
APPLE
PROGRAMMER' S
AND DEVELOPER'S
ASSOCIATION

290 SW 43rd. Street
Renlon, WA 98055
206-251-6548

APW
CLanguage
Reference
APDADraft
March 9, 1987

APDA# K2SAPC

Apple IIGS Programmer's Workshop

C Reference

APDA Draft
9 March 1987

This document contains preliminary information. It does not
include

• final editorial corrections
• final art work

• an index

It may not include final technical changes.

Apple Technical Publications, MS 22-K

Engineering Part Number: 030-3133
Marketing Part Number: A2L6003

Ii APPLE COMPUTER, INC.

This manual and the software
described in it are
copyrighted, with all rights
reserved. Under the copyright
laws, this manual or the
software may not be copied, in
whole or part, without written
consent o f Apple, except in
the normal use of the software
or to make a backup copy of
the software. The same
proprietary and copyright
notices must be a lflxed to any
permitted copies as were
afflxed to the original. This
exception does not allow
copies to be made for others,
whether o r not sold, but all of
the material purchased (with
all backup copies) may be
sold, given, or loaned to
another person. Under the
law, copying includes
translating into another
language or formal.

You may use the software on
any computer owned by you,
but extra copies cannot be
made for this purpose.

© Apple Computer, Inc., 1987
20525 Mariani Ave.
Cupertino, California 9501 4
(408) 996-1010

© AT&T, 1987

Apple, the Apple logo, and
laserWriter are regjstered
trademarks of Apple
Computer, Inc.

Macintosh and SANE are
trademarks of Apple
Computer, Inc.

UNIX is a registered trademark
of AT&T.

DEC, VAX, and PDP are
trademarks of Digital
Equipment Corporation.

IBM is a registered trademark
of International Business
Machines Company.

NS 16000 is a trademark of
National Semiconductor
Corporatic:1.

Z8000 and Z8070 "'''
trademarks of Zilog
Corporation .

Simultaneously published in
the United States and Canada.

""---. "

Apple JIGS Programmer's Workshop

C Language Reference

Contents

About this manual
1 The Apple IIGS road map
2 Intnxluctory Manuals
2 The Technical Intnxluction
3 The Progranuner's Introduction
3 The machine reference manuals
4 The Toolbox manuals
4 The Programmer's WorkshOp manual
4 Programming-language manuals
5 All-Apple manuals
5 How to use this manual
6 What this manual contains
6 Visual cues
6 New terms
7 Notes and warnings
7 Language notation
7 Other reference materials you'11 need

Part I: Programmer's Guide

Chapter 1: Getting Started
1-1 About The Apple IIGS Programmer's Workshop
1-1 The APW shell
1-2 The APW editor
1-2 The APW Linker
1-2 About APW C
1-3 Mode of Operntion
1-3 Standard Apple Numeric Environment
1-3 Object Module Format
1-4 About the Apple IIGS system software
1-4 What you need

APDA Draft Page Contents-i 9 March, 1987

APWC

1-5 APW C concepts
1-5 Relocatable load files
1-8 Program segmentation
1-11 Dynamic segments
1 -12 Library files
1-13 Program Interactions
1-16 Using the APW C Libraries

Chapter 2: Using the APW C Compiler
2-1 Installing APW C
2-1 Installing APW on a hard disk
2-2 Installing APW C on a hard disk
2-2 Installing APW on two 3.5-inch disks
2-3 Writing and running a sample program
2-3 Writing the sample program
2-3 Compiling and linking the sample program
2-4 Running the sample program
2-4 A longer sample program
2-4 The APW C Compiler
2-4 The compilation process
2-4 Suspending the compilation
2-5 C compiler error messages
2-5 C compiler shell commands
2-5 Editing a source file
2-5 Compiling a program
2-6 Command Notation
2-7 CC
2-8 CHANGE
2-8 CMPL
2-10 CMPLG
2-10 COMPILE
2-10 EDIT
2-10 LINK
2-11 RUN
2-11 Examples of these commands
2-11 Appending files
2-12 Partial compilation or assembly
2-12 The linker
2-13 Making a library
2-13 Files for compiling and linking
2-13 Include-file search rules
2-14 Library files

Chapter 3: Sample Program
3-1 General procedure
3-2 Writing and editing the sample source code
3-4 Creating object code: compiling and assembling
3-6 Creating load files: linking
3-7 Running your program
3-7 Compiling. linking. and running in one step
3-8 Creating a compact load file

APDA Draft Page Contents-ii

Contents

... _,

9 March, 1987

APWC

Part II: Language Reference

Chapter 4: The APW C Language
4-1 Language definition
4-1 Variable names
4-1 Data types
4-2 Numeric constants
4-3 Type void
4-3 Type enum
4-4 Register variables
4-4 Structures
4-4 Reserved symbols
4-5 Standard Apple Numeric Environment extensions
4-6 Constants
4-6 Expressions
4-7 Comparison involving a NaN
4-7 Parameters and function results
4-7 Numeric input/output
4-7 Numeric environment
4-7 About the C SANE Library
4-8 Programming with IEEE arithmetic
4-8 Pascal-style functions
4-8 Pascal-style function declarations
4-9 Inline declarations
4-9 Inline assembly-code declarations
4-9 Pascal-style function definitions
4-10 Parameter and result data types
4-12 Global and external data types
4-13 Implementation notes
4-13 Size and byte-alignment of variables
4-14 Byte ordering
4-14 Sign extension
4-14 Variable-allocation strategy
4-14 Array indexing

Contents

4-15 Types unsigned char, unsigned short, and unsigned long
4-15 Bit fields
4-15 Evaluation order
4-16 Case statements
4-16 Language anachronisms
4-16 Assignment operators
4-16 Initialization
4-17 Compiler limitations
4-17 Performance tips
4-17 Creating load segments: the overlay command
4-17 The itappend directive
4-18 Code-generation memory model

Chapter 5: The Standard C LIbrary
5-2 About the Standard C Library

APDA Draft Page Contents-iii 9 March, 1987

APWC Contents

5-2 Error numbers -,
5-2 abs
5-6 atof
5-8 atoi
5-9 close
5-10 cony
5-11 creat
5-12 ctype
5-14 dup
5-15 ecvt
5-16 exit
5-17 exp
5-18 faccess
5-19 fclose
5-20 fcntl
5-21 ferror
5-22 floor
5-23 fopen
5-25 fread
5-26 frexp
5-27 fseek
5-28 getc
5-29 getenv
5-30 g e ts
5-31 hypot
5-32 ioctl
5-34 lseek
5-36 malloc
5-38 memory
5-40 onexit
5-41 open
5-43 printf
5-47 putc
5-48 puts
5-49 qsort
5-50 rand
5-51 read
5-52 scanf
5-56 setbuf
5-58 setjmp
5-59 sinh
5-60 stdio
5-63 string
5-65 strtol
5-66 trig
5-67 ungetc
5-68 unlink
5-69 write ~,

