are evaluated to double, anonymous variables are double, and floating-
point parameters and function results are passed as double values. However, the low-
level SANE arithmetic (as well as the Intel 8087, Motorola 68881, and Zilog Z8070
floating-point chips) evaluates arithmetic operations to the range and precision of an 80-bit
extended type. Thus, extended naturally replaces PDP-11 double as the basic
arithmetic type for computing purposes. The types £loat (IEEE single), double, and
comp SErve as space-saving storage types, justas flo at does in standard C. The comp
type, a 64-bit type for storing integral values, is a SANE extension. It has two properties
that suit it to accounting applications: it is sufficiently large to represent the U.S. national
debt in Argentine pesos, and it has a NaN value to record overflows and other exceptions.

The IEEE Standard specifies two kinds of special repfesentaﬁons for its floating-point
formats: NaNs and infinities. APW C expands the syntax for I/O to accommodate NaNs
and infinities, and includes the treatment of NaNs in relationals as required by the IEEE
Standard.

The SANE extensions to standard C are backward-compatible: programs written with only
the float and double floating-point types and standard C operations compile and
run without modification. All intermediate values are computed in the extended type,
an 80-bit floating-point type, and the results are returned to the types specified in the
program. SANE does not affect integer arithmetic.

The Apple Numerics Manual contains detailed documentation of SANE. The Apple IIGS
Toolbox Reference contains detailed documentation of the Apple IIGS SANE Toolset,
which makes SANE available on the Apple 1IGS.

Constants

Numeric constants that include floating-point syntax—a point (.) or an exponent field—or
that lie outside the union of the ranges of the long and unsigned long types are of
extended. Decimal-to-binary conversion for numeric constants is done at compile time
(and hence is governed by the default numeric environment: see the section “Numeric
Environment” in this chapter).

Expressions

The SANE types—float, double, comp,and extended-—can be mixed in
expressions with each other and with integer types in the same manner that float and
double can in standard C. An expression consisting solely of a SANE-type variable,
constant, or function is of type extended. An expression formed by subexpressions
and an arithmetic operation is of type extended if either of its subexpressions is.
Expressions of type extended are evaluated using extended-precision SANE
arithmetic, with conversions to type extended generated automatically as needed.
Parentheses in extended-type expressions are honored: the compiler will not rearrange
terms in violation of parentheses. Initialization of external and static variables, which may
include expression evaluation, is done at compile time; all other evaluation of extended-
type expressions is done at run time.

APDA Drqaft Page 46 9March 1987

Chapter 4 APW C

Comparison involving a NaN

The result of a comparison involving a NaN operand is unordered. The usual set of
comparison results—Iless than (<), greater than (>), and equal to (=)——is expanded to
include unordered. For example, the negation of “a less than b is not “a greater than or
equal to b” but ““(a greater than or equal to) OR (g and b unordered).” The CLIB function
relation tests all four alternatives.

Parameters and function results

A numeric actual parameter passed by value is an expression and hence is of ext ended or
integer type. All extended-type arguments are passed as extended values.
Similarly, all results of functions declared float, double, comp, or extended are
returned as extended values.

Numeric input/output

In addition to the usual syntax accepted for numeric input, the Standard C Library function
scanf recognizes the string “INF” as infinity and the string “NAN" as a NaN. “NAN" may
be followed by parentheses, which may contain an integer (a code indicating the NaN’s
origin). “INF” and “NAN” are optionally preceded by a sign and are case-insensitive. The
scanf specifiers for SANE types extend standard C as follows: conversion characters £,
e, and g indicate type £loat; 1£, le, and 1q indicate type double; mf, me, and mg
indicate type comp; and ne, nf, and ng indicate type extended.

The Standard C Library function print £ writes infinities as “INF” and NaNs as
“NAN (ddd) ", where ddd is the NaN code. “INF” and “NAN (ddd) " may be preceded by a
minus sign.

Numeric environment

The numeric environment comprises the rounding direction, rounding precision, halt
enables, and exception flags. IEEE Standard defaults—rounding to nearest, rounding to
extended precision, and all halts disabled—are in effect for compile-time arithmetic
(including decimal-to-binary conversion). Each program begins with these defaults and
with all exception flags clear. Functions for managing the environment are included in the
library CLIB. The compiler, in optimizing, will not change any part of the numeric
environment, including the exception-flag setting, which is a side effect of arithmetic
operations.

About the C SANE Library

The SANE library provides the basic tools for developing a wide range of applications. It
includes the following:

+ logarithmic, exponential, and trigonometric functions
« financial functions
+ random-number generation

APDA Draft Page4-7 9 March 1987

APWC Chapter 4

» conversions between binary and decimal

 numeric scanning and formatting

+ environment control

« other functions required or recommended by the IEEE Standard

Additional information can be found in the SANE Tool Set chapter of the Apple IIGS
Toolbox Reference.

Programming with IEEE arithmetic

APW C’s automatic use of the extended type produces results that are generally better
than those of other C systems. For example, extended precision yields more accuracy and
extended range avoids unnecessary underflow and overflow of intermediate results. You
can further exploit the ext ended type by declaring all floating-point temporary variables
to be of type extended. This is both time-efficient and space-efficient, since it reduces
the number of automatic conversions between types. External data should be stored in one
of the three smaller SANE types (£1oat, double, or comp), not only for economy but
also because the extended format may vary between SANE implementations. As a
general rule, use float, double, or comp data as program input; extended arithmetic
for computations; and £loat, double, or comp data as program output.

In many instances, IEEE arithmetic allows simpler algorithms than were possible without
IEEE arithmetic. The handling of infinities enlarges the domain of some formulas. For
example, 1+1/x2 computes correctly even if x2 overflows. Running with halts disabled
(the default), a program will never crash because of a floating-point exception. Hence, by
monitoring exception flags, a program can test for exceptional cases after the fact. The
alternative of screening out bad input is often infeasible, and sometimes impossible.

Pascal-style functions

The function-calling conventions used by APW C and by conventional Pascal
implementations differ in the order of parameters on the stack, the type coercions applied to
parameters, and the location of the return result. Like the Macintosh Toolbox, the Apple
IIGS Toolbox adheres to Pascal-style calling conventions. APW C has been extended to
allow you to use both C-style and Pascal-style calling conventions. The specifier pascal
in a function declaration or definition indicates a Pascal-style function. This extension is
intended to allow for the addition of Pascal and other lanugages to APW.

Pascal-style function declarations

A function or procedure written using Pascal-style calling conventions can be called from
APW C. Before it can be called, it must be declared as an external function. Here is the
general form for a declaration:

[extern] pascal [result-type] func-name () ;

APDA Draft Page 4-8 9 March 1987

Chapter 4 APWC
This declaration says that the Pascal procedure named func-name can be called from your
program, returning a result of type result-type.

For example, the DrawText procedure would be defined in Pascal as follows:

PROCEDURE DrawText (textBuf: Ptr;
firstByte, byteCount: integer);

The syntax for declaring this procedure so that it can be called from APW C is
extern pascal void DrawText():
To make the code more informative, we can list the parameters in a comment:

extern pascal void DrawText () ;
/* Ptr textBuf;
short firstByte, byteCount; */

Inline declarations
An inline declaration is used for declaring Apple IIGS tool routines. Its syntax is
[extern] pascal [result-typel func-name () inline (m,n);

This says that the tool routine with tool call number m and tool locator entry point 7z can be
called by the function name func-name and that it returns a result of type result-type. The

pascal keyword is necessary because the tools use Pascal-style conventions.

Inline assembly-code declarations

Your C program can contain assembly code inline. Anywhere a statement is legal, you can
insert a series of assembly-language statements with this format:

asm{assembly-statements }
Anywhere a function definition is legal, you can have a definition with this format:

asm (external-name) { assembly-statements}

This function can be called in the same way as a C function called external-name. Here
external-name is the entry point of the segment containing the assembly-language code.

Pascal-style function definitions

A C function definition (the actual function), like a function declaration, can also be
preceded by the pascal specifier. The C compiler then produces code that adheres to
Pascal-style calling conventions and the function can be called using these conventions.

The APW syntax for defining this procedure as a C function is

pascal [result-type) func-name (formal-parameter-list) {statement-list)

APDA Draft Page 4-9 9March 1987

APWC Chapter 4

For example, the following C function could be called from Pascal:

pascal void MyText (byteCount,textAddr, numer, denom)
short byteCount:;
Ptr textAddr;
Point numer,demon;

{
}

The comresponding Pascal function declaration would be

PROCEDURE MyText (bytecount: INTEGER; textAddr: Ptr;
numer,denom: Point);

For compatibility with Pascal and assembly language, the compiler converts the names of
Pascal-compatible functions to uppercase before writing them to the object file. When they
are called in C programs, these routines should be capitalized exactly as they were declared
in C. Pascal-compatible functions whose names differ only in their capitalization will
become duplicate declarations when their names are converted to uppercase by the
compiler; therefore such names should be avoided.

Pascal-style strings: \p

One of the complications of calling Pascal-style functions from C is that the two languages
have different conventions for handling strings. A C-style string is a set of characters
followed by a null byte; a Pascal-style string is a count byte n followed by a setof n
characters. Conveniently, these two forms are the same length, so conversion from one to
the other is not hard. The functions c2pstr and p2cstr perform runtime
conversions between the two types of strings.

If you wish to call a Pascal-style function that expects a Pascal-style string, you can use an
Apple extension to the standard C character escapes: \p. When the compiler encounters
this escape sequence at the beginning of a string, it substitutes for the \p the character
value equivalent to the number of non-null characters in the remainder of the string. Thus a
string constant is created that is equivalent to a Pascal-style string. Since it is also a C-style
string, it is also terminated by the null character: this character is not included in the
character count.

You can use it like this:

WriteString ("\pHello, world.\n");

Parameter and result data types

C and Pascal support different data types. When writing a Pascal-style function declaration
in C, a translation of the parameter types and function-result type (from Pascal to C) is
therefore required. Often this translation is obvious, but some cases are surprising.

Table 4-2 summarizes this translation. Find the Pascal parameter or result type in the first
column. Use the equivalent C type found in the second column when declaring the

APDA Draft Page4-10 9 March 1987

Chapter 4

APW C

function in C. Comments in the table point out unusual cases which may require special

attention.

Table 4-2. Parameter and result data types

Pascal Data Type

C Equivalent

Comments

enumeration enum Use identical ordering of the
enumeration literals.

var enumeration enum *

enumeration result enum

char char Pascal passes chars as 16-bit values.

var char char * Pascal stores unpacked chars as 16-
bit values.

char result char

integer
var integer

integer result

int or short
int * or short *

int or short

16-bit signed values

longint long 32-bit signed values

var longint long *

longint result long

real float * Pascal passes real parameters as
extended.

var real float *

real result float

double double * Pascal passes double parameters as
extended.

var double double *

double result double _

comp comp * Pascal passes comp parameters as
extended.

var comp comp *

comp result comp

extended
var extended

extended result

extended *
extended *

extended

APDA Draft

Page 4-11

9 March 1987

APW C Chapter 4

pointer pointer 32-bit addresses

var pointer pointer *

pointer result pointer

array array Pascal passes arrays by address.
var array ' array

array result --- Cdoesnot allow array results.
record struct Pascal passes records by value.
var record struct *

record result struct

set struct Pascal passes sets by value.
var set struct *

set result struct

Note: The C struct type and the Pascal record type do not exactly correspond, as
C lacks an equivalent to the Pascal variant record type.

Global and external data types

When a C program and a Pascal program use the same global or external variables, they
must use types of like size. This requires care, as one can’t be sure whether a given Pascal
compiler puts 0..255 into a byte or a word. If possible, use a signed type for a signed type.

If you have to pass values from a signed type into an unsigned type, or vice versa, you will
have to test the sign bit and perform the appropriate conversions.

How parameters are passed
High-level languages on the Apple IIgs use the stack and the A and X registers to pass
parameters. Assembly-language programs have other means of passing parameters, such

as the direct page, but they must use the stack to communicate with C programs, because
this is how C expects parameters to be passed. Here’s how it works.

C-style functions
Let’s declare a typical C-style function:

int fool():

This function takes three values and returns one result. We can call it like this:

APDA Draft Page4-12 9 March 1987

Chapter 4 APW C

zoo = foo(a,b,c);

When the call is executed, the values ¢, b, and a are pushed, in that order. Function
foo returns its result in the A register. The calling program then pulls a, b, and ¢ off
the stack and stores the contents of the A register into the variable zoo.

If foo had been 4 bytes long, it would have been returned in the A and X registers: the
high bytes in X and the low bytes in A. Structure and extended results are returned by
passing a pointer to them in the A and X registers.

Pascal-style functions

Pascal-style functions use the stack for the return value and also reverse the order of
reading parameters. Consider this function:

pascal int foobar();

This function also takes three values and returns one result. We can call it like this:
x = foobar{(a,b,c);

When the call is executed, space for the result foobar is pushed on the stack, then the
values a, b,and c are pushed, in left-to-right order, The routine pulls ¢, b, and a
off the stack, computes foobar, and pushes foobar on the stack. The calling
program then pulls foobar off and copies it into the variable x.

When you write a function, you can declare it as a C or a Pascal-style function, thus
determining the way the parameters are passed. The C style of passing parameters is more
efficient than the Pascal style, but it should be used only with functions that will be called
from C and not from Pascal. Whatever language a function is written in, if declared as a
Pascal-style function it can be called from either Pascal or C; if declared as a C-style
function it can be called only from C.

Implementation notes

A number of details in any language definition are left to the discretion of its individual
implementations. Most programs do not rely on these details and therefore yield the same
results on the various implementations. Knowledge of the major differences between
implementations can, however, help you avoid reliance on language semantics that vary
from implementation to implementation. This section explains several areas of the language
definition that are specific to APW C.

Size and byte-alignment of variables

Because the 65C816 is a byte-oriented processor, it levies no speed penalty for using odd
addresses. Therefore, APW C does not align variables on word boundaries. In particular,
enumerated types and structures are not padded to make fields fall on word boundaries.

APDA Draft Page 4-13 9 March 1987

APW C Chapter 4

When you recompile an MPW C program on the APW C compiler, for example, all
padding added by the MPW C compiler disappears. Any padding you added remains. You
can save space and possibly time by removing this padding from data structures and
deleting code that does word alignment.

Byte ordering

On the 65C816, the microprocessor used in the Apple Ilgs, the least significant byte of a
short or long integer has the lowest memory address. This byte ordering is also used on
the PDP-11, VAX, 8086, and NS16000 processors. The 68000 , IBM/370, and Z8000
processors store the least significant byte at the highest address. Programs that rely on the
order of the bytes within words and long words will not be portable from machines of one
of these classes of machines of the other.

Sign extension

In APW C, the >> operator always performs a logical right shift: that is, the left bit
positions are filled with 0’s.

Variable allocation

The APW C compiler allocates static and global variables in the order in which they appear
in the source. This is also true for the order of fields within structures.

Array indexing

Array indexing is done using long arithmetic wherever the compiler cannot determine the
actual size of the array (asin extern int array [];) or determines that the size
requires long arithmetic for correct calculation of offsets for the whole array.

If the compiler determines that the entire array can be accessed using word arithmetic, it
will do so, for example:

extern int array([N]; /* N <= 0x8000 */

char string[] = "It would be hard to create a string long
enough to require long indexing, wouldn't it?"

int notToMany[] = (0,1,2,3,4,5,6,7,8,9};
long larray[0x40001;

long larray[0x4000]; /* Though the array is too large, the
second index will be done with word arithmetic. This is of

dubious advantage. */

Because word arithmetic is more efficient than long arithmetic, you can use certain tricks to
force word arithmetic when speed is important. These apply whenever you only need to
access 64K (0x1000) bytes within an array.

APDA Draft Page4-14 9 March 1987

Chapter 4 APW C

1

The form
extern int array[1000];
is better than the form

extern int arrayll];
(as long as you know about how much of the array you need to access.)

To optimize access to a part of a larger array, place the code in a subroutine and pass a
pointer to the first element of the part to the subroutine: e.g.,

long array[0x10000] /*This will normally cause long index
arithmetic.*/

main ()
{ unsigned int i;
for(i=0; i<4; i++) fill(array+i*0x4000);}
fill (smaller)
long smaller[0x4000]; /*This is just small enough to force
word index arithmetic.*/
{ unsigned i;
for (i=0; i < 0x4000; i++) smaller[i] = OxFFFFFFFF; }

Calling £111 () four times allows us to fill an array whose actual size in bytes is
0x40000, using long-arithmetic index calculation only four times, once at each call
from main. Note that the arithmetic is further optimized by the use of unsigned
for i.

Types unsigned char, unsigned short, and unsigned long

Types unsigned char, unsigned short,and unsigned long are supported
by the APW C compiler and by many implementations of PCC, although they are not
required by the basic C language definition. The VAX implementation of PCC and the
APW C compiler differ in the way they evaluate expressions involving these types. For
example, the negation operator subtracts an unsigned short from 216 under PCC,

and from 232 under APW C.

Bit fields

APW C does not support signed bit fields. In the following example, implementations
using unsigned bit fields will set i to 3:

struct {unsigned int field:2:;} =x;
x,.field = 3;
i = x.field;

APDA Draft Page4-15 9 March 1987

APWC Chapter 4

Evaluation order

APW C does not define the evaluation order of certain expressions. Expressions with side
effects, such as function calls and the ++ and — — operators, may yield different results on
different machines or with different compilers. Specifically, when a variable is modified as
a side effect of an expression’s evaluation and the variable is also used at another point in
the same expression, the value used may be either the value before modification or the
value after modification.

Programs that rely on the order of evaluation in these situations are in error. The function
call

£(1i,1i++)

is an example of an expression whose value is undefined.

Case statements

Some implementations of C, including PCC, allow casesof a switch statement to be
nested within compound statements. APW C considers this an error. The following
switch statement compiles using PCC but generates an error message using the APW C
compiler. The error is that case 2: is within the i f statement.

switch (i) {
case 1:
if (3) |
case 2:
i = 3;

Language anachronisms

Several constructs formerly considered part of the C language are now considered
anachronisms, The compiler considers these invalid. The anachronisms are described
below. '

Assignment operators

The =op form of assignment operators is not supported. Alternative interpretations are
accepted without warning. In particular,

x =— 5; is interpreted as x = (-5);

% =% 5; is interpreted as x = (*5);

X =& p; is interpreted as x = (&p);
Initialization

The equal sign that introduces an initializer must be present. The anachronism

APDA Draft Page4-16 9 March 1987

Chapter 4 APW C

int i 1;

is considered an error.

Compiler limitations

On the Apple IIGS, the total size of all declared global scalar variables, static scalar
variables, and scalar constants cannot exceed 64K, because they are accessed using short
addressing. Aggregate types (structures, arrays, and string constants) are stored in a
separate large memory segment and accessed with long addressing. Their size is
effectively limited only by available memory.