APDA Draft Page COnlents-iv 9 March, 1987

APWC

Chapter 6: SheD Calls
6-2 How to make a shell call
6-2 How a program makes a shell call
6-2 CalI description
6-2 DIRECllON
6-3 ERROR
6-3 EXECUTE
6-4 GET_LANG
6-4 GET_LINFO and SET_LINFO
6-7 INIT_ Wll.DCARD
6-8 NEXT_ Wll.DCARD
6-8 GET_VAR
6-9 READ_INDEXED
6-9 REDIRECT
6-10 SET3AR
6-10 SET_LANG
6-11 STOP
6-11 VERSION

Appendix A: Calling Conventions
A-I C calling conventions
A-I Parameters
A-I Function results
A-I Register conventions
A-2 Pascal-compatible calling conventions
A-2 Parameters
A-2 Function results
A-2 Register conventions

Appendix B: Files supplied with APW C
C Compiler files
Standard C Library include files
Apple nGS Interface Library include fIles
Standard C Library object files
Apple nGS Interface Library object files

Appendix C: Comparison with Macintosh Workshop C
C-I Data types
C-I Register variables
C-I Structured variables
C-2 Pascal-compatible function declarations
C-2 Inline assembly code declarations

Appendix D: Library Index

Contents

(Conjoins an index enJry for every define, type, enumeration literal, global variable,
andfunction defined in the Standard C Library and the APW Shell.)

Glossary

APDA Draft Page ConrenJs-v 9 March, 1987

APWC Contents

APDADraft Page Contents-vi 9 March 1987

About This Manual
This manual contains the infonnation about Apple IIGsThI Programmer's Workshop C that
you need when writing C programs for the Apple IIGS. It assumes that most readers
already know the C programming language, as defined in Kernighan and Ritchie's The C
Programming Language. For this reason, it does not repeat their definition of the C
language, but instead defmes the differences between APW C and "K and R" C.
However, this manual can also be used by those learning C for the first time. The
introductory chapters tell how to write, compile, link, and run a simple C program. From
there, one can follow Kernighan and Ritchie or any standard textbook on C.

Roadmap to the Apple IIGS Technical Manuals
The Apple IIGS personal computer has many advanced features, making it more complex
than earlier models of the Apple IJTh' computer. To describe the Apple IIGS fully, Apple has
produced a suite of technical manuals. Depending on the way you intend to use the
Apple IIGS, you may need to refer to a select few of the manuals, or you may need to refer
to most of them.

The technical manuals are listed in Table P-I. Figure P-I is a diagram showing the
relationships between the different manuals.

Table P-l
The Apple lIGS IeChnical manuals

Title

Technical Introduction to the Apple IIGS
Apple IIGS Hardware Reference
Apple IIGS Firmware Reference
Programmer's Introduction to the Apple IIGS
Apple IIGS Toolbox Reference, Volume 1

Apple IIGS Toolbox Reference, Volume 2
Apple IIGS Programmer's Workslwp Reference
Apple IIGS Programmer's Workslwp Assembler Reference
Apple IIGS Programmer's Workslwp C Reference
ProDDS 8 Reference
Apple IIGS ProDDS 16 Reference
Human Interface Guidelines: the Apple Desktop Interface
Apple N UJnerics Manual

APDADraft Page Preface-1

Subject

What the Apple HGS is
Machine intemals--hardware
Machine intemal£-fmnware
Concepts and a sample program
How the tools work and some toolbox

specifications
More toolbox specifications
The development environment
Using the APW Assembler
Using C on the Apple IIGS
ProDOS for Apple II programs
ProDOS and loader for Apple IIGS
Guidelines for the desktop interface
Numerics for all Apple computers

9 March 1987

APWC

Figure pol
Roadmap to the technical manuals

To start finding
out aboul
the Apple IIGS ---

To leam how the
Apple II GS works ---f+.

To start leaming
10 program
\he Apple II GS ------i~

To use the toolbox

To operate on files

To use the
development
environment ------'

Preface

I1GS

To use C

'1Iili~li~~~~l~~lff(ilwolrkshoP A<scmblcr
To use assembly .~
language ------¥

APDADraft Page Preface-2 9 March 1987

Preface APWC

Note: Some of the book titles in the above diagram have changed since it was drawn. A
corrected drawing is being prepared.

The following sections briefly describe the manuals listed in Table P-I and Figure P-I .

Introductory manuals
These books are introductory manuals for developers, computer enthusiasts, and other
Apple IIGS owners who need technical information. As introductory manuals, their
purpose is to help the technical reader understand the features of the Apple IIGS,
particularly the features that are different from other Apple computers. Having read the
introductory manuals, the reader will refer to specific reference manuals for details about a
particular aspect of the Apple IIGs.

T he technical introduction

The Technical Introduction to the Apple llGS is the first book in the suite of technical
manuals about the Apple IIGs. It describes all aspects of the Apple IIGS, including its
features and general design, the program environments, the toolbox, and the development
environment.

Where the Apple llGS Owner's Guide is an introduction from the point of view of the user,
the Technical Introduction describes the Apple IIGS from the point of view of the program.
In other words, it describes the things the programmer has to consider while designing a
program, such as the operating features the program uses and the environment in which the
program runs.

You should read the Technical Introduction no matter what kind of programming you
indend to do, because it will help you understand the powers and limitations of the machine.
If you are going to be doing assembly-language or system programming, this book is
essential. To ftnd out all about anyone aspect of the Apple IIGS, you should read one of
the following speciftc technical manuals.

The Programmer's Introduction

When you start writing programs that use the Apple IIGS user interface (with windows,
menus, and the mouse), the Programmer's Introduction to the Apple llGS provides the
concepts and guidelines you need. It is not a complete course in programming, only a
starting point for programmers writing applications for the Apple IIGS. It introduces the
routines in the Apple IIGS Toolbox and the program environment they run under. It
includes a sample event-driven program that demonstrates how a program uses the
toolbox and the operating system

Machine reference manuals
There are two reference manuals for the machine itself: the Apple llGS Hardware Reference
and the Apple llGS Firmware Reference. These books contain detailed speciftcations for
people who want to know exactly what's inside the machine.

If you are doing system programming or writing programs that are designed to recognize
whether they are running on the Apple IIGS or older Apple II computers, these books are
essential.

APDADraft Page Preface-3 9 March 1987

APWC Preface

The hardware reference manual

The Apple JIGS Hardware Reference is required reading for hardware developen;, and it
will also be of interest to anyone else who wants to know how the machine works.
Information for developen; includes the mechanical and electrical specifications of all
connectors, both internal and external. Information of general interest includes descriptions
of the internal hardware, which provide a better understanding of the machine's features.

The firmware reference manual

The Apple IIGS Firmware Reference describes the programs and subroutines that are stored
in the machine's read-only memory (ROM), with two significant exceptions: Applesoft
BASIC and the toolbox, which have their own manuals. The Firmware Reference includes
information about interrupt routines and low-level I/O subroutines for the serial ports, the
disk port. and for the DeskTop Bus interface, which controls the keyboard and the mouse.
The Firmware Reference also describes the Monitor, a low-level programming and
debugging aid for assembly-language programs.

The toolbox manuals
Like the Macintosh. the Apple IIGS has a built-in toolbox. The Apple IIGS Toolbox
Reference, Volume 1. introduces concepts and terminology and tells how to use some of
the tools. The Apple IIGS Toolbox Reference, Volume 2, contains infonnation about the
rest of the tools. Volume 2 also tells how to write and install your own tool set.

Of coun;e, you don't have to use the toolbox at all. If you only want to write simple
programs that don't use the mouse, or windows, or menus, or other parts of the desktop
user interface, then you can get along without the toolbox. However, if you are
developing an application that uses the desktop interface, or if you want to use the Super
Hi-Res graphics display, you'll find the toolbox to be indispensable.

The Programmer's Workshop manual
The development environment on the Apple IIGS is the Apple IIGS Programmer's
Workshop (APW). APW is a set of programs that enable developen; to create and debug
application programs on the Apple IIGS. The Apple IIGS Programmer's Workshop
Reference includes information about the parts of the workshop that all developers will use,
regardless which programming language they use: the shell, the editor, the linker, the
debugger, and the utilities. The manual also tells how to write other programs, such as
custom utilities and compilers, to run under the APW Shell. (For brevity, we will usually
refer to this as the APW Reference.)

The APW reference describes the way you use the workshop to create an application and
includes a sample program to show how this is done.

Programming-language manuals
Apple is currently providing a 65816 assembler and a C compiler. Other compilers can be
used with the workshop, provided that they follow the standards defmed in the APW
Reference.

APDADraft Page Preface4 9 March 1987

Prrface APWC

There is a separate reference manual for each programming language on the Apple lIGS.
Each manual includes the specifications of the language and of the Apple nGS libraries for
the language, and describes how to write a program in that language. The manuals for the
languages Apple provides are the Apple JIGS Programmer's Workshop Assembler
Reference and the Apple IIGS Programmer's Workshop C Reference.

Operating-system manuals
There are two operating systems that run on the Apple nGS: ProDOS 16 and ProDOS 8.
Each operating system is described in its own manual: ProDOS 8 Reference and Apple IIGS
ProD OS 16 Reference. ProDOS 16 uses the full power of the Apple nGS and is not
compatible with earlier Apple n's. The ProDOS 16 manual includes information about the
System Loader, which works closely with ProDOS 16. If you are writing programs for the
Apple nGS, whether as an application programmer or a system programmer, you are
almost certain to need the ProDOS 16 Reference.

ProDOS 8, previously just called ProDOS, is compatible with the models of Apple II that
use 8-bit CPUs. As a developer of Apple lIGS programs, you need to use ProDOS 8 only
if you are developing programs to run on 8-bit Apple D's as well as on the Apple lIGS.

All-Apple manuals
In addition to the Apple DGS manuals mentioned above, there are two manuals that apply to
all Apple computers: Human Interface Guidelines-The Apple Desktop Interface; and the
Apple Numerics Manual. If you develop programs for any Apple computer, you should
know about those manuals.

The Human Interface Guidelines manual describes Apple's standards for the desktop
interface to any program that runs on an Apple computer. If you are writing a commercial
application for the Apple DGS, you should be fully familiar with the contents of this
manual .

The Apple Numerics Manual is the reference for the Standard Apple Numeric Environment
(SANETht), a full implementation of the IEEE standard for floating-point arithmetic. The
functions of the Apple DGS SANE tool set match those of the Macintosh SANE packages
and of the 6502 Assembly-Language SANETht software. If your application requires
accurate or robust arithmetic, you'll probably want to use the SANE routines in the
Apple DGs. The Apple IIGS Toolbox Reference tells how to use the SANE tool set
routines in your programs. The Apple Numerics Manual is the comprehensive reference for
the semantics of the SANE routines.

How to use this manual
If you are an experienced C programmer but have never written a program for the Apple
lIGS, Chapters 1, 2, and 3 will give you enough information to get standard C programs
running. (If you have written other programs for the Apple DGS, Chapter 1 will be
redundant.) The remaining chapters tell you what you need to write C programs that use
the capabilities of the Apple IlGS.

If you are new to C, Chapter I will tell you what you need to go through a C textbook,
such as Kernighan and Ritchie's. After you are familiar with C, you can leam about the
capabilities of the C compiler and this particular implementation.

APDADraft Page Preface-5 9 March 1987

APWC Preface

What this manual contains

This manual is divided into two major sections: Pan I, " A Programmer's Guide," and Pan
II, "Language Reference."

Pan I, "A Programmer's Guide," introduces you to APW C and its programming
environment

• Chapter I, "Getting Started," introduces the environment in which you'll use the C
compiler. It discusses the Apple lIaS Programmer's Workshop, ProDOS 16, the
Apple lIas Tools, and lists the hardware and software you'll need.

• Chapter 2, "Using the C Compiler," describes the compilation process, lists the Shell
conunands you'll need working with the compiler, and discusses the linker, the
debugger, and other utilities.

• Chapter 3, "Sample Program," takes you step-by-step through the process of building a
C program that has an assembly language subroutine.

Pan II, "Language Reference," is a detailed description of the structure and components of
the APW C and its libraries.

• Chapter 4, ''The APW C Language," describes Apple extensions to C and clarifies
aspects of the language definition as they apply to this implementation.

• Chapter 5, "The Standard C Library," documents functions for standard I/O, string
manipulation, math routines, and other useful features not built into the language.

• Chapter 6, ''The Shell Interface Library," lists the C interfaces to the APW Shell.

• Appendix A, "Calling Conventions," tells how to write calls between C and Pascal.

• Appendix B, "Files Supplied with APW C," contains a list of all the files that are
supplied with this product.

• Appendix C, "Comparison with Macintosh Programmer's Workshop C," describes the
differences between MPW C and APW C.

• Appendix D, "Library Index," is a combined index of identifiers in the Standard C
Library and Apple lIas Interface Libraries.

Visual cues

Certain conventions in this manual provide visual cues alerting you, for example, to the
introduction of a new term and important or useful information. These are described in this
section. Typographical conventions are described in the next section, "Language
Notation."

New terms

When a new term is introduced, it is printed in boldface the first time it is used. This lets
you know that the term has not been defined earlier and that there is an entry for it in the
glossary.

APDADraji Page Preface-6 9 March 1987

.-.