Automatic variables are limited by the available stack space, which can never exceed 32K.

Each code segment is limited to 64K.

Performance tips
The following practices improve performance:
* Use unsigned types whenever possible. (This improves performance markedly.)

» Declare auto aggregate variables after all auto scalars. (This improves
performance markedly.)

* Declare auto pointers before other auto variables.

Creating load segments: the segment command
segment "segname"{, dynamic}”

When this command is used, it must appear between functions. It assigns the load segment
name segname to a function: all code following the directive until the end of file or the next
segment command will be assigned to the load segment segname. By default, this
command creates a static load segment. The dynamic option creates a dynamic
segment.

The segment command can be used to split up a code segment that would be larger than
64K.

The #append directive

The APW C preprocessor processes the usual directives, plus one that is peculiar to APW

#append filename

APDA Draft Page4-17 9 March 1987

APWC . Chapter 4

When this directive is used, it must appear between functions: filename is the name of the
next file in the compilation sequence. This directive normally appears at the end of a file,
as everything after it will be ignored. It should not appear in an include file.

Code Generation Memory Model

The memory model used by the code generation is a mixed model, intended to most
effectively exploit the architecture of the 65816, which has addressing modes that deal
with memory in a linear fashion, and others which treat memory as being divided into
segments. :

Essentially, long, or linear, addressing is used for all pointer values: pointers are 32-bit
values, which contain 24-bit machine addresses. Global scalar variables, however, are
referenced internally using the more efficient 16-bit addressing modes. For these
operations, the high byte of the 24-bit address is derived from the processor’s data bank
register, which is initialized by the START.ROOT module to point to the bank in which
the load segment containing the global data has been loaded. This feature is why total
global scalar storage is limited to 64K. Global arrays and structures, on the other hand, are
always addressed using long addressing, so it is possible to have more than 64K of array
space. Structsand unions are accessed using indexed addressing, so they are limited
in size to 64K. Array refences will use the faster 16-bit indexed addressing modes if the
array is less than 64K in size. To access elements within large (greater than 64K) arrays,
the index expression must evaluate to a long; if necessary, a cast must be used. In this
context, static variables are treated as if they were global variables.

Local variables (“auto”) variables are allocated on the 65816 machine stack. The machine
stack is a 16-bit register; the bank address of the stack is always bank 0. Thus the
maximum stack size is limited to a theoretical 64K: in practice, this is considerably smaller,
due to competing use of bank-0 memory by the system and other potentially resident
programs. The start code initializes a default stack size of 8K; by creating a global integer
variable named _stack_size_ in your program, and initializing its value, you can
define your own stack size (recognizing that the initialization code will fail if you specify a
stack size larger than the memory manager can allocate in bank zero). For example, the
following global declaration will cause the initialization code to allocate a 16K stack:

int _stack_size_ = 1024 * 16;

Storage for local variables is created dynamically on the stack upon function entry. If less
than 256 bytes are required for parameter storage, internal temporary variables, and local
variables, then all of the local variables will be addressed via direct page addressing, and
pointer derefrencing using local variables will generally use indirect long addressing. If
more than 256 bytes are required, the compiler will have to use indexed addressing to
access variables that extend beyond the first 256 bytes of stack storage allocated. The first
declared variables are the first allocated, so declaring your frequently-used local variables
first will guarantee that the most efficient addressing modes will be used in referencing
them.

Function calls are all made via long subroutine calls.

APDA Draft Page4-18 9 March 1987

|
ﬂ

Chapter 5

The Standard C Library

About the Standard C Library

This chapter describes the Standard C Library provided with APW C. The Standard C
Library is a collection of basic routines that let you read and write files, examine and
manipulate strings, perform data conversion, acquire and release memory, and
perform mathematical operations.

The chapter begins with an introduction to the error-number conventions used in the
Standard C Library, followed by the library functions and macros arranged
alphabetically under the name of the header file containing them. Each header file
contains a group of related functions or macros. For example, both the fread and
fwrite macros are found under the £read header. All of the function names and
other identifiers used in Standard C Library routines are listed in Appendix D, “The
Library Index.” To find out where in this chapter a particular identifier is described,
consult Appendix D.

% Note: Remember that identifiers in C are case sensitive and should be spelled
exactly as shown in the synopsis. Filenames (as in #include statements) are
not case-sensitive. By convention, they are written in uppercase.

The library routines under each header are documented as follows:

0O Synopsis shows the code you need to add to your program when using these library
routines and the files you need to include at compile time.

Description discusses the library routines and their input and output.
Diagnostics describes error conditions.

Return value describes the values retumed by the routines.

Example contains examples of commands.

Note contains remarks.

Warning gives cautions.

0O 0O oo oa o

See also provides the names of other library routines or sections in this chapter
related to the ones described in the current section.

Some of these will not be found under each header,

Note: Specific support for desk accessories has not been a consideration in the
design of this library.

2 Chapter 5 The Standard C Library

Synopsis

Description

Error numbers

#include <ERRNO.H>

extern int errno;

Many of the Standard C Library functions have one or more possible error returns.
An otherwise meaningless return value, usually -1, indicates an error condition: see
the descriptions of individual funcrions for details. The external variable errno
also provides an error number. Variable errno is only valid immediately after a
call; it is not cleared on successful calls, so it should be tested only if the return value
indicates an error.

The error name appears in brackets following the text in a library funciion
description. For example:

“The next attempt to write a nonzero number of bytes will signal an error. [ENOSPC]”

Not all possible error numbers are listed for each library function because many
errors are possible for most of the calls. Some UNIX operating system error numbers
do not apply to the Apple IIGS and are not documented in this manual. Some calls go
to the Apple I1GS ROM and as a side effect return a value in _toolErr as well as the
value in errno. Some calls, such as printf and scanf, may change these
global variables even when they succeed.

Here is a list of the error numbers that can be returned in errno and their names as
defined in the <ERRNO . H> file.

2 ENOENT No such file or directory

A file whose filename is specified does not exist or one of the directories in a
pathname does not exist.

5 EIO /O error
Some physical 1/O error has occurred. This error may in some cases be signaled
on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice that does not exist, or the I/O is
beyond the limits of the device. This error may also occur when, for example,
no disk is present in a drive.

9 EBADF Bad file number
Either a file descriptor does not refer to an open file, or a read (or write) request
is made to a file that is open only for writing (or reading).

12 ENOMEM Not enough space
The system ran out of memory while the library call was executing.

Error numbers 3

Note

13

14

16

17

19

20

22

24

29

30

45

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection
system.

EFAULT Bad pathname
A supplied pathname has incorrect syntax.

EBUSY Device or resource busy
Two or more online volumes have identical volume names.

EEXIST File exists

An existing file was mentioned in an inappropriate context; for example,
open({file, O CREAT|C_EXCL).

ENODEV No such device

An attempt was made to apply an inappropriate system call to a device; for
example, an attempt to read from a write-only device.

ENOTDIR Not a direciory

An object that is not a directory was specified where a directory is required (for
example, in a pathname prefix).

EINVAL Invalid parameter
Some invalid parameter was provided to a library function.

ENFILE Too many open files —_
The system cannot allocate memory to record another open file.

ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

ESPIPE Ilegal seck
An lseek was issued incorrectly.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted for read-
only access.

ETXTBUSY Text file busy
An attempt has been made to perform a disallowed operation on an open file.

Calls that interface to the Apple IIGS 1/O system (such as open, close, read,
write, and joctl) can set the external variable _toolErr as well as errno on
errors. This is a side effect: it is not safe to assume any relationship between the error
number retumed in errno and the number that may be returmned in _toolEzr.

‘To detect errors in Standard C Library calls, use errno; to detect errors in Toolbox
calls use _toolErr.

This section documents the values returned in errno. The Toolbox errors returned

in

toolErr are documented in the System Error Handler chapter of the Apple

IIGS Toolbox Reference.

Error numbers

Error numbers

abs—return integer absolute value

Synopsis int abs(i)
int 1i;

Description Function abs returns the absolute value of 1.
Note The absolute value of the negative integer with the largest magnitude is undefined.

See also floor

6 abs

Synopsis

Description

Diagnostics

See also.

atof—convert ASCII string to floating-point number

#include <MATH.H>

extended atof (str)
char *str;

Function atof converts a character string pointed to by str to an extended-
precision floating-point number. The first unrecognized character ends the
conversion. Function atof recognizes an optional string of white-space characters
(spaces or tabs), then an optional sign, then a string of digits optionally containing a
decimal point, then an optional e or E followed by an optionally signed inleger. If
the string begins with an unrecognized character, atof returns a NaN.

Funclion atof recognizes “INF” as infinity and “NAN" (optionally followed by
parentheses that may contain a string of digits) as a NaN, with NaN code given by the
string of digits. Case is ignored in the infinity and NaN string,

Function atof honors the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexact—as prescribed by SANE.

scanf
str2dec, dec2num inthe Apple Numerics Manual

atof

atoi—convert string to integer

Synopsis #include <STDLIB.H>

int atoi(str)
char *str;

long atol (str)
char *str;

Description The character string str is scanned up to the first nondigit character other than an
opticnal leading minus sign (-). Leading white-space characters (spaces and tabs)
are ignored.

A plus sign (+) is considered 2 nondigit character,

Return value Function atei returns as an integer the decimal value represented by str.
Function atol returns as a long integer the decimal value represented by str.

Note Overflow conditions are ignored.

See also atof, scanf, strtol

8 atoi

Synopsis

Description

Diagnostics

See dalso

close—close a file descriptor

int close({fildes)
int fildes;

Parameter £ildes is a file descriptor obtained from an open, creat, dup, or
fcntl call. Function close closes the file descriptor indicated by £ildes.

Function close fails if £ildes is not a valid open file descriptor. [EBADF]

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

creat, dup, fcntl, open

close

Synopsis

Description

Note

See also

10

conv

conv—translate characters

#include <CTYPE.H>

int toupper{c)
int c;

int tolower(c)
int ¢;

int _toupper(c)
int e;

int _tolower(c}
int o3

int toascii(c}
int ¢;

Functions toupper and tolower have as their domain the set of ASCII characters (0
through 127) and the constant EOF (-1). If parameter c to toupper represents a
lowercase letter, the result is the corresponding uppercase letter. If parameter ¢ to
tolower represents an uppercase letter, the result is the corresponding lowercase
letter. All other parameters in the domain are returned unchanged.

Macros _toupper and _tolower produce the same results as functions toupper
and tolower but have restricted domains and arc faster. Macro _toupper
requires a lowercase letter as its parameter; its result is the corresponding uppercase
letter. Macro _tolower requires an uppercase letter as its paramelter; its result is the
corresponding lowercase letter. Parameters oulside the domain cause undefined
results.

Function toascii converts ¢ by clearing all bits that are not part of a standard ASCIT
character. It is used for compatibility with other systems.

These routines do not support the Apple IIGS extended character set (with values
greater than Ox7F). For values outside the stated domain, the result is undefined.

ctype, getc

Synopsis

Description

Retumn value
Note

See also

creat—create a new file or rewrite an existing file

int creat(filename)
char *filename;

Function creat creates a new file or prepares to rewrite an existing file, filename.
If the file exists, the length of its data fork is set to 0.

Function creat {filename) is equivalent (o
cpen (filename,O_WRONLY |O_TRUNC|O _CREAT)

Upon successful completion, a nonnegative integer (the file descriptor) is returned
and the file is open for writing. The file pointer is set to the beginning of the file. A
maximum of about 30 files may be open at a given time; the actual maximum depends
upon the current system environment,

Upon successful completion, a nonnegative integer (the file descriptor) is returned.
Otherwise, a value of -1 is returned and erxrno is set to indicate the error.

Other implementations of creat specify a second parameter, mode . This version
ignores any second parameter.

close, open

creat 11

Synopsis

Description

12

ctype

ctype—classify characters

#include <CTYPE.H>

int isalphaf{c)
int c;

int isupper(c)
int ¢;

int islower(c)
int ¢

int isdigit(c}
int c¢;

int isxdigit{c)

int ¢;

int isalnum{c)
int ¢;

int isspace(c}
IfE ep

int ispunct{c)
int ¢;

int isprint{c)
int e;

int isgraph(c)
int ¢;

int iscntrl{c)
int c;

int isascii{c}
int ¢}

These macros classify character-coded integer values by table lookup, returning
nonzero for true, zero for false. Macro isascii is defined on all integer values;
the rest are defined only where isascii is true and on the single non-ASCII value

EOF (-1).

Macro Returns true If

isascii ¢ is an ASCII character code lower than octal 0200.

isalpha c is a letter [A-Z] or [a-z].

isupper ¢ is an uppercase letter [A-Z].

islower ¢ is a lowercase letter [a—z]

isdigit c is a digit [0-9].

isxdigit c is a2 hexadecimal digit [0-9], [A-F], or [a—f].

isalnum c is alphanumeric (letter or digit).

isspace ¢ is a space, tab, return, new line, vertical tab, or form feed.
ispunct c is a punctuation character (neither control nor alphanumeric).
isprint ¢ is a printing character, space (octal 040) through tilde (octal 0176).

Warning

Note

isgraph ¢ is a printing character, similar to isprint except [alse for space.

isentrl ¢ is a delete character (octal 0177) or an ordinary control character
(less than octal 040).

If ¢ is not in the domain of the function, the result is undefined.

These macros do not support the Apple IIGS extended character set. For values
outside the domain, the result is undefined.

ctype

Synopsis

Description

Retum value

See alseo

14

dup

dup—duplicdfe an open file descriptor

int dup(fildes)
int fildes;

Parameter £ildes is a file descriptor obtained from an open, creat, dup, or
fentl call. The new file descripior returned by dup is the lowest one available.

The function call dup (£ildes) is equivalent to
fentl(fildes, F_DUPFD, 0)

Function dup fails if parameter £ildes is not a valid open file descriptor. [EBADF]

Upon successful completion, a nonnegative integer (the file descriptor) is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

close, fcntl, open

Synopsis

Description

Note

See also

ecvi—convert a floating-point number to a string

#include <MATH.H>

char *ecvt(value, ndigit, decpt, sign)
extended wvalue;
int ndigit, *decpt, *sign:;

char *fevt(value, ndigit, decpt, sign)
extended wvalue;
int ndigit, *decpt, *sign;

Function ecvt converts value to a null-terminated string of ndigit digits and
returns a pointer to this string as the function result. The low-order digit is rounded.

The decimal point is not included in the returned string. The position of the decimal
point is indicated by decpt, which indirectly stores the position of the decimal point
relative to the returned string. If the int pointed to by decpt is negative, the decimal
point lies to the left of the returned string. For example, if the string is *12345” and
decpt points to an int of 3, the value of the string is 123.45; if decpt points to -3,
the value of the string is .00012345.

If the sign of the converted value is negative, the int pointed to by sign is nonzero;
otherwise it is zero.

Function fevt provides fixed-point output in the style of Fortran F-format output.
Function fcvt differs from ecvt in its interpretation of ndigit:

g In fcvt, ndigit specifies the number of digits to the right of the decimal point.
O Inecvt, ndigit specifies the number of digits in the string.

The string pointed to by the function result is static data whose contents are
overwrilten by each call. To preserve the value, copy it before calling the function
again.

printf
str2dec, dec2num in the Apple Numerics Manual

ecvt 15

Synopsis

Description

Return value

Note

See also

16

exit

exit—terminate the current application

#include <STDLIB.H>

void exit({status)
int status;

void _exit{status)
int status;

Functions exit and _exit close open file descriptors and terminate ‘the application
or wool. Here is the order in which exit performs its duties:

1. It executes all exit procedures in reverse order of their installation by onexit,
including the exit procedures for the Standard /O Package if routines from that
‘package were used. All buffered files are flushed and closed.

2. It cdloses al} open files that were opened with open or fopen.

3. If the program is a tool running under the APW Shell, the exit function returns
status and control to the APW Shell by placing a return value in the lower three
bytes of status and terminating the application.

Function _exit circumvents the exit procedures described in step 1 above. Use
_exit instead of exit to abort your program when you are uncertain about the
integrity of the data space.

The main program is a function that returns an integer. The return value of main is
interpreted by the APW Shell as the program status. When you call exit or _exit,
the status parameter is retumed to the APW Shell as the return value for the
application’s main function: 0 for normal execution or a small positive value for
errors (typically 1..3). Main programs that retum to the shell without setting status
to an integer value appear to be returning a random status.

There is no return from exit or _exit.

Functions exit and exit do not close files you opened with calls to the I/O routines
documented in the Apple IIGS Toolbox Reference. .

onexit, stdie

Synopsis

Description

Diagnostics

See also

exp—exponential, logarithm, power, square-root

functions

#include <MATH.H>

extended exp(x)
extended x;
extended log(x)
extended X;
extended loglQ(x}
extended x;
extended pow(x, VY)
extended x, y:
extended sqrt(x)
extended x;

Function exp (%) returns ¢, where ¢ is the natural logarithm base.
Function log (x) returns the natural logarithm of x, log x.

Function 10gl0 {x) returns the base-10 logarithm of x, log;x.

Function pow (x, y) returns x7,

Function sqgrt (x) retumns the square root of x.

For special cases, these functions return a NaN or signed infinity as appropriate.

These functions honor the floating-point exception flags—invalid opération,
underflow, overflow, divide by zero, and inexact—as prescribed by SANE.

hypot, sinh
Apple Numerics Manual

exp 17

Synopsis

Description

Return value

Note

See also

faccess—named-file access and control

#include <FCNTL.H>

int faccess(filename, cmd, arg)
char *filename;
unsigned int cmd;
char *arg;

Function faccess provides access to control and status information for named files.
(Compare function ioctl, which provides different control and status information
for open files.)

Parameter cmd must be set to one of the constants in the following list to indicate what
operation is to be performed on the file. As noted in the list, some calls to faccess
also require the arg parameter, usually as a pointer to 2 char.

The following commands are available to all programs:

Value of emd Desciription

F_DELETE Deletes the named file, or returns an error if the file is open.
Parameter arg is ignored.

F_RENAME Renames the named file. Parameter arg is a pointer (o a string
containing the new name.

F_TYPE Sets the type of the file to the value of the parameter arg.

F_AUX Sets the auxiliary type of the file to the value of the parameter arg.

F_STAT Gets the directory entry information for the file filename, and

puts the information in the struct DirectoryEntry
pointed to by arg.

For example, faccess(thing, F_TYPE, 0x04) sets the type of file "thing" to
$04--ASCII text file.

Upon successful completion, faccess returns a nonnegative value, usually 0. If the
device for the named file cannot perform the requested command, faccess returns
-1 and errno is set to indicate the error.

The cmd value F_OPEN is reserved for operating system use.

ioctl, unlink

18 faccess

Synopsis

Description

Return value

See also

fclose—close or flush a stream

#include <STDIO.H>

int fclose({stream}
FILE *stream;

int fflush (stream)
FILE *stream;

Function fclose closes a file that was opened by fopen, freopen, or fdopen.
Function fclose causes any buffered data for st ream to be written out, and the
buffer (if one was allocated by the system) is released; fclose then calls close to
close the file descriptor associated with stream. The value of the parameter stream
cannot be used unless reassigned with fopen, fdopen, or freopen.

Function fclose fails if the file descriptor associated with st ream is already closed.
[ENCENTI

Function fclose is performed automatically for all open FILE streams upon calling
exit.

Function ££f1ush causes any buffered data for stream to be written out; stream
remains open.

These functions return 0 if the operation succeeded or EOF if an error was detected
(such as trying to write to a file that has not been opened for writing).

close, exit, fopen, setbuf

fclose 19

Synopsis

Description

Retuin value

Note

See also

20

fontl

fentl—file control

#include <FCNTL.E>

int fentl(fildes, cmd, arg)
int fildes;
unsigned int cmd;
int arg;

Function fentl is used for duplicating file descriptors. A file remains open until all of
its file descriptors are closed.

Parameter £ildes is an open file descriptor obtained from an open, creat, dup,
or fentl call. Parameter cmd takes the value F_DUPFD, which tells fentl to return
the lowest numbered available file descriptor greater than or equal to arg. Normally
arg is greater than or equal to 3, to avoid obtaining the standard file descriptors 0, 1,
and 2. Function fcntl returns a new file descriptor that points to the same open file
as £ildes. The new file descriptor has the same access mode (read, write, or
read/write) and file pointer as £ildes. Any [/O operation changes the file pointer
for all file descriptors that share it.

Function fcntl fails if one or more of the following are true:
O Parameter £ildes is not a valid open file descriptor. [EBADF]

O Parameter arg is negative or greater than the highest allowable file descriptor.
[EINVAL] ,

Upon successful completion, the value returned is a new file descriptor. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

The F_GETFD, F_SETFD, F_GETFL, and F_SETFL commands of fcntl are not
supported on the Apple IIGS.

close, dup, open

Synopsis

Description

See also

ferror—stream status inquiries

#include <STDIO.B>

int feof(stream)
FILE *stream;.

int ferror(stream)
FILE *stream;

void clearerr(stream)
FILE *stream; '

int fileno(stream)
FILE *stream;

Macro feof returns nonzero when an end-of-file condition has previously been
detected reading the named input stream; otherwise, it returns zero.

Macro ferror returns nonzero when an I/O error has previously occurred reading
from or writing to the named stream; otherwise, it returns zero.

Macro clearerr resels the error indicator and end-of-file indicator to zero on the
named stream.

Macro £ileno returns the integer file descriptor associated with the named stream;
see open.

open, fopen

ferror 21

Synopsis

Description

See also

floor

floor—floor, ceiling, mod, absolute value functions

#include <MATR.HE>

extended floor (x}
extended x;
extended ceil(x)
extended x;
extended fmod(x, y)
extended X, y;
extended fabs (x)
extended x;

Function £lcor (x) returns the largest integer (as an extended-precision number)
not greater than x.

Function ceil (x) returns the smallest integer not less than x.

Whenever possible, fmed (x, y) returns the number f with the same sign as x, such
that x = {y + f for some integer 1, and | f| < ly|. If yis 0, fmod returns a NaN.

Function fabs {(x) returns |x|, the absolute value of x.

abs
rint, setround in the Apple Numerics Manual

Synopsis

Description

fopen—ope'n a buffered file stream

#include <STDIO,H>

FILE *fopen{(filename, type)
char *filename, *type;
FILE *freopen{filename, type, stream)
char *filename, *type;
FILE *stream;
FILE =*fdopen(fildes, type)
int fildes;
char =*type;

Function fopen opens the file named by filename and associales a stream with
it. Function fopen returns a pointer to the FILE structure associated with the
stream.

Parameter filename points to a character string that contains the name of the file
to be opened.

The value of type should be one of the string values in the first column in the
following table, including the quotes. The headings Open Mode Used and
Description explain how type is used. For more information, see open.

Value Open mode used Description

Wt O _RDONLY Open for reading only.

Wt C_WRONLY |O_CREAT |O_TRUNC Truncate or create for writing.

"a" O_WRONLY |O_CREAT |O_APPEND Append: open for writing at end of
file, or create for writing.

“r+" O _RDWR Open for update (reading and writing).

"wt" O _RDWR|O_CREAT|O_TRUNC Truncate or create for update.

"a+” O RDWR|O_CREAT|O_APPEND Append: open or create for update at
end of file.

When a file is written to a device, normally certain characters are translated to match
the needs of the device or the expectations of ProDOS for a normal text file (such as tr
anslating \n to CR rather than LF). The following values, with b added to the
string, suppress such translations:

Value Open mode used Description

"rb" O_RDONLY|O_BINARY Open for reading only.

"wb" O_WRONLY|O_CREAT|OQ_TRUNCI|QO_BINARY Truncate or create for
writing.

"ab" O WRONLY|O CREAT|O_APPEND |O_BINARY Append: open for writing at
end of file, or create for
writing.

fopen 23

Return values

Note

See also

24

fopen

"rb+" O_RDWR|O_BINARY Open for update (reading
and writing).

"wb+"™ O_RDWR|Q_CREAT|O_TRUNC|Q_BINARY Truncate or create for
update.

"ab+" O RDWR|O_CREAT|C_APPEND|O_BINARY Append: open or create (or
update at end of file.

Note: The b and the + can be reversed.

Function freopen substitutes the named file for the open stream. The original
stream is closed, regardless of whether the open operation ultimately succeeds.
Function freopen returns a pointer to the FILE structure associated with
stream. Function freopen is typically used to auach the previously opened
streams associated with stdin, stdout, and stderr to other files.

Function fdopen associates a stream with a file descriptor by formatting a file
structure from the file descriptor. Thus, fdopen can be used to access the file
descriptors returned by open, creat, dup, or fcntl, (These calls return file
descriptors, not pointers to 2 FILE structure.) The type of stream must agree with
the mode of the open file.

When a file is opened for update, both input and output may be done on the resulling
stream. However, output may not be directly followed by input without an intervening
fseek or rewind, and input may not be directly followed by output without an
intervening fseek, rewind, or an input operation that encounters an end-of-file
condition.

When a file is opened for append (that is, when type is a or a+), it is impossible
to overwrite information already in the file. Function fseek may be used to
reposition the file pointer to any position in the file, but when output is written to the
file the current file pointer is disregarded. All output is writien at the end of the file
and causes the file pointer to be repositioned at the end of the output.

If they succeed, the functions fopen, freopen, and fdopen return a valid file
pointer. If they fail, they return NULL.

The maximum number of open FILE streams is NFILE (defined in STDIO.H,
currently 20). The maximum number of open disk files may be less than NFILE, as
determined by the current release of ProDOS.

The parameter type must have one of the values in the first column in the table; do not
use values intended for open, such as O RDONLY,

open, fclose, fseek

Synopsis

Description

Return values

See dlso

fread—binary input/output

#include <STDIOC.H>»

int fread(ptr, size, nitems, stream)
char *ptr;
int size, nitems;
PILE *stream;

int fwrite(ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

Function fread copies nitems items of data from the named input stream into an
array beginning at pt r. An item of data is a sequence of size bytes (not necessarily
terminated by a null byte). Function £read stops appending bytes if an end-of-file or
error condition is encountered while reading stream or if nitems items have been
read. Function fread leaves the file pointer in st ream pointing to the byte following
the last byte read.

Function fwrite writes at most nitems items of data to the named output stream
from the array pointed to by ptr. An item is a sequence of size bytes. Function
fwrite stops writing when it has written nitems items of data or if an error condition
is encountered on stream. Function fwrite does not change the contents of the
array pointed to by ptr.

The parameter size is typically

sizeof (*ptr)

where sizeof specifies the length of an item pointed to by ptr. If ptr points to a
data type other than char, it should be cast into a pointer to char. :

Functions fread and fwrite return the number of items read or written. If nitems
is 0 or negative, no characters are read or written and 0 is returned by both fread and
fwrite,

fopen, getc, gets, printf, pute, puts, read, scanf, stdio, write

fread 25

Synopsis

Description

Diagnostics

See also

26

frexp

frexE—manipulafe pjtr:rts of floating-point numbers

#include <MATH.H>

extended frexp(value, eptr)
extended wvalue;
int *eptr;
extended ldexp(value, exp)
extended wvalue;
int exp;
extended modf(value, iptr)
extended wvalue, *iptr;

Every nonzero number can be written uniquely as x* 2%, where the mantissa
(fraction) xis in the range 0.5 < | x| < 1.0 and the exponent 7 is an integer. Function
frexp returns the mantissa of an extended value and stores the exponent indirectly
in the location pointed to by ept r. Note that the mantissa here differs from the
significand described in the Apple Numerics Manual, whose normal values are in the
range 1.0< lxl <20.

Function ldexp returns the quantity value * 2%P,

Function modf retums the signed fractional part of value and stores the integral pan
indirectly in the location pointed to by iptr.

Function ldexp honors the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexact—-as prescribed by SANE.

logb, scalb in the Apple Numerics Manual

Synopsis

Description

Diagnostics

See also

fseek:reposiﬁon a file pointer in a stream

#include <STDIO.H>

int fseek(stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;
void rewind(stream)
FILE *stream;
long ftell{stream)
FILE *stream;

Function f£seek sets the position of the next input or output operation on the stream.,
The new position is of£set bytes from the beginning, the current position, or the
end of the file, when the value of ptrname is 0, 1, or 2, respectively. If ptrname is 1
or 2, cffset may be negative.

The call

rewind(stream)

is equivalent to

fseek (stream, 0L, Q)

except that no value is returned.

Functions £seek and rewind undo any effects of ungetec.

After £seek or rewind, the next operation on a file opened for update may be either
input or output.

Function ftell retumns the offset of the current byte relative to the beginning of the
file associated with the named stream,

Function fseek returns nonzero for improper seeks; otherwise it returns zero. An
example of an improper seek is an £seek before the beginning of the file.

lseek, fopen, ungetc

fseek 27

Synopsis

Description

Return values

Note

See also

28

getc

gefc?—-gef a character or a word from a stream

#include <STDIO.H>

int getc(stream)
FILE *stream;

int getchar()

int fgetc({stream)
FILE *stream;

int getw(stream)
FILE *stream;

Macro getc returns the next character from the named input stream. It also moves
the file pointer, if defined, ahead one character in stream. Macro getc cannot
be used if a function is necessary; for example, you cannot have a function pointer
point to it. Macro getc returns the integer EOF on end of file or error.

Macro getchar returns the next character from the standard input stream, stdin.

Function fgetc produces the same result as macro getc; function fgetc runs
more slowly than macro getec but takes less space per invocation. You can also
have a pointer to fgetc but notto gete.

Function getw retums the next int (that is, two bytes) from the named input
stream so that the order of bytes in the stream corresponds to the order of bytes in
memory. Function getw returns the constant EOF upon encountering an end-of-
file or error condition. Because EOF is a valid integer value, feof and ferror
should be used to check the success of getw. Function getw increments the
associated file pointer, if defined, to point to the next int. Function getw assumes
no special alignment in the file,

These calls retum either data from the stream or the integer constant EOF (-1) on
end of file or error condition.

Because it is implemented as a macro, getc treats a stream parameter with side
effects incorrectly. In particular,

getc (*f++)
doesn’t work as you would expect. Instead use

fgetc (*f++)

ferror, fopen, fread, gets, iocntl, scanf, stdic

Synopsis

Description

Relum value

Note

Warning

getenv—access exported APW Shell variables

#include <STDLIB.H>

char *getenv{varname)
char *varname;

The environment is the set of exporied variables provided by the APW Shell.
Function getenv provides access to variables in this set. (See the Variables section
in Chapter 4 of the Apple IIGS Programmer’s Workshop Reference for the list of
standard exported shell variables.)

Function getenv searches the environment for a shell variable with the name
specified by varname and returns a pointer to the character string containing its
value. The null pointer is returned if the shell variable is not defined or has not been
exported. The shell-variable name search is case insensitive.

Upon successful completion, a pointer to the value of varname is returned. If the
shell variable is not defined or not exported, the function returns the null pointer.

For standalone applications, which do not run under the APW shell, getenv always
returns the null pointer.

The environment can also be accessed by means of a parameter to the C main-entry-
point function main if the main procedure is declared as

main (arge, arv, envp)

The envp array represents the set of APW shell variables that have been made
available to tools by means of the APW EXPORT command, The ith envp entry has
the form

envp[i] = "varname\Ovarvalue\0";
The last envp entry is the null pointer.

If you use envp to search the environment, be sure to use case-insensitive string
comparisons.

Fundtion getenv returns a pointer to the place in memory where a copy of the APW
shell variable resides. Do not modify the value of a shell variable .in such a way as to

increase its length.

getenv 29

Synopsis

Description

Return values

Note

See calso

30

gets

gets—get a string from a stream

#include <STDIQ.H>

char *gets(str)
char *str;
char *fgets(str, maxlen, stream}
char *str;
int maxlen;
FILE *stream;

Function gets reads characters from the standard input stream stdin into the array
pointed to by str until a newline character is read or an end-of-file condition is
encountered. The newline character is discarded, and the string is terminated with a
null (\0) character.

Function fgets reads characters from st ream into the array pointed to by st r until
maxlen-1 characters are read, a newline character is read and transferred to str, or
until an end-of-file condition is encountered. The string is then terminated with a null
character.

If the end-of-file is encountered and no characters have been read, no characters are
transferred to st r and NULL is returned. If a read error occurs, NULL is returned.
Otherwise str is returned. (A read error will occur, for example, if you attempt to use
these functions on a file that has not been opened for reading.)

The array pointed to by str is assumed to be large enough; overflow is not checked.
The function get s omits the newline character in the string; fgets leaves it in.

ferror, fopen, fread, getc, scanf, stdio

Synopsis

Description

Diagnostics

See dlso

hypot—Euclidean distance function

#include <MATH,.H>

extended hypot(x, Y)
extended x, ¥y;

Function hypot retums
sqrt (x * x + y * y)
taking precautions against unwarranted overflows.

Function hypot honors the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexaci—as prescribed by SANE.

exp
Apple Numerics Manual

hypot

31

ioctl—control a device

Synopsis #include <IOCTL.H>

int ioc¢tl(fildes, cmd, -arg)
int fildes;
unsigned int cmd;
long *arg;

Description Funcrion igctl communicates with a file's device handler by sending control
information, requesting status information, or both. Parameter cmd indicates which
device-specific operations icctl must perform. Here are the control values:

Value of crnd Description :

FIOINTERACTIVE Function ioctl returns 0 if the device is interactive; if not, it
returns -1 and errno is set to EINVAL, Parameter arqg is
ignored.

FIOBUFSIZE Function ioctl returns, in bytes, the optimal buffer size for
this device; the buffer size is returned in a 1long pointed to by
arg. If the device has no default buffer size, ioctl returns -1
and errno is set to EINVAL. ‘

FIOREFNUM Function ioctl returns the Apple IIGS file reference number
associated with £ildes; the reference number is returned in
the short pointed to by arg. If the £ildes is not open on 4
Apple IIGs file (such as the console device), ioctl returns ~1.

FIOSETEOF Function ioctl sets the logical end-of-file specified in the
long parameter arg. The value of arg is the new size of the
file, in bytes. This command can be used to reduce or
increase the size of the open file. The current file pointer is not
affected unless the file size is set below it.

FIO STAT Function ioctl stores the directory information associated
with fildes into the struct DirectoryEntry pointed
to by arg.

Function ioct1 fails if one or both of the following conditions exist:

0 File descriptor fildes is not valid or is not open. [EBADE]-

O Parameters cmd or arg are not valid for the device handler associated with
fildes. [EINVAL]

32 ioctl

Diagnostics

Note

Warning

See also

If an error has occurred, a value of -1 is returned and errno is set to indicate the
error. ‘

For cmd values FIOINTERACTIVE and FIOBUFSIZE, a function return of -1 is a
meaningful response, not an error. For FIOINTERACTIVE, errnc is set to EINVAL
for devices that are not interactive. For FIOBUFSIZE, errno is set to EINVAL for
devices that have no default buffering,. '

The cmd values FIOLSEEK and FIODUPFD are reserved for operating systemn use,

FIOREFNUM lets you do Apple TIGS I/O operations such as Allocate that are not
available through ioctl. Do not close or modify the file pointer using the reference
number. '

fentl

ioctl 33

Synopsis

Description

Return value

Note

Warning

34

lseek

Iseek—move read/write file pointer

#include <FCNTL.H>

long lseek(fildes, offset, whence)
int fildes;
long offset;
int whence;

A file descriptor, £ildes, is retumed from a call to creat, dup, £cntl, or open.
Function lseek sets the file pointer associated with £ildes as follows:

0O If whence is 0, the pointer is set to of fset bytes.

O If whence is 1, the pointer is set to its current location plus offset.
(The value of offset may be negative, zero, or positive.

D If whence is 2, the pointer is set to the size of the file plus of£set.
(The value of offset may be negative or zero.

Upon successful completion, the file pointer value as measured in bytes from the
beginning of the file is returned.

The file pointer remains unchanged and 1seek fails if one or more of the following
are true:

0O File descriptor £ildes is not open. [EBADF]
0 Parameter whence is not 0, 1, or 2. [EINVAL)]
0O The resulting file pointer would point before the beginning of the file. [EINVAL]

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

Upon successful completion, a nonnegative long integer indicating the file-pointer
value is returned. Otherwise, a value of ~1 is returned and errno is set to indicate the
error.

In previous versions of the Standard C Library, tell (fildes) was a [unction that
returned the current file position. It is equivalent to the call

lseek (fildes, 0L, 1)

Function 1seek has no effect on a file opened with the O_APPEND flag because the
next write to the file always repositions the file pointer to the end before writing.

See also fseek, open

Iseek 35

Synopsis

Description

36

malloc

malloc—memory allocator

#include <MALLOC.H>

char *malloc(size)
unsigned int size;
void free(ptr)
char *ptr;
char *realloc(ptr, size)
char *ptr;
unsigned int size;
char *calloc{nelem, elsize)
unsigned int nelem, elsize;
vold cfree(ptr, nelem, elsize)
char *ptr;
unsigned int nelem, elsize;

Functions malloc and free provide a simple general-purpose memory-allocation
package. The storage area expands as necessary when malloc is called.