Preface APWC

Notes and warnings

Special messages of note are marked as such:

• Note: Text set off in this way presents sidelights or interesting points of infonnation.

• Important: Text set off in this way presents important infonnation or instructions that
you should read before proceeding.

• Warning! A warning set off like this alerts you to something that cauld cause loss of
data or damage to software.

Language notation
This manual uses certain conventions in common with other Apple llGS language manuals.

• Words and symbols that are part of the C language, as well as anything that you type
on the keyboard or that can appear on the screen, are presented in a monospace font:

int ndigit [10]

• Metalanguage expressions, which are used in syntax diagrams to indicate items that are
replaced by C, are in italic:

else if (Condilion)
stalement

Here condilion and stalement are expressions that are replaced by actual C expressions.
The else if and the parentheses are C code.

In addition, the following conventions are observed:

Convention

[]

Meaning

Square brackets indicate that the enclosed
item is optional.

A horiwntal ellipsis indicates that the
preceding item(s) can be repeated as
necessary.

A vertical ellipsis indicates that not all of the
statements in an example or figure are
shown.

Other reference material you'll need
In order to write C programs for the Apple IIGS, you'll need to be familiar with these
additional reference materials:

• Apple lIGS Programmer's Workshop Reference. This book describes theAPW
environment in which the C compiler operates, including the shell, editor, linker,
debugger, and other important utilities.

APDADraft Page Preface-7 9 March 1987

APWC Preface

• The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie
(Prentice-Hall, 1978). This is a standard reference book for the C language in its
original fonn. Appendix A of this book is a fonnal defmition of UK & R" C.

• C: A Reference Manual, by Samuel P. Harbison and Guy L. Steele (Prentice-Hall,
1985). This is a complete reference book for standard C, as implemented by the
Portable C Compiler, including the Western Elecnic extensions to K & R C.

• Apple /lGS Toolbox Reference, Volumes I and /I. These books contain everything you
need to program using the Apple IIGS ROM and associated RAM routines. The two
volumes cover windows, alert boxes, menus, graphics, the SANE tool set, and much
more.

• Apple Numerics Manual. This book describes in detail the floating-point arithmetic
used in Apple computers. See the Toolbox Reference for a detailed description of the
calling sequence for SANE routines.

APDADraft Page Preface-8 9 March 1987

APDADraft

Part I

Programmer's Guide

9 March 1987

APDADraft 9 March 1987

"-,-~

Chapter 1
Overview

This chapter introduces the Apple IIGS Programmer's Workshop (APW). The first
section, "About the Apple IIGS Programmer's WoIkshop," describes the various pans of
APW. The second section, "About Apple IIGS System Software," describes ProDOS 16,
the System Loader, and the Memory Manager. The third section, "What You Need,"
describes the hardware and software you need to run APW C. The fourth section, "APW
C Concepts," describes the relationships between source, object, load, and library files.
The fifth section, "Program Interactions," describes the process of building a program.

About the Apple IIGS Programmers Workshop
The Apple IIGS Programmer's Workshop is a suite of software designed to assist
developers in writing Apple IIGS applications programs. This development environment
includes a command interpreter, known as the shell; a text editor; a linker; a
debugger; and a set of utilities. APW supports C and 65816/65C02 assembly-language
programming; other languages are planned. Further support for developers is provided by
a comprehensive set of routines known as the Apple fiGS Toolbox. The toolbox
routines are accessed from APW but are not considered pan of APW. For a
comprehensive description of APW, refer to the Apple IIGS Programmer's Workshop
Reference. For detailed information on the Apple IIGS Toolbox, refer to the Apple IIGS
Toolbox Reference: Volumes I and II.

The APW shell

The APW shell provides the interface that allows you to work with the C compiler and
perform tasks such as file, directory, and disk management. The shell also acts as an
extension to ProDOS 16, providing several functions that can be called by programs
running under the shell. The C compiler can use a set of shell calls to perform the
following functions:
• pass parameters and operations flags between the shell and APW programs
• read the current language number
• set the current language number
• return the address of the command table
• get filenames using wildcards

APW C provides C interfaces to the shell calls. The calls and their C interfaces are
discussed in Chapter 6, "Shell Calls."

Commands most often used while working with the C compiler are described in Chapter 2,
"Using the APW C Compiler." The APW shell is fully described in Chapters 2 and 3 of
the APW Reference.

APDADraft Page 1-1 9 March 1987

APWC Chapler 1

The APW editor

The APW editor is a full-screen text editor that oPerates under keyboard control.
' ..

You can send conunands to the shell to perform tasks such as

• manipulating text
• searching for and replacing text strings

• moving your position in the file
• scrolling the screen

• setting and clearing tab stops
• defining and using keyboard macros

The APW editor is fully described in Chapters 2 and 4 of the APW Reference.

The APW linker

The APW linker takes the object files produced by the C compiler and generates load
files that the System Loader can load into memory. Although the linker is a single
program, conceptually there are two APW linuers:

L Normally the linker is called by a shell conunand, such as LINK or CMPL (compile
and link). These commands provided a limited set of options, setting other options to
default values. This linker is referred to as the standard linker.

2. Alternatively, all funtcions of the APW Linker can be contorlled by compiling a file
of linker commands. The linker command language, called LinkEd, allows you to do such
things as place specific object-file segments in specific load-file segments, search specific
libraries, and control linker printout. You can append the linkEd file to your last source
file, or you can compile and execute them separately by using the COMPILE or ALINK
conunands. The aspect of the linker controlled by linkEd files is called the advanced
linker.

About APW C
APW C is a complete implementation of the C progranuning language. It consists of a C
compiler, the Standard C Library, the Apple IIGS Interface Libraries, and the C SANE
Library. '

The C Programming Language by Kernighan and Ritchie is an authoritative written
definition of C in its original form: we refer to this C as K & R C. However, the language
has changed in several ways since the book was written. In addition, numerous details of
the language definition are open to interpretation, with the result that the de facto standard
definition of C differs in several ways from the language origina)ly defined by Kernighan
and Ritchie. This de facto standard is loosely defin,ed by the most widely used
implementation of C, the Portable C Compiler (PCC).

In this manual, we use the term Standard C for C as defined and implemented by the
Berlceley 4.2 BSD VAX implementation ofPCC, including the documented Western

APDADraji Pagel-2 9 March 1987

Chapter 1 APWC

Electric extensions: type void, enumeration data types, and structures as function
parameters and results. C: A Reference Manual, by Harbison and Steele, describes
Standard C fully. APW C is based on this de facto standard and not on the proposed ANSI
standard current! y under development.

Apple has extended Standard C to facilitate writing programs for the Apple IIGS. In
addition to the Western Electric extensions, APW C includes a function modifier that
allows calls to and from Pascal programs and the Apple IIGS Interface Libraries. APW C
also supports the Standard Apple Numeric Environment, described later in this chapter.