Function malloc allocates the first sufficiently large contiguous free space it finds and

returns a pointer to a block of at least size bytes suitably aligned for any use. It calls

NewHandle (see the Apple IIGS Toolbax Referencé) to get more memory from Lhe
system when there is no suitable space already free.

Function free takes a parameter that is a pointer to a block previously aliocated by
malloc. If its size is greater than 2K bytes, it is returned to the system using
DisposeHandle. Blocks smaller than that are cached by malloc for further
allocation by malloc only. Undefined results occur if the space assigned by malloc
is overrun or if a random value is passed to free.

Function realloc changes the size of the block pointed to by ptx to size bytes and
returns a pointer to the (possibly moved) block. The contents are unchanged up to
the lesser of the new and old sizes. If no free block of size bytes is available in the
storage area, realloc asks malloc to enlarge the storage area by size bytes and
then moves the data to the new space. If ptr is NULL, realloc is equivalent to
malloc.

Function calloc allocates space for an array of nelem elements of size elsize. The
space is initialized to zeros.

Function cfree, like free, frees memory allocated by calloc; cfree is included
for compatibility with other systems. Parameters nelems and elsize are ignored.

Diagnostics Functions malloc, realloc, and calloc return NULL if there is no available
memory or if the storage area has been detectably corrupted by a program’s storing
data outside the bounds of a block. When this happens, the block pointed to by ptr
may have been destroyed.

mallec 37

Synopsis

Description

Warning

memory—memory operations

#include <MEMORY.H>

char *memccpy (dest, source, ¢, n)
char *dest, *source;
ifnt &, 47

char *memchr (source, ¢, n)
char *source;
int ¢, n;

int mememp{a, b, n)
char *a, *b;
int n;

char *memcpy(dest, source, n)
char *dest, *source;
int n;

char *memset (dest, ¢, n)
char *dest;
char c;
int n;

These functions operate efficiently on memory areas (arrays of characters bounded
by a count, not terminated by a null character). They do not check for the overflow of
any receiving memory area.

Function memccpy copies characters from memory area source into dest,
stopping after the first occurrence of character ¢ has been copied or after n
characters have been copied, whichever comes first. It returns either a pointer to the
character after the copy of c in dest or NULL if ¢ was not found in the first n
characters of source,

Function memchr returns either a pointer to the first occurrence of character c in the
first n characters of memory area source or NULL if c does not occur.

Function memcmp compares its parameters, a and b, looking at the first n characters
only. It returns an integer less than, equal to, or greater than 0, depending on
whether a is less than, equal to, or greater than b.

Function memcpy copies n characters from memory area source to dest. It returns
dest.

Function memset sets the first n characters in memory area dest to the value of
character c. It returns dest.

Overlapping moves yield unexpected results.

38 memory

See also string
BlockMove in the Toolbox Reference Manual

memaory 39

Synopsis

Description

Diagnostics

Note

Warning

See also

40 onexit

onexit—install a function to be executed
at program termination

int onexit (func);
void (xfunc) (}:

Function onexit installs the exit function pointed to by func by adding it to a list.
The list is initially empty. A list entry is added whenever onexit is called. Function
exit calls the functions in the list in the reverse order in which they were added. To
ensure that buffers are flushed at program termination, the Standard 1/O Package
adds its cleanup function to the list the first time it allocates a buffer. Each function in
the list is called without parameters either at program termination or when exit is
called.

The number of user-supplied exit functions is limited to five.

The function returns a nonzero value if the installation fails.

A call to _exit circumvents user exit procedures installed by onexit.
If a function is installt;d more than once, its behavior is undefined,

exit, stdio

Synopsis

Description

hopen—open for readiLng or writing

#include <FCNTL.H>

int open(filename, oflag)
char *filename;
int oflag;

Parameter £1lename is a filename or pseudo-filename (such as .NULL). Function
open opens 2 file descriptor for the named file and sets the file-status flags according
to the value of oflag. The value of oflag is constructed by OR-ing flag settings; for
example,

fildes = open("MyFile", O_WRONLY|Q CREAT|O TRUNC);:

To construct oflag, first select one of the following access modes:

O O_RDONLY Open for reading only.
O O_WRONLY Open for writing only.
O O_RDWR Open for reading and writing.

Then optionally add one or more of these modifiers:
D O_APPEND The file pointer is set to the end-of-file before each write.

O O_CREAT If the file does not exist, it is created.

O O_TRUNC If the file exists, its length is truncated to {; the mode and owner are
unchanged.

The following setting is valid only if 0 CREAT is also specified:

0O O_EXCL Function open fails if the file exists.

When 2 file is written to a device, normally certain characters are translated to match
the needs of the device or the expectations of ProDOS for a normal text file (such as tr
anslating \n to CR rather than LF). The following flag suppresses such translation.

O O_BINARY The file is read or written verbatim, suppressing the device driver's
conversions.

Upon successful completion, a nonnegative integer (the file descriptor) is returned.

The file pointer used to mark the current position within the file is set to the beginning

of the file.

The named file is opened unless one or more of the following are true:

O O_CREAT is not set and the named file does not exist. [ENOENT]

O More than about 30 file descriptors are currently open. The actual limit varies

according to run-time conditions. [ENFILE]
O O_CREAT and O_EXCL are set and the named file exists. [EEXIST]

open 41

Return value Upon successful completion, a nonnegative integer (the file descriptor) is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

See also close, creat, lseek, read, write

42 open

Synopsis

Description

printf—print formatted output

#include <STDIO.H>

int printf{format [, arg 1 ...)
char *format;
int fprintf(stream, format [, arg] ...)

FILE *stream;
char *format;

int sprintf(str, format [, arg] ... }
char *str, *format;

Function printf places formatted output on the standard output stream stdout.
Function fprint£ places formated output on the named output stream stream.
Function sprintf places formatted output, followed by the null character (\0), into
the character array pointed to by str; it's your responsibility to ensure that enough
room is available. Each function returns the number of characters transmitted (not
including the \ 0 in the case of sprint£), or a negative value if an output error was
encountered.

Each of these functions converts, formats, and prints its arg parameters under
control of the format parameter. The format parameter is a character string that
contains two types of objects: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which results in fetching zero or more
arg parameters. The behavior of the function is undefined if there are insufficient
arg parameters for the format. If the format is exhausted while arg parameters
remain, the extra arg parameters are ignored.

Each conversion specification is introduced by the character %. After %, the
following appear in sequence:

1. Zero or more flag characters, which modify the meaning of the conversion
specification.

2. An optional decimal digit string specifying a minimum field width. If the converted
value has fewer characters than the fleld width, it will be padded to the field width
on the left (default) or right Gf the left-adjustment flag has been given): see the
discussion of the flag specification, below.

3. A precision that gives the minimum number of digits to appear for the 4, o, u,
x, or X conversions; the number of digits to appear after the decimal point for
the e, E, and £ conversions; the maximum number of significant digits for the
g and G conversions; or the maximum number of characters to be printed from a
string in the s conversion. The format of the precision is a period (.) followed by a
decimal digit string; a null digit string is treated as zero.

printf 43

44

printf

4. An optional 1 specifying that a following d, o, u, %, or X conversion
character applies to an arg parameter of type long.

5. A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string.
In this case, an integer arg parameter supplies the field width or precision. The
arg parameter that is actually converted is not fetched until the conversion letter is
seen; therefore, the arg parameters specifying field width or precision must appear
immediately before the arg parameter (if any) to be converted.

These are the flag characters and their meanings:

+

blank

The result of the conversion will be left justified within the field.
The result of a signed conversion always begins with a sign (+ or -).

If the first character of a signed conversion is not a sign, a space will
be prefixed to the result. This implies that if the blank and +
flags both appear, the blank flag will be ignored.

The value is to be converted to an alternate form. For c, d, s,
and u conversions, the flag has no effect. For o conversion, it
increases the precision to force the first digit of the result to be a
zero. For x (X) conversion, a nonzero result will have 0x (0X)
prefixed to it. For e, E, £, g, and G conversions, the result will
always contain a decimal point, even if no digits follow the point.
(Normally, a decimal point appears in the result of these
conversions only if a digit follows it.) For g and G conversions,
trailing zeros in the fractional part will not be removed from the
result (as they normally are).

The conversion characters and their meanings are these:

d, o, u, x X

The integer arg parameter is converted to signed decimal (d),
unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal notation (x and X), respectively; the letters abcdef
are used for x conversion and the letters ABCDEF for X
conversion.

The precision specifies the minimum number of digits to appear; if
the value being converted can be represented in fewer digits, it will
be expanded with leading zeros. The default precision is 1. The
result of converting a zero value with a precision of zero is a null
string.

e, E

g, G

%

The float, double, comp, or extended arg parameter is
converted to decimal notation in the form “[-lddd. ddd” where
the number of digits after the decimal point is equal to the precision
specification. If the precision is missing, it is assumed to be 6; if the
precision is explicitly 0, no decimal point appears. Infinities are
printed in the form “[~]INF”, and NaNs are printed in the form
“[-INAN(ddd)", where ddd is a code indicating why the result is not
a number.

The float, double, comp, or extended arg parameter is
converted in the form “[-]d . dddetdd’, where there is one digit
before the decimal point and the number of digits after it is equal to
the precision. When the precision is missing, it is assumed to be 6;
if the precision is 0, no decimal point appears. The E format code
produces a number with E instead of e introducing the
exponent. The exponent always contains at least two digits.
Infinities are printed as INF and NaNs are printed in the form
“[-INAN(ddd)", where ddd is a code indicating why the result is not
a number.

The float, double, comp, or extended arg parameter is
printed in style £ or e (orinstyle £ or E in the case of a2 G
format code), with the precision specifying the number of
significant digits. The style used depends on the value converted:
style e is used only if the exponent resulting from the conversion
is less than —4 or greater than the precision. Trailing zeros are
removed from the result. A decimal point appears only if it is
followed by a digit. 1

The character arg parameter is printed.

The arg parameter is taken to be a string (character pointer) and
characters from the string are printed until a null character (\0) is
encountered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to be
infinite, with the result that all characters up to the first null
character are printed. If the string pointer arg parameter has the
value zero, the result is undefined,; a zero arg parameter yields
undefined results,

Print a %; no parameter is converted.

In no case does a nonexistent or small field width cause truncation of a field. If the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by printf and fprintf are
printed as if putc had been called.

printf 45

Examples

Note

See also

46

printf

To print a date and time in the form “Sunday, july 3, 10:02", where weckday and
month are pointers to null-terminated strings, use this:

printf("%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min};
To print pi to five decimal places, use this:

printf("pi = %.5f", pi());

Calling sprintf causes other Standard I/O functions to be loaded, even though
sprintf doesn’t perform any I/O.

dec2str, ecvt, num2dec, putcg, scanf, stdio

Synopsis

Description

Return values

Note

See also

putc—put character or word on a stream

#include <STDIC.H>

int putc(c, stream)
char c;
FILE *stream;
int putchar(c)
char ¢:
int fputci{c, stream)
char c;
FILE *stream;
int putw(w, stream)
int w;
FILE *stream;

Macro putc wriles the character ¢ to the output stream at the current position of
the file pointer. Macro putchar (¢) is equivalent to

putc(c, stdout)

Function fputc behaves like macro putc. Function fpute runs more slowly
than macro putc but takes less space per invocation.

Function putw writes an int (that is, two bytes) to the output stream at the current
position of the file pointer. This function neither assumes nor causes special
alignment in the file.

For information about buffering of output files, see the stdio page.

When putc, putchar, fputec, of putw succeeds, it returns the value they have
written. When one of these fails, it returns the constant ECF. This occurs if the file
stream is not open for writing or if the output file cannot be grown. When putw
succeeds, it returns 0; when it fails, it returns a nonzero value.

Because it is implemented as a macro, putc treats a stream parameter with side
effects incorrectly. In particular,

putc(c, *f++)

produces unexpected results. Instead, use

fputc(c, *f++)

fclose, ferror, fopen, fread, getc, printf, puts, setbuf, stdio

putc a7

Synopsis

Description

Return value

Note

See also

48 puts

puts—write a string to a stream

#include <STDIO.H>

int puts{(str)
char *str;

int fputs{str, stream)
char *str;
FILE *stream;

Function puts writes the null-terminated string pointed to by str, followed by a
newline character, to the standard output stream stdout.

Function fputs writes the null-terminated string pointed to by str to the named
output stream stream.

Neither function writes the terminating null character.

Both routines return the number of characters written, or return EOF if there is a
write error.

Function puts appends a newline character, while fputs does not.

ferror, fopen, fread, printf, pute, stdio

qsort—quicker sort

Synopsis vold gsort(base, nelem, elsize, compar)
char *base;
unsigned int nelem, elsize;
int ({*compar) ():

Description Function gsort is an implementation of the quicker-sort algorithm. It sorts a table
of data in place.
Parameter base points (0 the element at the base of the table. Parameter nelem is
the number of elements in the table. Parameter elsize is the size of an element in
the table; it can be specified as sizeof (*base).
Parameier compar is a pointer {0 a comparison function that you supply. Function
gsort calls your comparison function with pointers to two elements being
compared. Here is a sample declaration for your comparison function:

int myCompare(eleml, elem2)
char *eleml, *eleml;

Your comparison function supplies the result of the comparison to gsort by
returning one of the following integer values:

Result Meaning

<0 The first parameter is less than the second parameter.
0 The first parameter is equal to the second parameter,
>0 The first parameter is greater than the second parameter.
Note Parameter base, the pointer to the base of the table, should be of the pointer-to-

element type and cast lo (char *).

gsort 49

Synopsis

Description

See also

50

rand

rand—a simple random-number generator

int rand{()
vold srand(seed)
unsigned seed;

Function rand uses a multiplicative congruential random-number generator with
period 232 that returns successive pseudorandom numbers in the range from 0 to
215-1.

Function srand can be called at any time to reset the random-number generator Lo
a specific seed. The generator is initially seeded with a value of 1. Identical seeds
produce identical sequences of pseudorandom numbers.

Random, randomx in the Apple Numerics Manual

Synopsis

Description

Return value

See also

read—read fror;-ﬁle

int read(fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

File descriptor f£ildes is obtained from a call to open, creat, dup, or
fentl,

Function read transfers up to nbyte bytes from the file associated with fildes
into the buffer poinied to by buf.

On devices capable of seeking, read starts reading at the current position of the file
pointer associated with fildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.

Nonseeking devices always read from the current position. The value of a file pointer
associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read and
placed in the buffer; this number may be less than nbyte if the number of bytes left
in the file is less than nbyte bytes. A value of 0 is remurned when the end-of-file has
been reached, or -1 if a read error occurred.

Function read fails if fildes is not a valid file descriptor open for reading.
[EBADF]

File descriptor 0 is opened by the APW Shell as the standard input.

Upon successful completion, a nonnegative integer is returned indicating the number
of bytes actually read. Otherwise, ~1 is rewurned and errno is set to indicate the
error,

creat, open

read 51

Synopsis

Description

52

scanf—convert formatted input

#include <STDIC.H>

int scanf(format [, pointer] ...)
char *format;
int fscanf (stream, format [, pointer] ...)

FILE *stream;
char *format;

int sscanf(str, format [, pointer] ...)
char *str, *format;

Function scanf reads characters from the standard input stream stdin. Function
fscanf reads characters from the named inpul stream stream. Function sscanf
reads characters from the character string str. Each function converts the input
according to a control string (format) and stores the resulis according to a set of

 pointer parameters that indicate where the converted output should be stored.

scanf

Parameter format, the control string, contains specifications that control the
interpretation of input sequences. The format consists of characters to be matched in
the input siream and/or conversion specifications that start with the character %. The
control string may contain

00 White-space characters (spaces and tabs) that cause input to be read up to the next
non-white-space character, except as described below.

O A character (any except %) that must match the next character of the input stream:.
To match a % character in the input stream, use %%.

a Conversion specifications beginning with the character % and followed by an
optional assignment suppression character *, an optional numeric maximum
field width, an optional 1, m, n, or h indicating the size of the receiving
parameter, and a conversion code.

An input field is defined relative to its conversion specification. The input field ends
when the first character inappropriate for conversion is encountered or when the
specified field width is exhausted. After conversion, the input pointer points to the
inappropriate character.

A conversion specification directs the conversion of the next input field; the result is
placed in the vanable pointed to by the corresponding parameter, which is a pointer
to a basic C type such as int or float.

Assignment can be suppressed by preceding a format character with the character *.
Assignment suppression means an input field is skipped; the field is read and
converted but not assigned. Therefore, pointer should be omitted when
assignment of the corresponding input field is suppressed.

The format character dictates the interpretation of the input field. The followi‘ng

format characters are legal in a conversion specification, after %:

%

d

o,

A single % is expected in the input at this point. No assignment is
done.

A decimal integer is expected. The corresponding parameter
should be an integer pointer.

An unsigned decimal integer is expected. The corresponding
parameter should be an unsigned integer pointer.

An octal integer is expected. The corresponding parameter should
be an integer pointer.

A hexadecimal integer is expected. The corresponding parameler
should be an integer pointer.

The conversion characters d, u, o, and x may be preceded by
1 or h to indicate that a pointer to long or short, rather than
int, is in the parameter list. The h is ignored in this
implementation because int and short are both 16 bits.

A floating-point number is expected. The next field is converted
accordingly and stored through the corresponding parameter,
which should be a pointer to 2 float, double, comp, or
extended, depending on the size specification. The input format
for floating-point numbers is an optionally signed string of digits,
possibly containing a decimal point, followed by an optional
exponent field consisting of E or e followed by an optionally
signed integer. In addition, infinity is represented by the string
“INF”, and NaNs are represented by the string “NAN”, optionally
followed by parentheses that may contain a string of digits (the NaN
code). Case is ignored in the infinity and NaN strings.

The conversion characters e, f, and g may be preceded by 1,
m, or n (o indicate that a pointer to double, comp, or
extended, rather than float, is in the parameter list.

A character string is expected. The corresponding parameter
should be a character pointer to an array of characters large enough
to accept the string; a terminating null character (\0) is added
automatically. The input field is terminated by a white-space
character (space or tab), or when the number of characters
specified by the maximum field width has been read.

A character is expected; the corresponding parameter should be a
character pointer. The normal skip over white space is suppressed
in this case; use %1s to read the next non-white-space character.
If a field width is given, the corresponding parameter should refer
to a character array; the indicated number of characters is read.

scanf 53

Examples

54

scanf

[The left bracket introduces a scanset format The input field is the
maximal sequence of input characters consisting entirely of
characters in the scanset. When reading the input field, string data
and the normal skip over leading white space are suppressed. The
corresponding pointer parameter must point to a character array
large enough to hold the input field and the terminating null
character (\0), which will be added automatically. The left brackct
is followed by a set of characters (the scanset) and a terminating
right bracket.

A When it appears as the [irst character in the scanset, the circumllex

serves as a complement operator and redefines the scanset as the
set of all characters not contained in the remainder of the scanset
string.

] The right bracket ends the scanset. To be included as an element of
the scanset, the right bracket must appear as the first character
(possibly preceded by a circumflex) of the scanset. Otherwise, it
will be interpreted syntactically as the closing bracket.

A range of characters may be represented by the construct first-lasy;
thus the scanset [0123456789] may be expressed (0-9]. To
use this convention, first must be less than or equal to last in
the ASCII collating sequence. Otherwise, the minus (=) will stand
for itself in the scanset. The minus will also stand for itself whenever
it is the first or the last character in the scanset.

Conversion terminates at the end of file, at the end of the control string, or when an
input character doesn’t match the control string, In the last case, the unmatched
character is left unread in the input stream.

Here are some ways the scanf function can be used:

Example 1
The call
int i;
float =x;

char name[50];
scanf ("%d%f%s", &1, &x, name);

with input
25 54.32E-1 reed
will assign the value 25 to i and the value 5.432 to x; name will contain “reed\0".

Example 2
The call

Return value

Note

Warning

See also

int i,

extended x;

char name[50];

scanf ("%2d%nf%*d %[0-2]", &i, &xX, name);

with input

56789 01232 5e6a72

will assign 56 to 1 and 789.0 to x, skip 0123, and place the string “56\0” in name.

"_n

The next call to getchar will return "a”.

Example 3

The call

int i;

scanf ("answerl=%d", &1);
with input

answerl=31 answer2=45

will assign the value 51 to 1 because “answerl” is matched explicitly in the input
stream. The input pointer will be left at the space before “answer2”,

Functions scanf, fscanf, and sscanf return the number of successfully
matched and assigned input items, This number can be zero when an early mismatch
between an input character and the control string occurs, If the input ends before the
first mismatch or conversion, EQOF is returned.

These functions return EOF on end of input and 2 short count for missing or illegal
data items.

Trailing white space is left unread unless matched in the control string.

The success of literal matches and suppressed assignments is not directly
determinable.

The pointer parameters in these functions must be addresses: for example, &1,
Be sure not to pass i rather than its address.

atof, getc, printf, stdio, strtol
dec2num, str2dec in the Apple Numerics Manual

scanf B

Synopsis

setbuf—assign buffering to a stream

#include <STDIC.H>

void setbuf (stream, buf)
FILE *stream;
char *bufl;

-int setvbuf({stream, buf, type, size)

Description

56

setbuf

FILE *stream;
char *buf;
int type;

int size;

A buffer is normally allocated by the Standard C Library at the time of the first getc
or putc on a file. If you prefer to provide your own buffer, you can call setbuf or
setvbuf after a stream has been associated with an open file but before it is read or
written. Functions setbuf and setvbuf let you provide your own buffering for a file
stream. Function setvbuf is a more flexible extension of setbuf,

Function setbuf causes the character array pointed to by buf to be used instead of
an automatically allocated buffer. BUFSIZ, a constant defined in the <StdIO.h>
header file, lets you specify the size of the buf array as

char buf[BUFSIZ];
If buf is NULL, input/output is unbuffered.

Function setvbuf lets you specify two parameters in addition to those required by
setbuf: size and type. Parameter size specifies the size in bytes of the array to be
used; the standard I/O functions work most efficiently when size is a multiple of
BUFSIZ. If buffer pointer buf is NULL, a buffer of size bytes is allocated from the
system. If size is not zero, size is assigned to the FILE variable’s size parameler; if
buf is not NULL, buf is assigned to the FILE variable's buffer-pointer parameter.
The value of type delermines how stream is buffered by setvbuf, as follows:

Value of type Description

_IOFBF Causes input/output to be file buffered.

_IOLBF Causes output to be line buffered. The buffer is flushed when a
newline character is written or when the buffer is full.

_IONBF Causes input/output to be unbuffered. Parameters buf and size are
ignored.

The following function calls are equivalent when buf is not NULL:

setbuf(stream, buf);
setvbuf (stream, buf, _IOFBF, BUFSIZ);

Diagnostics

Note

See also

The following function calls are equivalent when buf is NULL:

setbuf (stream, NULL;
setvbuf (stream, NULL, IONBF, BUFSIZ);

Function setvbuf returns nonzero if an invalid value is given for type.

The buffer must have a lifetime at least as great as the open stream. Be sure to close the
stream before the buffer is deallocated. If you allocate buffer space as an automatic
variable in a code block, be sure to close the stream in the same block.

If buf is NULL and the system cannot allocate size bytes, a smaller buffer will be
allocated.

fopen, getc, mallocg, putc, stdio

setbuf 57

Synopsis

Description

Warning

See also

58

setimp

setjimp—nonlocal transfer of control

#include <SETJMP.H>

int setjmp (env)
jmp_buf env;

vold longjmp{env, wval)
jmp_buf env;
int wval;

These functions let you escape from an error or interrupt encountered in a low-level
subroutine of your program.

Function set jmp saves its stack environment in env for later use by longjmp. It
returns the value 0.

Function longjmp restores the environment saved by the last call of set jmp with the
corresponding env environment. After a call to longjmp, the program continues as
if the preceding call to set jmp had returned the value val.

Function longjmp cannot cause set jmp to return the value 0. If longjmp is invoked
with a second parameter of 0, set jmp returns 1. Data values will be those in effect at
the time longjmp was called, except for register variables (see “Warning”).

If longjmp is called without a previous call to set jmp or if the function that
contained the set jmp has already returned, results are unpredictable,

signal

sinh—hyperbolic functions

Synopsis #include <MATH.H>

extended sinh(x)
extended x;

extended ccsh(X)
extended Xx;

extended tanh(x)
extended x;

Description Functions sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine,
and tangent of their parameter.

Diagnostics Functions sinh, cosh, and tanh honor the floating-point exception flags—invalid
operation, underflow, overflow, divide by zero, and inexact—as prescribed by
SANE.

See also Apple Numerics Manual

sinh

Synopsis

Description

60

stdio

stdio—standard buffered input/output package

#include <STDIO.H>
#include <STRING.H>

FILE =*stdin, *stdout, *stderr;

The Standard /O Package constitutes an efficient user-level I/O buffering scheme.
The inline macros getc and putc handle characters quickly. Macros getchar and
putchar, and the higher-level routines fgetc, fgets, £fprintf, fputc, fputs,
fread, fscanf, fwrite, gets, getw, printf, puts, putw, and scanf all use
getc and putc. Calls to these macros and functions can be freely intermixed.

The constants and the following functions are implemented as macros: getc,
getchar, putc, putchar, feof, ferror, clearerr, and fileno.
Redeclaration of these names should be avoided.

Any program that uses the Standard 1/O Package must include the <StdI0.h> header
file of macro definitions. The functions, macros, and constants used in the Standard
/O package are declared in the header file and need no further declaration.

A stream is a file with associated buffering and is declared to be a pointer to a FILE
varable. Functions fopen, freopen, and fdopen return this pointer. The
information in the FILE variable includes

O the file access—read or write

O the file descriptor as returned by open, creat, dup, or fcntl
O the buffer size and location

 the buffer style (unbuffered, line-buffered, or file-buffered)

Standard 1/O buffering

Qutput streams, with the exception of the standard error stream stderr, are by
default file buffered if the output refers to a file. File stderr is by default line
buffered. When an output stream is unbuffered, it is queued for writing on the
destination file or window as soon as written; when it is file buffered, many characiers
are saved up and written as a block; when it is /ine buffered, each line of output is
queued for writing as soon as the line is completed (that is, as soon as a newline
character is written). Function setvbuf may be used to change the stream’s buffering
strategy.

Normally, there are three open streams with constant pointers declared in the
<STDIO.H> header file and associated with the standard open files:

FILE varlable Fildes Desciription Buffer style

stdin 0 standard input file line buffered
stdout 1 standard output file file buffered
stderr 2 standard error file line buffered

Buffer initialization

The FILE variable returned by fopen, freopen, or fdopen has an initial buffer size
of 0 and a NULL buffer pointer. The buffer size is set and the buffer allocated by a call
to setbuf, setvbuf, or the first I/O operation on the stream, whichever comes
first, Buffer initialization is done using the following algorithm:

1. If _TONBF (no buffering) was set by a call to setvbuf, initialization steps 2 and 3
are skipped. The buffer size remains 0 and the buffer pointer remains NULL.

2. Checks the access-mode word for _TOLBF (line buffering). This bit is usually set
only in the predefined file stderr, but a call to setvbuf can set it for any file. If
line buffering is set, the buffer size is set to LBUFSIZ (100). If line bullering is not
set, ioctl is called with an FIOBUFSIZE request and the buffer size is set to the
returned value or to BUFSIZ (1024) if no value is returned.

3. If the buffer pointer is NULL, a request is made for a buffer whose size was
determined in step 2; the buffer pointer is set to point to the newly allocated
buffer. If the requested size cannot be allocated, attempts are made to allocate
BUFSIZ or LBUFSIZ if these are smaller than the requested size. If all requesis
fail, the buffer pointer remains NULL and the IONBF (no buffering) bit is set.

4. Function ioctl is called with an FIOINTERACTIVE request; if it returns t rue,
the _TOSYNC bit is set in the access-mode word. This is done for all FILE
variables, regardless of their buffering style and size. (The _IOSYNC bit is
described in the following section.)

The setvbuf function lets you specify values for buffer size, buffer pointer, and
access mode word other than the default values of 0, NULL, and 0, respectvely. The
setvbuf funcion must be called before the first I/O operation occurs, so that the
buffer initialization procedure described above receives the values you specify instead
of the default values.

Buffered 1/0

On each write request, the bytes are transferred to the buffer and an internal counter is
set to account for the number of bytes in the buffer. If TOLBF is set and a newline
character is encountered while transferring bytes (o the buffer, the buffer is flushed
(written immediately) and the transfer continues at the beginning of the buffer. This
continues until the write-request count is satisfied or a write error occurs.

stdio 61

Note

Diagnostics

See Also

62

stdio

On each read request, the _TOSYNC bit in the access-mode word is checked. 1f
_IOSYNC is on, all current FILE variables that have _IOSYNC on and are open for
writing are flushed. In other words, a read from an interactive FILE variable flushes
all interactive output files before reading. This ensures that any prompts, [/O in a
window, or other visual feedback is displayed before the read is initiated. Then if the
internal counter is 0, an entire buffer is read into memory if possible. (For the
console device, less than a buffer’s worth is likely to be read.) The bytes required to
satisfy the read request are transferred, going back to the device for more if necessary,
and an internal pointer is advanced if any bytes remain unread.

When the Standard I/O Package is used, Standard 1/O cleanup is performed just
before termination of the application. Any normal return including a call to exit
causes Standard I/O cleanup, which consists of a call to £fclose for every open FILE
stream.

Do not use a file descriptor (0, 1, or 2) where a FILE variable (stdin, stdout, or
stderr) is required.

File <5td10.h> includes definitions other than those described above, but their use
is not recommended.

Invalid stream pointers cause serious errors, possibly including program
termination. Individual function descriptions describe the possible error conditions.

An integer constant EOF (-1) is returned upon end of file or error by most integer
functions that deal with streams. See the descriptions of the individual functions for
details.

cpen, close, 1lseek, read, write, fclose, ferror, fopen, fread, fseek,
getc, gets, printf, putc, puts, scanf, setbuf, ungetc

Synopsis

Description

string—string operations

#include <STRING.H>

char *strcat (destStr, srcStr)
char *destStr, *srcStr;

char *strncat (destStr, srcStr, n)
char *destStr, *srcStr;

int n;

int strcmpistrl, str2)

char *strl, *str2;

int strncmp(strl, str2, n)

char =*strl, *str2;
int n:

char *strcpy(destStr, srcStr)
char =*destStr, *srcStr;

char *strncpy(destStr, srcStr, n)
char =*destStr, *srcStr;
int n;

int strlen{str)
char *str:

char *strchr(str, <)
char *str, c;

char *strrchr{str, c¢)
char *str, c¢;

char *strpbrk(srcStr, findChars)
char *srcStr, =*findChars;

int strspn(srcStr, spanChars)
char *srcStr, *spanChars;

int strcspn{srcStr, skipChars)
char *srecStr, *skipChars;

char *strtok(destStr, tokenStr)
char *destStr, *tckenStr;

The string parameters (srcStr, destStr, and so forth) and s point to arrays ol
characters terminated by a null character. The functions strcat, strncat,
strcpy, and stroncpy all alter destStr. These functions do not check for overflow

of the array pointed to by destStr.

Function strcat appends a copy of string sreStr to the end of string destStr.
Function st rncat appends at most n characters. Each function returns a pointer o

the null-terminated result.

Warning

See also

44

sfring

Function st remp performs a comparison of its parameters according to the ASCII
collating sequence and returns an integer less than, equal to, or greater than 0 when
strl is less than, equal to, or greater than str2, respectively. Function st rncmp
makes the same comparison but looks at a maximum of n characters.

Function st rcpy copies string srcStr to string destStr, stopping after the null
character has been copied. Function st rncpy copies exactly n characters,
truncating srcStr or adding null characters to destStr if necessary. The result is
not terminated with a null if the length of sreStr is n or more. Each function returns
destStr.

Function strlen returns the number of characters in str, not including the
terminating null character.

Functions strchr and strrchr both return a pointer to the first and last
occurrence, respectively, of character ¢ in string st r; they return NULL if ¢ docs not
occur in the string. The null character terminating a string is considered to be part of
the string. In previous versions of the Standard C Library, st rchr was known as
index and strrchr was known as rindex.

Function strpbrk returns a pointer to the first occurrence in string sreStr of any
character from string £indChars, or NULL if no character from £indChars exists in
srcStr.

Function strspn retumns the length of the initial segment of string srcStr that
consists entirely of characters from siring spanChars.

Function strcspn retumns the length of the initial segment of string srcStr that
consists entirely of characters not from string skipChars.

Function st rtok considers the string destStr as a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string
tokenStr. The first call {with pointer dest St r specified) returns a pointer to the
first character of the first token and writes a null character into destStr immediately
following the returned token. The function keeps track of its position in the string
between calls, Subsequent calls for the same string must be made with NUTLL as the first
parameter. The separator string tokenStr may be different from call to call. When
no token remains in destStr, NULL is refurned.

Overlapping moves yield unexpected results.

Functions strcmp and strncemp use signed arithmetic when comparing their
parameters. The sign of the result will be incorrect for characters with values greater
than 0x7F in the Apple IIGS extended character set.

BlockMove, EqualString, memory

Synopsis

Description

Note

See Also

strtol—convert a string to a long

#include <STDLIB.H >

long strtol{str, ptr, base)
char *str;
char **ptr;
int base;

Function strtol returns a2 long containing the value represented by the character
string str. The string is scanned up to the first character inconsistent with the base
{decimal, hexadecimal, or octal). Leading white-space characters are ignored,

if the value of ptr is not NULL, a pointer to the character terminating the scan is
returned in *ptr. If no integer can be formed, *ptr is set to stx and 0 is returned.

If base is 0, the base is determined from the string. If the first character after an
optional leading sign is not 0, decimal conversion is done; if the 0 is followed by x or
¥, hexadecimal conversion is done; otherwise octal conversion is done.

The function call atol (str) is equivalent to
strtel{str, {(char *¥*)NULL, 10)
The function call atoi (str) is equivalent to

{int) strtol(str, (char **)NULL, 10)

Overflow conditions are ignored.
Apple base conventions ($ for hexadecimal, % for binary) are not supported.

atof, atoi, scanf

strtol 65

trig—trigonometric functions

Synopsis #include <MATH.H>

extended sin{x)
extended x;
extended cos(x)
extended x;
extended tan{x)
extended x;
extended asin(x)
extended x;
extended acos{x)
extended x;
extended atan (x)
extended x;
extended atan2(y, x)
extended y, x;

Description Functions sin, cos, and tan rewrn, respectively, the sine, cosine, and tangent of
their argument, which is in radians.

Function asin returns the arcsine of x, in the range -m/2 to /2.
Function acos returns the arccosine of x, in the range 0 (o .
Function atan returns the arctangent of x, in the range —1/2 to /2.

Function atan?2 returns the arctangent of y/x, in the range —% to w, using the signs of
both arguments to determine the quadrant of the return value.

For special cases, these functions return a NaN or infinity as appropriate.

Diagnostics These functions honor the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexact—as prescribed by SANE.

Note Functions sin, cos, and tan have periods based on the nearest extended-precision
representation of mathematical x. Hence these functions diverge from their
mathematical counterparts as their argument gets farther from zero.

See also Apple Numerics Manual

66 trigg

Synopsis

Description

Diagnostics

Note

See also

Imgeic——push a character back into the input stream

#include <STDIO.H>
int ungetc{c, strean)
char c;
FILE *stream;

Function ungetc inserts the character ¢ (which was returned by the last read call) into
the buffer associated with an input stream. The stream must be file buffered or line
buffered; it cannot be unbuffered. The inserted characler, ¢, will be returned by the
next getc call on that stream. Function ungetec returmns ¢ and leaves the file stream
unchanged.

Only one character of pushback is allowed, provided something has been read from
the stream and the stream is not unbuffered.

If ¢ equals EOF, ungetc does nothing to the buffer and returns EOF.

Function fssek undoes the effect of ungetc.

For ungetc to perform correctly, a read must have been performed before the call to
the ungetc function. Function ungetc returns EOF if it can’t insert the character.

Function ungetc does not work on unbuffered streams.

fseek, getc, setbuf, stdio

ungetc &7

unlink—delete a naméd file

Synopsis int unlink(fileName)
char *fileName;

Description Function unlink deletes the named file. The function fails if the named file is open.
A call to unlink is equivalent to

faccess (fileName, F_DELETE)

Diagnostics Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

See also faccess

68 unlink

Synopsis

Description

Return value

See also

write—write on afile

int write({fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

File descriptor £ildes is obtained from an open, creat, dup, or fcnt1 call.

Function write attempis (o write nbyte bytes from the buffer pointed to by buf to
the file associated with the £ildes. Internal limitations may cause write to write
fewer bytes than requested; the number of bytes actually written is indicated by the
return value. Several calls to write may therefore be necessary (o write out the
contents of buf.

On devices capable of seeking, the actual writing of data proceeds from the position
in the file indicated by the file pointer. Upon return from write, the file pointer is
incremented by the number of bytes actually written,

On nonseeking devices, writing starts at the current position. The value of a file
pointer associated with such a device is undefined.

If the O_APPEND file status flag set in open is on, the file pointer is set to the end of file
before each write.