Mode of operation

The APW C compiler, and APW C itself, operates in the Apple IIGS's native mode. In
native mode, the full instruction set of the 65816 processor is available. The 91
instructions combined with 25 addressing modes make 256 opcodes available to the
compiler. The register set can be used for either 8- or 16-bit operations. The accumulator
can be set to either a 16-bit register or two 8-bit registers. The advantage of using a
processor with 16-bit registers as compared to one with 8-bit registers is that you can write
shorter programs with more compact code and faster execution.

Standard Apple Numeric Environment

The APW C compiler provides full support for the Standard Apple Numeric Environment
(SANE'''). APW C together with the C SANE library compose a fully conforming
implementation of extended-precision binary floating-point arithmetic as specified by IEEE
Standard 754. This standard specifies data types, arithmetic, and conversions, as well as
tools for handling exceptions such as overflow and division by zero. SANE supports all
requirements of the IEEE standard and goes beyond the specifications of the standard by
including a library of high-quality scientific and fmancial functions. Thus SANE provides
a numeric environment sufficient for a wide range of applications.

Source programs using only the float and double types and standard C operations
compile and run without modification.

Object module format

The object module format (OMF) on the Apple IIGS is the general format used in
object files, library files, and load files. On the Apple lIe and lie, there is only one
loadable file format, called the binary file format, which consists of one absolute memory
image along with its destination address. On the Apple IIGS, object module format allows
dynamic loading and unloading of load segments containing program code and data
while a program is running. Additionally, each APW language produces its object code in
the object module format, allowing you to link together subroutines written in different
languages.

APDADraft Pagel-3 9 March 1987

APWC Chapter 1

About the Apple IIGS system software
System tasks are handled by ProDOS 16, the System Loader, and the Memory
Manager. ProDOS 16 is the core, or kemel, ofthe Apple IIGS's operating system. It
provides file management and input/output capability.

The System Loader works closely with ProDOS 16. It is responsible for loading all code
and data into the Apple IIGS memory. It is capable of static and dynamic loading and
relocating of load segments.

The Memory Manager is responsible for allocating memory. It provides space for load
segments, tells the System Loader where to place them, and moves segments within
memory when additional space is needed.

ProDOS 16 and the System Loader are documented in the Apple lIes ProDos 16
Reference. The Memory Manager is documented in both the Apple lIes ProDos 16
Reference and the Apple lIeS Toolbox Reference: Volumes I and II.

What you need
In order to use the Apple IIGS Programmer's Workshop, you must have the following
hardware and software. A list of Apple IIGS manuals that you will fmd useful is given in
the Preface.

• An Apple IIGS computer, or an Apple lIe computer with an installed Apple IIGS
upgrade, with 256K bytes of RAM.

• An installed Apple IIGS memory-expansion card with 512K bytes of RAM. With this
card the Apple IIGS has 768K bytes of RAM.

• The 3.5-inch Apple IIGS System Disk.

• The two 3.5-inch APW disks.

• The 3.5-inch APW C disk, containing the files shown in Appendix B.

• Two 800K disk drives (one if you have a hard disk).

• Disks containing any other APW languages you intend to use with this system. The
fJles on these disks must be installed on the Apple IIGS disk as described in the
manuals that came with them.

The following hardware is highly recommended, especially if you intend to do multi
language development or develop large programs:

• An Apple llGS memory-expansion card with one megabyte of RAM. With this card
installed, the Apple IIGS has 1.25 Mbytes of RAM.

• A hard disk, such as the Apple HardDisk 20 SC, or a third 800K disk drive.

Many developers find that an additional Apple IIGS memory-expansion card is very useful.
You can use the card for a large RAM disk on which you can place library files, compilers
and assemblers, the linker, and utility programs. Since these programs are loaded into
memory from disk each time they are used, placing them on a RAM disk can speed up the ._
system's operation during program development.

APDADraft Page 14 9 March 1987

-..,..- .

Chapter 1 APWC

Note: If you haven't yet read "About this Manual," go back and read it now. In
addition to providing a list of the manuals you'll need to develop programs for the
Apple IIGS, it explains the layout of this book, the interrelationshIps of the books in
the Apple IIGS Technical Library suite, and the conventions used to describe
commands in this book.

The APW C disk contains the fIles shown in Appendix B. Use the index of this manual to
get more information on any of these files. To examine the contents of your APWC disk,
boot the disk, type CAT and press Return. To examine the contents of a subdirectory,
include the pathname of the subdirectory; for example, to obtain a listing of the fIles in the
subdirectory /APWC / LIBRARIES, use the following command:

CAT / APWC/LIBRARIES

To obtain a listing of all the fIles in the volume /APWC, use the command

FILES -L -R / APWC

This prints the contents of all the directories in the volume, the fIles in each directory
indented below it, with information about each fIle.

APW C concepts
This section describes a variety of features and concepts that you must understand in order
to write application programs for the Apple I1GS computer. While some of these concepts
may be familiar to you from work with other computers, you must still be familiar with the
way in which they are implemented on the Apple IIGS to get the most out of the Apple IIGS
Programmer's Workshop and to use the operating system and the memory of the
Apple IIGS effectively.

Relocatable load files

The Apple IIGS Programmer's Workshop deals with three fundamental types of fIles:
source files, object files, and load files. Source fIles are ASCII fIles consisting of
the text of your program, and follow the conventions of a particular programming
language; object files and load fIles are binary fIles conforming to the Apple IIGS object
module format (OMF) defIned in Chapter 8 of the APW Reference.

A C source fIle consists of C statements, preprocessor directives, function defInitions and
declarations, and so forth, together with variable declarations, which may include initialized
data. In the source code, specific functions, variables, and data structures are each labelled
with a name. You can refer to the name in another part of the program: for example, you
execute a function by using its name in a statement. A name or label of code or data used
in this way is referred to as a symbolic reference (that is, a symbol that can be
referenced or referred to). In high-level programming languages, like C, symbolic
references are usually the only means available to jump from one place in a program to
another.

C uses a special kind of source fIle-a header fIle, or include file---containing code
'- - shared by many programs: for instance, lists of constants or interfaces to libraries. The

APDADraft Page 1-5 9 March 1987

APWC Chapter 1

header file is named in an 1/ incl ude statement in your source file, and the C compiler
copies the header file in place of the #include statement before doing the actual
compilation.

In assembly language it is possible to specify actual locations in the computer's memory to
which you want the program to jump: that is, to write absolute code. The APW C
compiler only produces relocatable code segments:' that is, code that can be loaded into
any location in memory. Note that such a program can be relocated only when it is loaded:
once loaded, it can't be moved. (A program or block of code that can be moved from one
location in memory to another while the program is running is called position
independent.)

The Apple nGS system software and APW are both designed to support re10catable code.