The file pointer remains unchanged and write fails if £ildes is not a valid file
descriptor open for writing. [EBADF]

If you try to write more bytes than there is room for on the device, write writes as
many bytes as possible. For example, if nbyte is 512 and there is room for 20 bytes
more on the device, write writes 20 bytes and returns a value of 20. The nexrt attempt
to write a nonzero number of bytes will return an error. [ENOSPCI

File descriptor 1 is standard output; file descriptor 2 is standard error.

Upon successful completion, the number of bytes actually written is returned.
Otherwise, —1 is returned and errno is set to indicate the error.

creat, lseek, ocpen

write &9

70

wrife

Chapter 6 APW C

Chapter 6
Shell Calls

The Apple IIGS Progammer’s Workshop Shell acts as an interface and extension to
ProDOS 16. The shell provides several functions not provided by ProDOS 16; these
functions are called exactly like ProDOS 16 functions. Every time a program running
under the APW Shell issues a ProDOS 16-like call, the shell intercepts the call. If the call
is a shell call, the shell interprets it and acts on it; if it is a ProDOS 16 call, the shell passes
iton to ProDOS 16. This chapter describes all of the shell’s ProDOS 16-like calls, here
referred to as shell calls.

The shell calls that are provided are listed in Table 6-1.
Table 6-1. Shell Calls

Call Name Call Use
Number

GET LINE INFO ($0101) Passes parameters from the shell to a program

SET LINE_ INFO ($0102) Passes parameters from a program to the shell

GET_LANG ($0103) Reads the current language number

SET LANG ($0104) Sets the current language number

ERROR ($0105) Prints error message for a Apple IIGS tool call

SET_ VAR ($0106) Sets the value of a shell variable

VERSION ($0107) Returns the version number of the APW Shell

READ INDEXED (50108) Reads variable table

INIT WILDCARD (50109) Provides a filename that includes a wildcard character

' to the shell

NEXT WILDCARD ($010A) Causes the shell to find the next filename that
matches the wildcard filename

GET VAR ($010B) Reads the value of a shell variable

EXE CUTE ($010D) Sends a command or list of commands to the shell
command interpreter

DIRECTION ($010F) Tells whether I/O redirection has occurred

REDIRECT ($0110) Sets device and file for I[/O redirection

STOP ($0113) Detects a request for an early termination of the
program

APDA Draft Page 6-1 9 March 1987

APW C Chapter 6

How to make a shell call

To make a shell call, do the following:
« Include the statements

$include <TYPES.H>
#include <SHELL.H>

in your source text. Your object file will be automatically linked with the library file
CLIB.

+ Set values in the shell data structures and call the shell routines from your program,
following the information given below.

How a program makes a shell call

A C program makes a shell call by calling a function in the file ORCA.C. Most of these
calls are simple C function calls: parameters are passed in the normal way.

Two of these, GET LINE INFO and SET LINE INFO, are called differently. Values
and results are passed via a parameter block. To get information from the shell, your
program declares and initializes this parameter block, then calls GET LINE INFO, then
reads results from the block. To send information to the shell, your program writes values
into the block, then calls SET LINE INFO to send the information. These calls are
explained in detail in the section “GET LINE INFO and SET LINE INFO,” below.

With the exception of EXECUTE, all calls expect Pascal-style strings.

Call descriptions

This section lists each of the shell calls, describes its use, and describes the contents of its
parameter block. The possible errors returned by a call are listed at the end of each call
description. The calls are listed in alphabetical order. Table 6-1 lists all of the calls in order
of their call numbers.

DIRECTION (0x010F)

DIRECTION (device, direct)
int device, *direct;

A program can use this function to find out whether command-line I/O redirection has
occurred. This function can be used by a program to determine whether to send form feeds
to standard output, for example.

The device parameter indicates which type of input or output you are inquiring about,
as follows:

APDA Draft Page 6-2 9 March 1957

Chapter 6 APW C

0x0000 Standard input
0x0001 Standard output
0x0002 Error output

The direct parameter indicates the type of redirection that has occurred, as follows:

0x0000 Console
0x0001 Printer
0x0002 Disk file

Possible Errors

0x53 Parameter out of range

ERROR (0x0105)

int error{)

When a Apple TIGS tool call returns an error, your program can use this function to print
out the name of the tool and the appropriate error message. This function makes it
unnecessary for your program to store a complete table of error messages for tool calls.
The error number is returned in _tcolErr.

Possible Errors

None

EXECUTE (0x010D)

EXECUTE (flag, comm)
int flag;
char *comm;

This function sends a command or list of commands to the APW shell.

The f1ag parameter is used to execute an Exec file with an EXECUTE command; if no new
variable table is defined, then variables defined by the list of commands modify the current
variable table. If you set the most significant bit of this flag to 1 (binary), then a new
variable table is not defined when the commands are executed. If this flag is set to 0x0000,
a new variable table is defined for the list of commands being executed; the current variable
table is not modified. Exec files, variables, and the EXECUTE command are described in
the section “Exec Files” in Chapter 4 of the APW Reference.

The comm parameter is the address of the buffer in which you place the commands. If
you include more than one command, separate the commands with semicolons (;) or
carriage return characters (0x0OD). The command string is a C string: it has no length byte
and is terminated with a null character (0x00). Any output is sent to standard output.

If the shell variable {Exit} is not null and any command returns a non-zero error code,

then any remaining commands are ignored. Error codes and shell variables are described in
the section “Exec Files” in Chapter 3 of the APW Reference.

APDA Draft Page 6-3 9 March 1987

APWC Chapter 6

Possible Errors

Any error returned from the last command or program executed by the list of commands
executed.

GET LANG (0x0103)

int GET LANG()

This function reads the current language number. The current language number is set by
the APW Editor when it opens an existing file, or by the user with an APW shell
command. Langunage numbers are described in the section “Command Types and the
Command Table” in Chapter 4 of the APW Reference, and are listed in Appendix A of the
APW Reference.

Possible Errors

None

GET_LINE_INFO (0x0101) and SET _LINE_INFO (0x0102)

GET_LINE_INFO (pb)
GetLinfoPB *pb;

SET_LINE_INFO (pb)
GetLinfoPB *pb;

The GET LINE INFO function is used by an assembler, compiler, linker, or editor to
read the parameters that are passed to it. When you make this call, you declare the
parameter block GetLinfoPB; when the APW Shell returns control to your program,
you can then read the parameter block to obtain the information you need.

Use the GET LINE INFO call to read parameters passed to your assembler, compiler,
linker, or editor.

The SET LINE INFO function is used by an assembler, compiler, linker, or editor to
pass parameters to the APW Shell before returning control to the shell. It can also be used
by a shell program under which you are running APW to pass parameters to the APW
Shell.

Use the SET_LINE_INFO call when your program is finished before returning control to
the shell.

Both of these calls use the following parameter block:

GetLInfcPB /* get/set Line Info parameter block */
typedef struct {
/* unsigned char id; */
char *sfile; /* address of source file name */
char *dfile; /* address of output file name */
char *parms; /* address of parameter list */
char *istring; /* address of language-specific input string */

APDA Draft Page 64 9 March 1987

Chapter 6 APW C

char merr; /* maximum error level allowed */

char merrf; /* maximum error level found */

char lops; /* operations flag */

char kflag; /* KEEP flag */

unsigned long mflags; /* set of letters selected with '-' */

unsigned long pflags; /* set of letters selected with "+' */
} GetLInfoPB;

Tocall GET LINE INFO, first declare the parameter block Get LInfoPB. The
GET LINE_INFO call passes to the shell the pointer, pb, to your parameter block.
The shell then writes its results into your parameter block: you can read them from there.

Tocall SET LINE INFO, first declare the parameter block Get LInfoPB, then write
your values into that block. The GET_LINE INFO call passes to the shell the pointer,
pb, to your parameter block. The shell then reads your values from the parameter block.

The sf1ile (source file) field is the address of a buffer containing the filename of the
source file; that is, the next file that a compiler or assembler is to process. The filename can
be any valid ProDOS 16 filename, and can be a partial or full pathname.

The df i1le (destination file) field is the address of a buffer containing the filename of the
output file (if any); that is, the file that the compiler or assembler writes to. The filename
can be any valid ProDOS 16 filename, and can be a partial or full pathname.

The parms field is the address of a buffer containing the list of names from the NAMES=
parameter list in the APW Shell command that called the assembler or compiler. The
compiler can remove or modify these names as it processes them, so this list can be
different from the one received through the Get LInfo call..

The istring field is a placeholder for the address of a buffer containing the string of
commands passed to the compiler. This command string is not reused by the shell, soitis
not necessary to pass it back to the shell with the SET _LINE INFO call.

The merr field is the maximum error level allowed. If the maximum error level found by
the assembler, compiler, or linker is greater than me rr, then the shell does not call the next
program in the processing sequence. For example, if you use the ASMI command to
assemble and link a program, but the assembler finds an error level of 8 when merr equals
2, then the linker is not called when the assembly is complete.

The merrf field is the maximum error level found. If merrf is greater than merr, then

no further processing is done by the shell. If the high bit of merrf is set, then merrf is

considered to be negative; a negative value of merrf indicates a fatal error (normally, all

fatal errors are flagged as merr £=0xFF). In this case, processing terminates immediately

zfmd control is passed by the shell to the APW Editor. See also the discussion of the org
ield.

The lops field comprises the operation flags. This field is used to keep track of the
operations that have been performed, and remain to be performed, by the system,. The
format of this byte is as follows:

Bit: |7 |6 |5 |4 |312(|1]0
Value: |0 |O}JO|0O1O0|E |L

APDA Draft Page 6-5 9 March 1957

APWC Chapter 6

where C = Compile
L =Link
E = Execute

When a bir is set (1), the indicated operation is to be done. When a compiler finishes its
operation and returns control to the shell, it clears bit O unless a file with another language
is appended to the source. When a linker returns control to the shell, it clears bit 1. When
you execute the APW Linker by compiling a LinkEd file, the linker clears bits 0 and 1.

The k£ 1ag field is the keep flag. This flag indicates what should be done with the output
of a compiler, assembler, or linker, as follows:

Kflag Meaning

Value

0x00 Do not save output.

0x01 Save to an object file with the root filename pointed to by dfile. For

example, if the output filename pointed to by dfile is PROG, then the first
segment to be executed should be put in PROG or PROG .ROOT and the
remaining segments should be put in PROG . A. For linkers, save to a load
file with the name pointed to by dfile (for example, PROG). A compiler
or assembler will never set kf lag to 0x01, but a shell program calling
APW might use this value.

0x02 The . ROOT file has already been created. In this case, the first file created
by the next compiler or assembler should end in the . A extension.

0x03 At least one alphabetic suffix has been used. In this case, the compiler or
assembler must search the directory for the highest alphabetic suffix that has
been used, and then use the next one. For example, if PROG . ROOT,
PROG.A, and PROG. B already exist, the compiler should put its output in
PROG.C.

When the compiler or assembler passes control back to the shell, it should reset kflag to
indicate which object files it has written; for example, if it found only one segment and
created a . ROOT file but no . A file, then kflag should be 0x02 in the SET LINE INFO
call. See the section “Compilers and Assemblers” in Chapter 8 of the APW Reference for
more information on object-file naming conventions.

The mflags (minus flags) field passes the flags with a minus sign. This field passes
command-line-option flags such as —L or —C. The first 26 bits of these four bytes
represent the letters A—Z, arranged with A as the most significant bit of the most significant
byte; the bytes are ordered least significant byte first. The bit map is as follows:

11000000 111111171 11111111 11111111
YZ QRSTUVWX IJKLMNOP ABCDEFGH

For each flag set with a minus sign in the command, the corresponding bit in this field is

set to 1. See the discussions of the ALINK and ASML commands in Chapter 4 of the APW
Reference for descriptions of these option flags.

APDA Draft Page 6-6 9 March 1987

Chapter 6 APW C

The pf lags (plus flags) field passes the flags with a plus sign. This field passes
command-line-option flags such as +L or +C. The first 26 bits of these four bytes
represent the letters A—Z; the bit map for this field is the same as for the mflags field. See
the discussions of the ALINK and ASML commands in Chapter 4 of the APW Reference for
descriptions of these option flags.

Possible Errors

None

INIT WILDCARD (0x0109)

INIT WILDCARD (file, flags)
char *file;
int flags

This function provides to the APW Shell a filename that can include a wildcard character.
The shell can then search for filenames matching the filename you specified when it
receives a NEXT WILDCARD command. This function accepts any filename, whether it
includes a wildcard or not, and expands device names (such as .D1 /), prefix numbers,
and the double-period (. .) before the filename is passed on to ProDOS 16. Therefore,
you should call this function every time you want to search for a filename. Doing so will
assure that your routine supports all of the conventions for partial pathnames that the user
expects from APW.

The file parameter is the address of a buffer containing a pathname or partial pathname
that can include a wildcard character. Examples of such pathnames are:

A=
/APW/MYPROGS/7? . ROOT
.D2/HELLO

Important: The file parameter must be all uppercase, or the file will not be found.

When you execute a NEXT WILDCARD call, the shell finds the next filename that matches
the filename pointed to by £ilie. If the wildcard character you specified was a question
mark (?), then the filename is written to standard output and you are prompted for
confirmation before the file is acted on or the next filename is found. The use of wildcard
characters is described in the section “Using Wildcard Characters” in Chapter 2 of the APW
Reference.

The fiags parameter contains the prompting flags. If the most significant bit is set,
prompting is not allowed; that is a question mark (?) is treated as if it were an equal sign
(=). If the next-most significant bit is set and prompting is being used, only the first choice
accepted by the user (that is, the first choice for which the user types a Y in response to the
prompt) is acted on. The second flag is for use with commands that can act on only one
file, such as RENAME or EDIT.

Possibie Errors

APDA Draft Page 6-7 9 March 1987

APW C Chapter 6

Errors for the following ProDOS 16 and Memory Manager calls. Use the ERROR
function to get the error message. See the Apple 1IGS ProDOS 16 Reference
manual and the Apple 1IGS Toolbox Reference manual for descriptions of these
ErTorS.

NEXT WILDCARD (0x010A)

char *NEXT WILDCARD (nextfile)
char *nextfile;

Once a filename that includes a wildcard has been suppled to the shell with an
INIT WILDCARD call, the NEXT WILDCARD call causes the shell to find the next
filename that matches the wildcard filename. For example, if the wildcard filename
specified in INIT WILDCARD were /APW/UTILITIES/XREF . ?, then the first
filename returned by the shell in response to a NEXT WILDCARD call might be
/APW/UTILITIES/XREF .ASM65816.

The next £ile parameter is the address of the buffer to which the shell has returned the
next filename that matches a wildcard filename. The wildcard filename is the last one
specified with an INIT _WILDCARD call. If there are no more matchlng filenames, or if
INIT WILDCARD has not been called, then the shell returns a null string (that is, a string
with length zero). See also the description of INIT WILDCARD.

Possible Errors

None

GET_VAR (0x010B)

GET_VAR (varname, value)
char *varname, *value;

This function reads the string associated with a variable (that is, the value of the variable).
The value returned is the one valid for the currently-executing Exec file, or for the
interactive command interpreter. Variables and Exec files are described in the section “Exec
Files” in Chapter 4 of the APW Reference. Use the SET VAR call to set the value of a
variable.

The varname parameter is a pointer to a buffer that contains the name of the variable
whose value you wish to read. The variable name consists of a length byte and a string of
up to 255 ASCII characters.

The value parameter is a pointer to a 256-byte buffer into which the shell places the value
of the variable. The value consists of a length byte and a string of ASCII characters. The
value consists of a null string (that is, the length byte is 0x00) for an undefined variable.
Possible Errors

None

APDA Draft Page 6-8 9 March 1957

Chapter 6 APW C

READ INDEXED (0x0108)

READ INDEXED (varname, value, index)
char *varname, *value;
int index;

You can use this function to read the contents of the variable table for the command level at
which the call is made. To read the entire contents of the variable table, you must repeat
this call, incrementing the index number by 1 each time, until the entire contents have been
returned.

The varname parameter is a pointer to a 256-byte buffer in which the shell places the
name of the next variable in the variable table. The variable name consists of a length byte
and a string of ASCII characters. A null string is returned when the index number exceeds
the number of variables in the variable table.

The value parameter is a pointer to a 256-byte buffer into which the shell places the value
of the variable. The value consists of a length byte and a string of ASCII characters. The
value consists of a null string (that is, the length byte is 0x00) for an undefined variable.

The index parameter is an index number that you provide. Start with 0x01 and increment
the number by 1 with each successive READ INDEXED call until there are no more values
in the variable table.

Possible Errors

Errors for the following Memory Manager calls. See the Apple IIGS Toolbox
Reference manual for descriptions of these errors.

LOCK
UNLOCK

REDIRECT (0x0110)

REDIRECT (device, app, file)
int device, app;
char *file;

This function instructs the shell to redirect input or output to the printer, console, or a disk
file.

The device parameter indicates which type of input or output you wish to redirect, as
follows:

0x0000 Standard input
0x0001 Standard output
0x0002 Error output

The app flag indicates whether redirected output should be appended to an existing file
with the same filename, or the existing file should be deleted first. If append is 0, the file
is deleted, if it is any other value, the output is appended to the file.

APDA Draft Page 6-9 9 March 1987

APW C Chapter 6

The f£1ile parameter is the address of a 65-byte-long buffer containing the filename of the
file to or from which output is to be redirected. The filename can be any valid ProDOS 16
filename, a partial or full pathname, or the device names .PRINTER or .CONSOLE.

Possible Errors
0x53 Parameter out of range

Errors for the following ProDOS 16 calls. See the Apple 11GS ProDOS 16
Reference manual and the Apple 11GS Toolbox Reference manual for descriptions
of these errors.

OPEN
CLOSE
GET_VAR
WRITE
GET_EOF

SET_VAR (0x0106)

SET VAR (varname, value)
char *varname, *value;

This function sets the value of a variable. If the variable has not been previously defined,
this function defines it. Variables are described in the section “Exec Files” in Chapter 4 of
the APW Reference. Use the GET_V AR call to read the current value of a variable and the

READ INDEXED call to read a variable table.

The varname parameter is a pointer to a buffer in which you place the name of the
variable whose value you wish to change. The name is an ASCII string.

The value parameter is a pointer to a buffer in which you place the value to which the
variable is to be set. The value is an ASCII string.

Possible Errors

Errors for the following Memory Manager calls. See the Apple 11GS Toolbox
Reference manual for descriptions of these errors.

Lock
Unlock
Grow
New

SET LANG (0x0104)

SET_LANG (lang)
int lang; g

APDA Draft Page 6-10 9 March 1957

Chapter 6 APW C

This function sets the current language number. Language numbers are described in the
section “Command Types and the Command Table” in Chapter 4 of the APW Reference,
and are listed in Appendix A of the APW Reference.

The lang parameter is the APW language number to which the current APW language
should be set. If the language specified is not installed (that is, not listed in the command
table), then the “language not available™ error is returned..

Possible Errors

0x80 Language not available

STOP (0x0113)

int STOP () ;

This function lets your application detect a request for an early termination of the program.
The sTOP flag is set when the keyboard buffer is read after the user presses G-. (Apple-
period). '
The sTOP flag is set (0x0001) by the shell when it finds an -. in the keyboard buffer.
When a APW utility reads from the keyboard as standard input, the shell reads the
keyboard buffer and passes the keys on to the utility. When standard input is not from the
keyboard, the shell still checks the keyboard buffer for G-. whenever a STOP call is
executed. The flag is cleared (0x0000) when the STOP call is executed, when the utility
program is terminated, or when windows are switched so that the utility program is no
longer active.

Possible Errors

None

VERSION (0x0107)

int VERSION() ;

This function returns the version of the APW Shell that you are using

The VERSTON parameter is a four-byte ASCII string specifying the version number of the
APW Shell that you are using. The inidal release returns 10 followed by two space
characters (0x3130 0x2020), to indicate version number 1.0.

Possible Errors

None

APDA Draft Page 6-11 9 March 1987

APWC Chapter 6

APDA Draft Page 6-12 9 March 1987

Appendix A

Calling Conventions

APW C uses two different function-calling conventions: C calling conventions and Pascal-
compatible calling conventions.

C calling conventions

This section describes the normal C calling conventions. It explains how function
parameters are passed, how function results are returned, and how registers are saved
across function calls. This information is useful when writing calls between C and
assembly language.

Parameters

Parameters to C functions are evaluated from right to left and are pushed onto the stack in
the order they are evaluated: that is, they are pushed in reverse order. Characters, integers,
and enumeration types are passed as sign-extended 16-bit values. Pointers and arrays are
passed as 32-bit addresses. Types £1oat, double, comp, and extended are passed
as extended 80-bit values. Structures are also passed by value on the stack. Their size is
rounded up to a multiple of 16 bits (2 bytes). If rounding occurs, the unused storage has
the highest memory address. The caller removes the parameters from the stack.

Function results

On the Apple IIGS, function results are returned in registers: the low 16 bits are in the A
register, and the high 16 bits are in the X register. Results of types float, double,
comp, and extended are passed as type extended, with the address in the A and X
registers, as before. Structure results are returned in a static location, the address returned
in the A and X registers.

Register conventions

No registers are preserved across function calls. Tool calls have their own conventions for
returning error codes in the A register.

Pascal-style calling conventions

This section describes the conventions used for calling functions that use Pascal-style
calling conventions: these functions are declared with the keyword pascal and may

APDA Drafi Page A-1 9March 1987

APW C Appendix A

have been written in any language. These conventions dlffer from the usual C calling
conventions defined in Chapter 4. :

Parameters

Parameters to Pascal-compatible functions are evaluated.left to right: that is, in the order of
the formal parameter list. The function first pushes space for the result (as shown in Table
3-2), then pushes the parameters onto the stack in the order in which they are evaluated.
Characters and enumeration types whose literal values fall in the range of types char or
unsigned char are pushed as bytes. (This requires a 16-bit word on the stack. The
value is in the high-order 8 bits; the low-order 8 bits are unused.) Short intsand
enumeration types whose literal values fall in the range of types short or unsigned
short are passed as 16-bit values. Ints, long ints, and the remaining enumeration
types are passed as 32-bit values. Pointers and arrays are passed as 32-bit addresses.
SANE types float, double, comp, and extended are passed as extended 80-bit
values. Since this doesn’t correspond to the Pascal compiler’s calling conventions,
however, a compiler warning is given. Table 3-2 shows the recommended way to pass
SANE-type values to Pascal. Structures are also passed by value on the stack, and they
also yield a compiler warning. Their size is rounded up to a multiple of 16 bits (2 bytes).
If rounding occurs, the unused storage has the highest memory address. The function
being called removes the parameters from the stack.

Function results R —~
On the Apple IIGS, as on the Macintosh, results of Pascal-compatible functions are returned

on the stack. _

Register conventions

No registers are preserved across function calls. Tool calls have their own conventions for
returning error codes in the A register.

APDADrafi Page A2 9 March 1987

Appendix B

Files Supplied with APW C

APW C s intended for use with the Apple Programmer’s Workshop. The files listed
below are on the APW C release disk, which contains the C compiler, the Standard C
Library, and the Apple IIGS Interface Library. These files may be used directly from the
release disk or copied to a hard disk.

*** These lists are subject to change as files are added or deleted. ***

The files are listed indented under their respective directories, with comments.

/APWC/
LANGUAGES/
CC
LIBRARIES/

CINCL.UDE/
CTYPE.H
ERRNO.H
ERRORS.H
FCNTL.H
FILES.H
I0CTL.H
MATH.H
MEMORY H
PRODOS.H
SANE.H
SIGNAL.H
STDIO.H
STRING.H
TEXTTOOLH
TYPES.H
VALUES.H
VARARGS.H
SETIMP.H
CONTROL.H
DESK.H
DIALOG.H
EVENT.H
FONT.H
INTMATH.H
LINEEDIT.H
LIST.H
LOADER.H
MENU.H

APDA Draft

APW C compiler

Standard C Library and Apple IIGS Toolbox include files

Memory Manager
ProDOS interface
SANE interface

Standard I/O Package
String conversion routines
Text Tools

common defines and types

Control Manager

Desk Accessory Manager
Dialog Manager

Event Manager

Font Managen
Fixed-Point Math

Line Editor

List Manager

System Loader

Menu Manager

Page B-1

9 March 1957

APWC

MISCTOOL.H
NOTESYN.H
PRINT.H
QDAUX.H
QUICKDRAW.H
SCHEDULER.H
SCRAP.H
SHELL.H
SOUND.H
TEXTTOOL.H
WINDOW.H
ERRORS
CLIB
SYS.INTERFACE
START.ROOT

APDA Draft

Miscellaneous Tools

QuickDraw II
Scheduler

Scrap Handler
APW shell interface
Sound Driver

Text Tools
Window Manager
Errors file

Standard C Library

Page B-2

Appendix B

9 March 1987

Appendix C

Comparison with
Macintosh Programmer’s Workshop
C

Apple IIGS Programmer’s Workshop C is as closely related to Macintosh Programmer’s
Workshop C as differences between the two machines allow. The differences between the
two languages are explained here.

Data types
The following data types are implemented differently in APW and MPW C.
Data Type Size in bits
APW MPW
int 16 32
unsigned int 16 32
enum 8orl6 8, 16 or 32

Register variables

Register variables are not supported in APW C due to the small number of registers
available on the 65816. Use of the register declaration will cause the compiler to
generate code at least as efficient as that generated by the same program without

register declarations.

Structured variables

Structures may be assigned, passed as parameters, and returned as function results in both
versions of C. Byte-sized elements in structures are not padded to word or long-word
boundaries. APW C allows equality comparison for structures; MPW C does not.

APDA Draft PageC-1 9 March 1957

APW C Appendix C
Pascal-compatible function declarations

A function or procedure written in Pascal (or written in assembly language following
Pascal calling conventions) can be called from either MPW C or APW C. For example,

the DrawText procedure is defined in Pascal as

PROCEDURE DrawText (textBuf: Ptr;
firstByte, byteCount: INTEGER);

The MPW C syntax for such a declaration is
pascal void DrawText (textBuf, firstByte, byteCount)
Ptr textBuf;
short firstByte, byteCount;
extern;
The APW C syntax for this declaration is
extern pascal void DrawText (};

To make the APW C form more readable, we can list the parameters in a comment:

extern pascal void DrawText ();
/* Ptr textBuf;
short firstByte, byteCount;
extern; */

In addition, in MPW C the word extern may be followed by a constant, which is
interpreted as a 16-bit 68000 instruction that replaces the usual subroutine call (TSR)
instruction in the calling sequence. This allows direct traps to the Macintosh ROM. For
example:

pascal void OpenPort {port)
GrafPtr port;
extern 0xAB86F;

On the Apple IIGS, an inline declaration is used for declaring tool routines. Its syntax is
[extern] pascal [result-type] func-name () inline (m,n);

This says that the tool routine with trap number » and entry point address m can be called
by the function name func-name, and returns a result of type result-type.

Inline assembly-code declarations

An APW C program can contain assembly code inline. Anywhere a statement is legal, you
can insert a series of assembly-language statements with this format:

asm{assembly-statements }
Anywhere a function definition is legal, you can have a definition with this format

asm (external-name) { assembly-statements}

APDA Draft Page C-2 9 March 1987

Appendix C APWC

This function can be called in the same way as a C function called external-name. Here
external-name is the entry point of the segment containing the assembly-language code.

APDA Draft Page C-3 9 March 1987

APWC Appendix C

APDA Draft Page C4 9 March 1987

Appendix D

Library Index

The Library Index contains an index entry for all the defines, types, enumeration literals,
global variables, and functions defined in the Standard C Library.

» Column 1 contains an alphabetical list of the index entries.
« Column 2 specifies the type of declaration (for example, “literal”) for the index entry.

+ Column 3 contains the library header under which documentation for the index entry
can be found. If column 3 contains “(C)” following the library header-for example,
“abs(C)"-—look in Chapter 5, The Standard C Library. If column 3 contains “(S)”
following the library header—for example, “bbb(S)”"—look in Chapter 6, The Shell
Interface. These chapters are organized alphabetically by library header except for the
first entry in each, which contains introductory material.

APDA Draft Page D-1 9 March 1987

clearerr
close
cos

cosh
creat
dup
EZACCES
EBADF
ecvt
EEXIST
EZNVAL
EID
ELSDIR
EMFILE
ENFILE
ENCDEV
ENOENT
ENOMEM
ENOSPC
ENOCTDIR
ENXIO
EOF
EPERM
EROFS
ESPIPE
_exit
exit

exp

fabs
faccess
folose
fentl
fcvt

F _CELETE
fdopen
F_DUPFD
fecf
ferror
fflush
fgetec
F_GETFD
F_GETFL
fgets

E GFONTINFO
F_ GPRINTREC
F_GTABINFOC
FILE
fileno
FICBUFSIZE
FIODUPFD
FIOFNAME

Iype

function
function
function
function
function
function
function
function
define
function
function
function
macro
function
function
function
function
function
define
define
function
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
function
function
function
function
function
function
function
function
define
function
define
macro
macre
function
function
define
define
function
define
define
define
define
macro
defire
define
define

TICINTERACTIVE define

Second Beta Draft

M] Tebmnd dd
abs FIOLSEEK
trig FIOREFNUM
trig FTOSETEOF
trig floor
trig fmod
atof F_OPEN
atoi fopen
atoi fprintf
setbuf fpute
malloc fruts
floor fread
malloc free
ferror F_RENAME
close freopen
trig frexp
sinh fscanf
creat Iseek
dup F_SETED
Error F_SETFL
Error F_SFONTINFO
ecvt F_SPRINTREC
Error F_STABINFO
Exrror ftell
Error fwrite
Error getc
Exror getchar
Error getenv
Error gets
Error getw
Error hypot
Error ioctl
Error _ICFBF
Error _IOLBF
stdio _IONBF
Error _TIOSYNC
Error isalnum
Error isalpha
exit isascii
exit iscntrl
exp isdigit
flcor isgraph
faccess islower
fclose isprint
fentl ispunct
ecvt isspace
faccess isupper
fopen isxdigit
fentl ldexp
ferror log
ferror logl0
fclose long jmp
getc lseek
fentl malloc
fentl memccpy
gets memchr
faccess memcmp
faccess memcpy
faccess memset
stdioc modf
ferror NULL
ioctl O_APPEND
ioctl O_CREAT
ioctl O_EXCL
ioctl onexit
PageD-2

Ivpe

define
define
define
function
function
define
function
functien
function
function
function
function
define
function
functien
function
function
define
define
define
define
define
function
function
macro
macro
function
function
function
function
functien
define
define
define
define
macro
macro
macro
macro
macro
macro
macro
macre
macro
macro
macre
macro
functicn
function
functioen
function
functien
function
function
function
function
function
function
function
define
define
define
define
function

ioctl
ioctl
ioctl
floor
floor
faccess
fopen
printf
putc
puts
fread
malloc
faccess
fopen
frexp
scant
fseek
fFentl
fcntl
faccess
faccess
faccess
fseek
fread
getc
getc
getenv
cets
getc
hypot
ioctl
setbuf
setbuf
setbul
stdio
ctype
ctype
ctype
ctype
ctype
ctype
ctype
ctype
ctype
ctype
ctype
ctype
frexp
exp
exp
set jmp
lseek
malloc
memory
memory
memory
memory
memory
frexp
stdic
cpen
open
open
cnexit

26 May 1986

oren
O_RDONLY
O _RDHWR
0_RSRC
O_TRUNC
O_WRONLY
pcw
printft
sute
putchar
pucs
putw
gsort
rand
read
realloc
rewind
scanf
setbuf
set jmp
setvbuf
sheort
STIGALLSIGS
S$I1G_DFL
_sig_dfl
sighold
STG_IGN

SIGINT

3'gnalHandler

SignalMap
sigpause
sigrelease
sigset
sin

sinh
sprintf
sqrt
srand
sscant
strcat
strchr
stremp
sSTIrcpy
strcspn
strlen
sirncat
strnomp
strncpy
st.rpbrk
strrehr
strspn
strtok
strcol
Lan

tanh
TIOFLUSH
TIOGPORT
TICSPORT
tcascii
tolower
_tolower
Tcupper
_toupper
urgetc

Type

function
define
define
define
define
define
function
function
macro
macrc
function
function
function
funotion
function
function
function
function
function
function
function
type
define
define
function
function
define
define
type
type
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
functicn
function
function
function
funotion
function
function
define
define
define
macro
function
macro
function
macro
function

Second Beta Draft

copen
open
open
open
open
open
exp
printf
putc
putc
puts
putc
gsort
rand
read
mallec
fseek
scanf
setbuf
set jmp
setbuf
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
trig
sinh
printf
exp
rand
scant
string
string
string
string
string
string
string
string
string
string
string
string
string
strtol
trig
sinh
ioctl
ioetl
ioctl
conv
conv
conv
conv
conv
ungetc

Identifiexr
unlink
write

Page D-3

Lype

function
function

unlink
write

26 May 1986

Second Beta Draft Page D4 26 May 1986

Glossary

*: A 32-bit pointer data type.

absolute code: Program code that must be loaded at a specific address in memory and
never moved.

absolute segment: A segment that can be loaded only at one specific location in
memory. Compare with relocatable segment.

accumulator: The register in the 65C816 microprocessor of the Apple IIGS used for
most computations.

address: A number that specifies the location of a single byte of memory. Addresses
can be given as decimal or hexadecimal integers. The Apple IIGS has addresses ranging
from 0 to 16,777,215 (in decimal) or from $00 00 00 to $FF FF FF (in hexadecimal). A
complete address consists of a 4-bit bank number ($00 to $FF) followed by a 16-bit
address within that bank ($00 0C to $SFF FF).

Apple key: A modifier key on the Apple IIGS keyboard, marked with an Apple icon. It
performs the same functions as theOpen Apple key on standard Apple II machines.

Apple II: A family of computers, including the original Apple 11, the Apple II Plus, the
Apple Ile, the Apple IIc, and the Apple IIGS.

AppleIIgs: A predefined constant identifying C code written for the ApplellGS, in
particular, for APW C.

Apple IIGS Interface Libraries: A set of interfaces that enable you to access
toolbox routines from C.

APW: A predefined constant identifying C code written for the APW C compiler as
opposed to another C compiler.

APW Shell: The programming environment of the Apple IIGS Programmer’s Workshop.
It lets you edit programs, manipulate files, and execute programs.

APW Linker: The linker supplied with APW.

application: A program (such as the APW Shell itself) that talks to ProDOS and the
Toolbox directly, and can be exited via the Quit call.

assembler: A program that produces object files from source files written in assembly
language.

automatic variable: A dynariic local variable that comes into existence when a function
is called and disappears when it is exited.

bank: A 64K (65,536-byte} portion of the Apple 1IGS internal memory. An individual
bank is specified by the value of one of the 65C816 microprocessor’s bank registers.

APDA Draft Page Glossary-1 9 March 1987

APWC | Glossary

buffer: An area of memory allocated for reading from or writing to a file.
catalog: See directory.

carriage return character (\x): A control code (ASCII 13) generated by the Return
key; in APW C, equal to newline (\n).

char: An 8-bit character data type whose range is 0 to 255; the same as unsigned
char in APW C.

character: Any symbol that has a widely understood meaning and thus can convey
information. Some characters—such as letters, numbers, and punctuation-—can be
displayed on the monitor screen and printed on a printer. Most characters are represented
in the computer as one-byte values.

code segment: An object segment.that consists mainly of code. Code segments are
provided for programs that differientiate between code and data segments.

command: In the Standard C Library, a parameter that tells a function which of several
actions to perform; in the APW Shell, a word that tells APW which utility to execute.

command interpreter: A program that interprets and executes commands. Specifically,
the APW shell.

comp: A 64-bit SANE data type with signed integral values and one NalN.

compiler: A program that produces object files from source files written in a high-level
language such as C.

conditional compilation: Use of preprocessor commands (#if, #ifdef, #ifndef,
#else, #endif) to vary the output depending on compile-time conditions.

C SANE Library: A set of routines that provide extended-precision mathematical
functions.

current language: The APW language type that is assigned to a file opened by the APW
Editor. If an existing file is opened, the current language changes to match that of the file.

current prefix: The prefix that is used by the APW Shell if a partial pathname is used.

data segment: An object segment that consists primarily of data. Data segments are
provided for programs that differentiate between code and data segments.

debugger: A shell utility that lets you step through a program and examine memory as
you go.

denormalized number: A nonzero number that is too small for normalized
representation.

desk accessory: A program that is accessed from the Apple menu and shares its
runtime environment with an application, a utility, or another desk accessory.