When a source program is compiled, the compiler converts the source code into 65816
machine-language instructions, data declarations, and symbolic references. Before the
program is actually run, the symbolic references must be resolved; that is, the routine
being referenced must be found, and the reference must be replaced with code that the
loader can use to relocate the code at load time. The program that resolves the symbolic
references is called the APW Linker. (The linker gets its name from the fact that it can
combine, or link together, several object files and library files to create a single executable
load file.)

The conversion of a source file into 65816 machine language and data resident in memory
is done in several steps, as follows (see Figure 1.1, below):

1. The source code is compiled. The APW C compiler first executes preprocessor
directives, such as inserting include files, before compiling the source code and
writing out one or more object files. Object files, then, consist of machine-language
instructions plus unresolved symbolic references to other routines.

Your program can consist of several source files; and each source file can be in any
of the APW programming languages. Each source file is converted into one or more
object files by the APW assembler and compilers.

2. The object files are input to the APW Linker, which combines all of the object files
into a single load file and resolves symbolic references. The linker verifies that
every routine referenced is included in the load ftle. If there are any routines that the
linker has not found when it has fmished processing all of the object files, then it
searches through any available library fIles for the missing routines. The linker
removes symbolic references and replaces them with entries in special tables it
creates called relocation dictionaries. The load file consists of blocks of
machine-language code that can be loaded directly into memory (called memory
images), plus relocation dictionaries that contain the information necessary to patch
addresses into the memory images when the program is loaded into memory.

3. At program execution time, the load fIle is loaded into memory by the System
Loader. The loader calls the Apple nGS Memory Manager to request blocks of
memory for the load fIle, loads the memory images, and uses the relocation
dictionaries to patch the actual memory addresses into the machine-language code in
memory. The entire load file is not necessarily loaded into memory at one time; all
OMF fIles are divided into segments, which can be processed independently.
OMF-file segmentation is a fundamental Apple nGS concept, which we consider
next.

APDADraft Page 1-6 9 March 1987

-,

Chapter 1 APWC

The Memory Manager is the Apple llGS toolset that allocates blocks of memory as
needed, and keeps track of which blocks of memory are available.

lm C source file I~ 65816 source file

~ I C include file

, •
APW APW

C compiler assembler

\ /

\ ,/
obje~t file objeit file

I
Linker

t

load file

r

(System Loader)

,
executable code

in memory

'-_ Figure 1.1. Creating an Executable C Program on the Apple lIas

APDADraft Page 1-7 9 March 1987

APWC Chapter 1

Program segmentation

In general, any computer program that consists of more than a few lines of code contains
one or more subroutines; you may also choose to segregate large blocks of data into
separate parts of the program.

In APW C, each subroutine (called a function) is translated into a segment in the source
file: the function name is the segment name. As illustrated in Figure 1.2, when you
compile the program, each source-code segment is translated into one object segment.

C Source File

main ()

{=-

}

:: ~;~:,:,:::::: ::::] ===~[>
___ l ______________ _

Jason ()

last ()
{

==---

. Object Rle

object seg main

object seg Dave

object seg Marek

object seg Jason

object seg last

Figure 1.2. Creating Object Segments in Your Source Code

The object segment is the smallest linkable unit; for example, it can be selected from an
object file for independent linking with a LinkEd command. It is also possible for a
compiler to compile a segment (function) independently: a process called partial
compilation.

Note: The APW C compiler does not perform partial compilation: if you request a partial
compilation, the entire file will be compiled.

In addition to creating one code segment per function compiled, the APW C compiler also
creates two data segments for each object file created (that is, for each source file
compiled). These are used for storage of any global variables declared in the
corresponding source file. Global scalar variables are stored in a segment called
-qlobals, and global array and structure variables are stored in a segment called
-arrays. Although this means that each file will therefore have the symbols -arrays
and -globals defmed, they are flagged as private symbols, meaning they can only be
accessed from within the object module they are contained in. The symbols for the
variables themselves contained with the segments, of course, are public. The compiler
needs to generate two different data segments for the twO different types of variables
becauses it uses two different kinds of addressing-sixteen bit and twenty-four bit,
respectively-to access them The general implications of the code-generation memory

APDADraft Page 1-8 9 March 1987

Chapter 1 APWC

model are discussed in Chapter 4; the implications for use with the advanced linker are
discussed in Chapter 4.

Apple nos load files are also segmented. Each load-file segment can incorporate any
number of object-file segments. You can use a LinkEd command file to create load
segments and to specify which object segments go in each load segment Alternatively.
APW C lets you specify load-segment names in the source code. by using the segment
command. If you do not use a LinkEd file. all code segments with the same load-segment
name are placed by the linker into the same load segment The data segments -globals and
-arrays are automatically identified as belonging to load segments of the same name; these
must be collected into their own load segments so that the system loader can be assurred of
loading the -globals segment within a single bank as required by the code-generation
model. and so that the data segments can be re-loaded independently of the code when a
program is re-started. Again. the linker does this automatically unless you use a LinkEd
file to control your link. Use of source-file load-segment names are illustrated in Figure
1.3.

C Source File

segment FIRST
main ()

(=-

~l~~~ __ ~~ ______ _
Dave (
(-

)-

segment FINISH
Marek ()

seqment S) ECOND
Ja§on (

(~

segment FINISH
t~ ()
}

Object File

objectseg main
Ioadseg FIRST

objectseg Dave

Ioadseg FIRST

object seg Marek
Ioadseg FINISH

Objectseg Jason
Ioadseg SECOND

objectseg last
Ioadseg FINISH

Figure 1.3. Assigning Load Segments in Your Source Code

The relationship of object segments to load segments is illustrated in Figure 1.4.

APDADraft Page 1-9 9 March 1987

APWC Chapter 1

,Object File load File

object seg main Segment FIRST load seg FIRST ..
Contains: main

~
Dave

object seg Dave
loadseg FIRST

object seg
Segment SECOND

Marek Contains: loadseg FINISH Jason

object seg Jason Segment FINISH
Ioadseg SECOND Contains: Marek

... last
object seg last
Ioadseg FINISH -

Segment -GLOBALS
object seg -globals --" Contains: -globals
Ioadseg -GLOBALS

object seg -arrays Segment -ARRAYS
• loadseg -ARRAYS r Contains: -arrays

Figure 1.4. Relationship Between Object Segments and Load Segments

Every OMF file consists of one or more segments, each comprising a segment header
and a segment body. The segment header is divided into fields described in the section
"Segment Header" in Chapter 8 of the APW Reference.

The header of a load segment contains the name of the segment; the header of an object
segment contains the name of the segment and the name of the load segment into which it
goes. The name of the object segment is used by the linker in resolving function
references; also, you specify the names of object segments when using the advanced linker
to extract specific segments for linking (see the section "Using the Advanced Linker" in
Chapter 5 of the APW Reference).