APDA Draft Page Glossary-2 9 March 1987

Glossary APW C

diagnostic output: A file used to report errors and diagnostic information. Generally
merged with standard output, but can be redirected. In APW C, synonymous with
standard error.

directory: A file that contains a list of the names and locations of other files stored on a
disk. Directories are either volume directories or subdirectories. A directory is
sometimes called a caralog..

direct page: A page (256 bytes) of bank $00 of Apple IIGS memory, any part of which
can be addressed with a short {one byte) address because its high address byte is always
$00 and its middle address byte is the value of the 65C816 processor’s direct register.
Co-resident programs or routines can have their own direct pages at different locations.
The direct page corresponds to the 6502 processor’s zero page. The term direct page is
often used informally to refer to the lower portion of the direct-page/stack space.

direct-page/stack space: A portion of bank $00 of Apple IIGS memory reserved for a
program's direct page and stack. Initially, the 65C816 processor’s direct register
contains the base address of the space, and its stack register contains the highest
address. In use, the stack grows downward from the top of the direct-page/stack space,
and the lower part of the space contains direct-page data.

direct register: A hardware register in the 65C816 processor that specifies the start of
the direct page.

dispose: To permanently deallocate a memory block. The Memory Manager disposes of
a memory block by removing its master pointer. Any handle to that pointer will then be
invalid. Compare purge

double: A 64-bit floating-point data type with IEEE double precision.

dynamic segment: A segment that can be loaded and unloaded during execution as
needed. Compare with static segment.

editor: A shell utility for editing source files.

enum: An enumerated data type of 8, 16, or 32 bits depending on the range of the
enumerated literals.

environment: In SANE, consists of rounding direction, rounding precision, exception
flags, and halt settings; in APW, consists of exported variables and other features of the
Integrated Environment.

exception: A condition in the SANE environment that can cause a program halt.’

Exec file: A file containing APW commands that are executed as if typed on the
keyboard.

exit function: A function that is registered with onexit for execution when the
program terrninates.

extended: An 80-bit floating-point data type with IEEE extended precision; used in C
for all intermediate results.

APDA Draft Page Glossary-3 9 March 1987

APWC Glossary

external reference: A reference to a symbol that is defined in another segment.
External references must be to global symbols.

fatal error: an error serious enough that the computer must halt execution.

field: A string of ASCII characters or a value that has a specific meaning to some
program. Fields may be of fixed length, or may be separated from other fields by field
delimiters. For example, each parameter in a segment header constitutes a field.

file-buffered: A buffer style in which characters sent to an output I/O function are
queued and written as a block.

file descriptor: A file reference number returned by a creat or open call.

filename: The string of characters that identifies a particular file within a disk directory.
ProDOS 16 filenames can be up to 15 characters long, and can specify directory files,
subdirectory files, text files, source files, object files, load files, or any other ProODS 16
file type. Compare with pathname.

file pointer: A pointer to the next byte to be read or written in a stream.

file type: An attribute in a ProDOS 16 file’s directory entry that characterizes the contents
of the file and indicates how the file may be used. On disk, filetypes are stored as
numbers; in a directory listing, they are often displayed as three-character mnemonic codes.

FILE variable: A variable containing information about a stream, including the file
descriptor and buffer size, location, and style.

float: A 32-bit floating-point data type with IEEE single precision.
flush: Write out the contents of a buffer.

format character: A character that defines the interpretation of the input field in the
scanf call.

full pathname: The complete name by which a file is specified. A full pathname
always begins with a slash (/), because a volume directory name always begins with a
slash. See pathname,

global label: A symbolic identifier in an object segment, which the linker enters into the
relocation dictionaly and the loader replaces with an absolute address.

global symbol: A label in a code segment that is either the name of the segment or an
entry point to it. Global symbols may be referenced by other segments. Compare with
local symbol.

handle: See memory handle.
hexadecimal: The base~16 system of numbers, using the ten digits O through 9 and the

six letters A through F. Hexadecimal numbers can be converted easily and directly to
binary form, because each hexadecimal digit corresponds to a sequence of four bits. In C

manuals hexadecimal numbers are usually preceded by a 0x.

APDA Draft Page Glossary-4 9 March 1987

Glossary APW C

high-level ianguage: A programming language that is relatively easy for people to
understand. A single statement in a high-level language typically corresponds to several
instructions of machine language. Compare low-level language.

image: A representation of the contents of memory. A code image consists of machine-
language instructions or data that may be loaded unchanged into memory.

include file: A file whose contents will be included with the source file at compile
time—it contains function declarations, macros, types, and #define directives used by
the compiler.

infinity: A SANE representation of mathematical oo.

int: A 16-bitinteger data type whose range is —32,768 to 32,767.

interface: The compile-time and runtime linkage between your C program and toolbox
routines.

Jump Table: A table contructed in memory by the System Loader from all Jump Table

segments encountered during a load. The Jump Table contains all references to dynamic
segments that may be called during execution of the program.

K: 1024 bytes

language.command: A command that changes the APW current language.

library file: A file produced by MAKELIB program from object files, generally ones
containing functions useful to a number of programs. It can be searched by the Linker for
necessary functions, but more quickly than an object file.

LinkEd: A command language that can be used to control the APW Linker.

linker: A program that combines files generated by compilers and assemblers, resolves
all symbolic references, and generates a file that can be loaded into memory and executed.

line-buffered: A buffer style in which each line of output is queued for writing as soon
as a newline character is written.

load file: A file that can be loaded into memory, one load segment at a time, by the
System Loader.

load segment: A part of a load file corresponding (in C) to one or more functions.
Object segments are assigned to load segments at compile time by means of the
overlay command or at link time by LinkEd commands.

local symbol: A labe! defined only within an individual seginent. Other segments
cannot access the label. Compare with global symbol.

long: A 32-bit integer data type whose range is —2,147,483,648 to 2,147,483,647.

loop: A section of a program that is executed repeatedly until a limit or condition is met,
such as an index variable’s reaching a specified ending value.

APDA Draft Page Glossary-5 9 March 1957

APWC Glossary

low-level language: A programming language, such as assembly language, that is
relatively close to the form the computer’s processor can execute directly. One statement in
a low-level language corresponds to a single machine—language instruction. Compare
high-level language.

main: The name of the function that is the entry point for every C program.

main segment: The first segment in the initial load file of a program. It as loaded first
and never removed from memory until the program terminates.

MakeLib utility: A program that creates library files from object files.

Mark: The current position in an open file. It is the point in the file at which the next read
or write operation will occur.

memory block: see block

memory handle: The identifying number of a particular block of memory. A memory
handle is a pointer to a master pointer to the memory block.

memory image: A portion of a disk file or segment that can be read directly into
memory.

Memory Manager: A program in the Apple IIGS Toolbox that manages memory use.
The Memory Manager keeps track of how much memory is available, and allocates
mexmory blocks to hold program segments or data,

memory-resndent' (adj) (1) Stored permanently in memory as firmware (ROM). (2)
Held continually in memory even while not in use. For example, ProDOS is a memory-
resident program.

movable: A memory block attribute, indicating that the Memory Manager is free to move
the block . Opposite of fixed. Only position-independent program segments may be in
movable memory blocks. A block is made movable or fixed through Memory Manager
calls.

NaN: Not a Number; a SANE representation produced when an operation cannot yield a
meaningful result,

native mode: The 16-bit operating state of the 65C816 processor.

newline character (\n): A control code that advances print position or cursor to the
left margin of next output line; in APW C, same as carriage return (\xr).

normalized number: A floating-point number that can be represented with a leading
significand bit of 1.

number class: In SANE, a floating-point number can be characterized as either zero,
normalized, denormalized, infinity, or NaN.

numeric environment: In SANE, the rounding direction, rounding precision, halt
enables, and exception flags.

object segment: A part of an object file corresponding (in C) to a single function.

APDA Draft Page Glossary-6 9 March 1987

Glossary APW C

object file; The output from an assembler or compiler and the input to the linker. In
APW an oxject file contains both machine-language instructions and instructions for the
linker. Compare with load file.

object module format (OMF): The general format used in object files, library files, and
load files.

object segment: A segment in an object file.
OMF': Object medule format.
OMF file: Any file in object module format.

page: (1)A portion of Apple IIGS memory that is 256 bytes long and that begins at an
address that is an even multiple of 256. A memory block whose starting address is an even
multiple of 256 is said to be page aligned. (2) An area of main memory containing text or
graphical information being displayed on the screen.

parameter: A value passed to or from a command, function, or other routine.

Pascal-style function: A function using Pascal-style calling conventions that can be
declared in C using the pascal specifier.

partial assembly: A procedure whereby only specific segments of a program are
assembled. If you have perforrned one full assembly followed by one or more partial
assemblies on a program, the linker extracts only the latest version of each object segment
to be included in the load file.

partiai compile: A procedure whereby only specific segments of a program are
compiled. If you have performed one full assembly followed by one or more partial
compiles on a program, the linker extracts only the latest version of each object segment to
be included in the load file.

partial patbname: A pathname that includes the filename of the desired file but
excludes the volume directory name {and possibly one or more of the subdirectories in the
path). It is the part of 2 pathname following a prefix—a prefix and a partial pathname
together constitute a fuli pathname. A partial pathname does not begin with a slash
because it has no volume directory name.

patch: To replace one or more bytes in memory or in 2 file with other values. The
address to which the program must jurnp to execute a subroutine is parched into memory at
load time when a file is relocated.

pathname: The full name of a file, including its volume name and directory names.
pointer: A memory address at which a particular item of information is located. For
example, the 65C816 Stack register contains a pointer to the next available location on the
stack. ;

position-independent: Code that is written specifically so that its execution is
unaffected by its position in memory. It can be moved without needing to be relocated.

position-independen: segment: A load segment that is movable when loaded in
memory.

APDA Draft Page Glossary-7 9 March 1957

APWC Glossary

prefix: A portion of a pathname starting with a volume name and ending with a
subdirectory name. It is the part of a full pathname that precedes a partial pathname—a
prefix and a partial pathname together constitute a full pathname. A prefix always starts
with a slash (/) because a volume directory name always starts with a slash.

preprocessor: Part of the C compiler that provides file inclusion, macro substitution,
and conditional compilation.

preprocessor symbol: One of a set of constants defined to be 1, equivalent to writing
“#define symbol 1” at the beginning of the source file.

ProDOS: A family of disk operating systems developed for the Apple II family of
computers. ProDOS stands for Professional Disk Operating System, and includes both
ProDOS 8 and ProDOS 16.

ProDOS 8: A disk operating system developed for standard Apple II computers. It
runs on 6502-series microprocessors. It also runs on the Apple 1IGS when the 65C816
processor is in 6502 emulation mode.

ProDOS 16: A disk operating system dcvcldpcd for 65C816 native mode
operation on the Apple IIGS. It is functionally similar to ProDOS 8 but more powerful.

purge: To temporarily deallocate a memory block. The Memory Manager purges a block
by setting its master pointer to 0. All handles to the pointer are still valid, so the block can .
be reconstructed quickly. Compare dispose.

purgeable: A memory block attribute, indicating that the Memory Manager may purge the
block if it needs additional memory space. Purgeable blocks have different purge levels,
or priorities for purging; these levels are set by Memory Manager calls.

RAM Disk: A portion of memory (RAM) that appears to the operating system to be a
disk volume. Files in a RAM disk can be accessed much faster than the same files on a
floppy disk or hard disk.

register variable: Anautomatic variable that is allocated to a register. Not used
by APW C compiler, because the 65C816 has only a few registers.

scanset: A set of characters allowed in a file scanned by the scanf call.

relocate: To modify a file or segment at load time so that it will execute correctly at the
location in memory at which it is loaded. Relocation consists of patching the proper
values into address operands. The loader relocates load segments when it loads them into
memory. See also relocatable code.

relocatable code: Program code that includes no absolute addresses, and so can be
relocated at load time.

relocatable segment: A segment that can be loaded at any location in memory. A
relocatable segment can be static, dynamic, or position independent. A load segment
contains a relocation dictionary that is used to recalculate the values of location-
dependent addresses and operands when the segment is loaded into memory. Compare
with absolute segment.

APDA Draft Page Glossary-8 9 March 1987

Glossary APW C

relocation dictionary: A portion of a load segment that contains relocation information
necessary to modify the memory image immediately preceding it. When the memory image
part of the segment is loaded into memory, the relocation dictionary is processed by the
loader to calculate the values of location-dependent addresses and operands. Relocation
dictionaries also contain the information necessary to transfer control to external references.

reference: The name of a segment or entry point to a segmentl; same as symbolic
reference. To refer to a symbolic reference or to use one in an expression or as an address.

resolve: To find the segment and offset in a segment at which a symbolic reference is
defined. When the linker resolves a reference it creates an entry in a relocation
dictionary that aliows the loader to relocate the reference at load time.

root filename: The filename of an object file minus any filename extensions added by
the assembler or compiler. For example, a program that consists of the object files
MYPROG .RODT, MYPROG . A, and MYPROG . B has the root filename MYPROG.

run-time library file: A load file containing program segments--each of which can be
used in any number of programs--that the system loader loads dynamically when they are
needed.

segment: A component of an OMEF file, consisting of a header and a body. In object
files, each segment incorporates one or more subroutines. In load files, each segment
incorporates one or more object segments.

segment body: That part of a segment that follows the segment header, and that
contains the program code, data, and relocation information for the segment.

segment header: The first part of a program segment, containing such information as
the segment name and the length of the segment.

segment kind: See segment type.

segment number: A number corresponding to the relative position of the segment in a
file, starting with 1.

segment type: A classification of a segment based on its purpose, contents, and internal
structure, as defined in the object module format. The segment type is specified by the
KIND field in the segment header.

shell: A program that provides an operating environment for other programs, and that is
not removed from memory when the those programs are running. For example, the APW
Shell provides a command processor interface between the user and the other components
of APW, and remains in memory when APW utility programs are running.

shell call: A request from a program to the APW Shell to perform a specific function.

shell application: A type of program, such as a compiler or shell command, that runs
under the APW Shell. Called a tool in MPW.

short: A 16-bit integer data type whose range is —32,768 to 32,767.

APDA Draft Page Glossary-9 9 March 1987

APWC Glossary

signal: A software interrupt that causes a program to be temporarily diverted from its
normal execution sequence.

shell load file: A load file designed to be run under a shell program,; shell load files are
ProDOS 16 file type $BS5.

65C816: The microprocessor used in the Apple IIGS.

source file: An ASCII file consisting of instructions written in a particular language,
such as C or assembly language. An assembler or compiler converts source files into
object files.

stack:. A list in which entries are added (pushed) and removed (pulled) at one end only
(the top of the stack), causing them to be removed in last-in, first-out (LIFO) order. The
term the stack usually refers to the top portion of the dlrect-page/stack sPace the top of
this stack is pointed to by the 65C816’s Stack register.

Standard C: A de facto standard based on the most widely used implementation, the
Berkleley VAX Portable C Compiler.

Standard C Library: A collection of routines for J/O, string manipulation, data
conversion, memory management, and Integrated Environment support.

standard error: A file used to report errors and diagnostic information. Generally
merged with standard output, but can be redirected. In APW C, synonymous with
diagnostic output.

standard input: The standard input stream. Generally the keyboard but can be redirected
so that input is taken from a file or device.

standard output: The standard output stream. Generally the screen but can be redirected
so that input is sent to a file or device.

static segment: A segment that is loaded at program boot time, and is not unloaded or
moved during execution. Compare with dynamic segment.

stream: A file with associated buffering.

string: An item of information consisting of a sequence of text characters (a character
string) or a sequence of bits or bytes.

struct: A record data type.

subdirectory: A directory within a directory; a file (other than the volume directory) that
contains the names and locations of other files. Every ProDOS 16 directory file is either a
volume directory or a subdirectory.

symbol: A character or string of characters that represents an address or numeric value; a
symbolic reference or a variable.

symbolic reference: A name or label that is used to refer to a location in a program,
such as the name of a subroutine. When a program is linked, all symbolic references are
resolved; when the program is loaded, actual memory addresses are patched into the
program to replace the symbolic references.

APDA Draft Page Glossary-10 9 March 1987

Glossary APW C

symbol table: A table of symbolic references created by the linker when it links a
program. The linker uses the symbol table to keep track of which symbols have been
resolved. At the conclusion of a link, you can have the linker print out the symbol table.

tool: An Apple IIGS Toolbox routine.

System Loader: The program that relocates load segments and loads them into Apple
IIGS memory. The System Loader works closely with ProDOS 16 and the Memory
Manager. ®

system program: (1) A software component of a computer system that supports
application programs by managing system resources such as memory and 1/O devices.
Also called system software. (2) Under ProDOS 8, a stand-alone and potentially self-
booting application. A ProDOS 8 system program is of file type $FF; if it is self-booting,
its filename has the extension . SYSTEM.

token: The smallest unit of information processed by a compiler or assembler. In C, for
example, a function name and a left bracket ({) are tokens.

toolbox: A collection of built-in routines on the Apple IIGS that programs can call to
perform many commonly-needed functions. Functions within the toolbox are grouped into
tool sets.

tool set: a related group of (usually firmware) routines, available to applications and
system software, that perform necessary functions or provide programming convenience.
The Memory Manager, the System Loader, and Quickdraw II are tool sets.

utility: In general, an application program that performs a relatively simple function or set
of functions such as copying or deleting files. A APW utility is a program that runs under
the APW Shell, and that performs a function not handled by the shell itself. MAKELIB is
an example of a APW utility.

unbuffered: A buffer style that does not use a buffer for 1/0; reading and writing is done
one character at a time.

unload: To remove a load segment from memory. To unload a segment, the System
Loader does not actually “unload” anything; it calls the Memory Manager to either purge
or dispose of the memory block in which the code segment resides. The loader then
modifies the Memory Segment Table to reflect the fact that the segment is no longer in
memory.

unordered: The result of a comparison with a NaN; even identical NaNs compare
unordered.

unsigned char: An §-bit character data type whose range is 0 to 255. The same as
char in APW C.

unsigned int: A 16-bit integer data type whose range is 0 to 65,535.
unsigned long: A 32-bit integer data type whose range is 0 to 4,294,967,295.

unsigned short: A 16-bit integer data type whose range is 0 to 65,535.

APDA Draft Page Glossary-11 9 March 1987

APWC Glossary

void: A data type used to declare a function that does not return a value.

volume: An item that stores data; the source or destination of information. A volume has
a name and a volume directory with the same name. Volumes typically reside in devices:
a device such as a floppy disk drive may contain one of any number of volumes (disks).

volume directory: The main directory file of a volume. It contains the names and
locations of other files on the volume, any of which may themselves be directory files
(called subdirectories). The name of the volume directory is the name of the volume.
The pathname of every file on the volume starts with the volume directory name.

wildcard character: A character that may be used as shorthand to represent a sequence
of characters in a pathname. In APW, the equal sign (=) and the question mark (7) can be
used as wildcard characters.

word: A group of bits that is treated as a unit. For the Apple IIGS, a word is 16 bits (2
bytes) long.

WD65816: A predefined symbol identifying C code written to run on the Western Design
Center 655C816 as opposed to another microprocessor.

zero page: The first page (256 bytes) of memory in a standard Apple II computer (or in
the Apple IIGS computer when running a standard Apple Il program). Because the high-
order byte of any address in this part of memory is zero, only a single byte is needed to
specify a zero-page address. Compare direct page.

APDA Draft Page Glossary-12 9 March 1957