Each segment in a program must have a unique object-segment name: in APW C, each
function is compiled to a separate object segment, whose name is the function name. Each
object segment is also assigned a load-segment name. As illustrated in Figure 1.4, APW C
lets you assign your own load-segment name to an object segment. Any number of object
segments can have the same load-segment name. The standard linker places all object
segments that share the same load-segment name into the same load segment (as long as
they will fit into 64K).

For example, suppose your object file contains the following segments:

O. Object Segment Name: main
Load Segment Name: FIRST

APDADraft Page 1-10 9 March 1987

Chapter 1 APWC

l. Object Segment Name: Dave
Load Segment Name: FIRST

2. Object Segment Name: Marek
Load Segment Name: FINISH

3. Object Segment Name: Jason
Load Segment Name: SECOND

4. Object Segment Name: last
Load Segment Name: FINISH

5. Object Segment Name: -globals
Load Segment Name: -globals

6. Object Segment Name: -arrays
Load Segment Name: -arrays

When the standani linker processes this file, object-segment names main, Dave,
Marek, Jason, and last are treated as references that must be resolved. Object
segments main and Dave are placed in the same load segment, named FIRST; object
segments Marek and last are placed in the same load segment, named FINISH; and
object segment Jason is placed in a separate load segment, named SECOND.
Additionally, the object segment -globals is placed in the load segment -globals,
and the object segment -arrays is placed in the load segment - arrays.

On the Apple llGS computer, no single block of code can occupy more than 64 Kbytes of
contiguous memory. To load a larger program than that, you must split it up into two or
more load segments. When much of memory is already in use, it may be possible to load a
program that is divided into several small load segments even if the same program in one or
two load segments wouldn ' t fil The Apple llGS Memory Manager takes care of assigning
each segment to a block of memory; the System Loader keeps track of where in memory
the segment has been loaded, and patches intersegment calls in each segment as it is loaded.

Dynamic segments

On the Apple llGS computer, the combination of load segments together with the System
Loader and Memory Manager makes possible the creation of dynamic segments. A
dynamic segment can be loaded automatically by the loader and Memory Manager during
program execution simply by calling a function contained within the dynamic segment; if
the segment is not currently in memory, the loader will load it automatically. A dynamic
segment that is not needed at a given time can be removed, freeing the memory used to
allow room in which to load another dynamic segment, or indeed, for any other purpose.
Additionally, the loader and Memory Manager actually purge a dynamic segment from
memory only if the memory is needed for something else; otherwise, the segment remains
in memory and need not be reloaded the next time it is called, even if the user has
"unloaded" il

A segment that is not dynamic is static. A static segment is loaded at program boot time.
and is not unloaded or moved during execution. The first segment of any program that is
loaded is static; any other segments may be static, but (especially for large programs) the
system will be more memory efficient if all infrequently-used segments are dynamic.
These may make development of large applications for smaller memory configurations

APDADraft Page 1-11 9 March 1987

APWC Chapter 1

practical. In order to specify that a load segment is dynamic, you must use a LinkEd
command, or specify the dynamic option to the segment command.

Library files

Library files contain routines that are useful to many different programs. On the Apple
IIGs, all library files are in object module format, regardless of the language of the source
file. An Apple IIGS library file (ProDOS file type $B2) can therefore be used by a program
written in any source language. Some languages, such as APW C, come with a set of
library files used by that language. When the linker processes one or more object files and
cannot resolve a symbolic reference, it assumes that it is a reference to a segment in a
library file. If you use the standard linker, it automatically searches all the library files in
the APW library prefix (2 /). (If you use a LinkEd command file, then the advanced linker
searches only the library files that you specify.) Unless you are using the advanced linker,
you do not even need to know the names of the library files in order to use them: the
standard linker automatically fmds the files and extracts the segments it needs.

You can create your own library files from one or more object files by using the MakeIib
APW utility program. Figure 1.5 illustrates the process of creating a library file. You
specify one or more object files to be included in the library file. MakeLib concatenates the
files and creates a special segment at the beginning of the file called the library
dictionary segment. The library dictionary segment is the first segment of a library file;
it contains the names and locations of all the global symbols in the file . (A global
symbol is a label in one segment that can be referenced in another segment, as opposed to a
local symbol, which can be used only within the segment in which it is defmed.) The
linker uses the library dictionary segment to find the segments it needs.

The library dictionary segment makes it possible for the linker to search a library file for
global symbols much more rapidly than it can search an object file. Consequently, the
linker will search a library dictionary segment multiple times if necessary to find segments
referenced by other segments in the library file. The sequential order of the segments in a
library file is therefore not important. If you were to use several library files, on the other
hand, the order in which the files were searched would be important: if the linker first
searched file A and then file B, for example, it could resolve a reference made in file A to a
global symbol in file B, but could not resolve a reference made in file B to a symbol in file
A. It is for that reason that MakeLiballows you to include several object files in a single
library file.

APDADraft Page 1-12 9 March 1987

Chapter 1

T

T : sean T
ObJect3

T se~/i T

Ubflle

Ubrary
DlcMonary
Segment

•
• 1 r _ .. :. ... -

Figure 1.5. Relationship Between Object Files and Library Files

Program interactions

APWC

Ust of object files

Cross reference
belween filenames.
segments. and
symbol names

List of symbol nl'lnnA"

This section illustrates the interactions among the various programs in the Apple lIas
Programmer's Workshop by presenting a typical sequence of procedures and events. For
this purpose, we assume that you are developing an application written mostly in C, with
some routines written in 65816 assembly language. In this section, only the sequence of
operations is listed; see Chapter 3 for an actual example of the sequence described here.
The process described here is illustrated in Figure 1.6. See the Apple llGS ProD OS 16
Reference manual for a complete description of the program load process.

APDADraft Page 1-13 9 March 1987

APWC

(Shell : set
language

Ito C
-.9 . ,' .' .' .. '

l ... ,
:
, , , ,

)
.r Shell: call)
\APW Editor

Editor:
write C
routines

, ,
: ,
:

(Shell: set HShell: call)
~guage to APW Editor

M65816

...

, , ,
~ , , .' , ,

~ dltor: writer ... ASM65816 .' outlnes

V • • • :
:
:
\
\
\\

\ '.

(Shell: call
I APW } Debugger

(~hell : call

Complier

K;comPller:
C compUe C }
Source rograms

(Shell: call0 ASM65816
~ssembler

Assembler.
assemble

65816 ASM65816 Source 1Q,0grams

••••••••••••• _{ DebUgger} Program
. -..... ~-- .- g~~~~m .'IU· ••• • .. ~emo",y

Figure 1.6. Program Interactions

Chapter J

C
Object

(Shell: call
A PW linker

Unker: link
files into a
load file

65816
Object

Shell: run J
program

~?ader and Load
Memory .. File
Manager:
load

1Qr0gram

1. Using an APW Shell command, set the current language for APW to ee. (Every
APW file has an APW language type; if you open a new file, it is given the current
APW language type.)

2. Call the APW Editor and open a new file.

3. Use the editor to write the C-languageroutines. You can divide the program among as
many files as you wish. You do not have to return to the shell between files; you can
save one fIle and open another within the editor. In APW C, you can use the
segment command to specify which object segments go in which load segments.
Until you use a shell command to change it, or open a non-C fIle, the current language
remains ee.

4. Quit the editor, charige the current language to ASM65816, call the editor, and open a
new fIle. You can divide the 65816 assembly-language routines among as many fJles
and as many segments per file as you wish. The APW Assember lets you specify
which object segments go in which load segments. Make the assembly-language
routines relocatable; that is, use no absolute addresses---use labels and relative
addressing only.

If you have used macros in your assembly language program, you can run the MacGen
utility to generate a custom macro fJle for the program.

APDADraft Page 1-14 9 March 1987

J

Chapter I APWC

Until you use a shell command to change it, or open a non-assembly-language file, the
current language remains ASM65816.

5. Quit the editor, call the APW Assembler to assemble the 65816 assembly-language
routines, and call the APW C Compiler to compile the C routines. You can use the
same command for both.

6a. Use the APW Linker to link the object files into a load file. Normally, you can use the
standard linker to link the program. The standard linker places all object segments with
the same load-segment name into a single load segment

To compile and link the entire program in one operation, do the following:

a. Using the editor, tie all of your source files together by placing an APPEND directive
(in assembly language) or a ifappend function (in C) at the end of each file but the
last.

b. From the shell, execute the compile-and-link command (CMPL).

The shell checks the language type of the first file, and calls the C compiler. When the
compiler gets to a 65816 file, it returns control to the shell, which calls the APW
Assembler. When the assembler is finished, it returns control to the shell again, which
calls the standard linker. The object ftles output from the C compiler and those output
from the APW Assembler are all in the same format, and so are indistinguishable to the
linker. The linker combines the object files, resolves references, writes the load ftle,
and returns control to the shell.

6b. If you want to change load-segment assignments, or if you want to use dynamic load
segments, you must use the advanced linker. Write a LinkEd ftle like a language
source ftle: first set the system language to LINKED, then use the editor to write the
ftle.

To compile and link the entire program in one operation, do the following:

a. Using the editor, tie all of your source ftles together by placing an APPEND directive
(in assembly language) or a ifappend directive (in C) at the end of each file.

b. Put an APPEND or ifappend directive that references the LinkEd ftle at the end of
the last file in the program.

c. In the shell, execute the COMPILE command.

The shell checks the language type of the first ftle, and calls the C compiler. When
the compiler gets to a 65816 file, it returns control to the shell, which calls the
assembler. When the assembler gets to the LinkEd ftle, it returns control to the shell
again, which calls the advanced linker. The advanced linker, controlled by the
commands in the linkEd ftle, can do the following:

• combine the object files
• resolve references
• assign object segments to load segments
• label certain load segments as dynamic
• search libraries

• and write the load fIle.

When it is finished, the linker returns control to the shell.

7. Run the program by typing in the name of the load ftle and pressing the Return key.
(You can also automatically execute a program after linking by using the CMPLG
command.) When a program is run on the Apple IIGS, the following events occur:

APDADraft Pagel-IS 9 March 1987

APWC Chapter 1

a. The System Loader loads the ftrst segment into memory (calling the Memory
Manager to request the block of memory it needs). This segment is static; that is. it
remains in memory during the execution of the program. The loader uses the
relocation dictionary of the segment to relocate the code to its present location in
memory.

b. The loader loads all other static segments into memory, relocating them as necessary.

c. The loader passes control of the system to the program, and the program begins to
execute.

d. When a reference to a subroutine in a dynamic segment is encountered. control is
returned to the System Loadertbrough the jump table. If the segment is already in
memory, the loader transfers control to the segment. If not, the loader uses the jump
table to locate the load file, segment, and offset of the subroutine. loads the segment
into memory, and transfers control to the segment. The System Loader creates and
maintains a table (the memory segment table) to keep track of all the segments in
memory.

8. If the program does not run correctly, you can use the APW Debugger to step through
or trace the code, to insen breakpoints. to disassemble the macltine code. and to
examine the contents of registers and memory locations. You can modify the code in
memory and rerun the program until the bug is ftxed.

9. Correct the source code and recompile (or reassemble) the program

10. Relink the program and rerun it.

11. When the program is completely debugged, you can use the CRUNCH command to
compress the fIles created by partial assemblies into two object fIles, then link the
program one last time. Using CRUNCH is optional: if you have performed several
panial assemblies, compressing the object files speeds up the link process.

Using the APW C libraries
APW C programs can use the Standard C Library. The Apple IIgs Toolbox. the APW
Shell. and ProDOS to talk to the Apple IIgs hardware. All of the interface code to make
these calls is contained in the fIle CLm wltich is installed in theAPW library preftx (12).
(Any header files containing declarations needed needed to make the calls are installed in
the CINCLUDES directory in the library preftx.) Figure 1-7 shows how these libraries
interact. Your application can make calls to the Standard C Library. the APW Shell. the
Apple IIgs Toolbox. or ProDOS. The Standard C Library contains a number of high-level
routines familiar to C programmers. which deal with ftle handling. memory management.
and so on. The Standard C Library in turn calls the Toolbox or ProDOS. You can also
make calls to the APW Shell. The shell intercepts the call: if it is a ProDOS call. the shell
passes it through unchanged; if it is a shell call. the shell makes ProDOS calls. or talks to
the hardware directly. to execute it.

APDADroft Page 1-16 9 March 1987

-- .

Chapter 1 APWC

(Application)

r

Standard C) l APW Shell) Library

r r It r
Apple IIGS Toolbox ProDOS

• • •
r Apple IIGS hardware I

Figure 1-7. APW C Library Interactions

APDADraft Page1-17 9 March 1987

APWC Chapler 1

APDADraft Page 1-18 9 March 1987

Chapter 2
Using the APW C Compiler

This chapter describes how to use the APW C compiler. The fIrst section, "Installing APW
C," tells you how to install APW C on your system. The second section, "Writing and
running a sample program," leads you through a sample session, giving you a fast way to
become acquainted with compiling, linking, and executing a program. The third section,
"The APW C Compiler," discusses the compilation process. The fourth section, "C
Compiler Shell Commands," describes the Shell commands you'll use when working with
the C compiler. The fIfth section, "Source Files, Object Files, and Listing Files," tells how
to use the various files used in building a program.

Installing APW C
Before you can do any of the things described in this chapter, you must install APW C.
First install APW and then install C, as described below:

Installing APW on a Hard Disk

Before doing anything else, make a backup copy of your APW disk and put the original in
a vault.

We will assume your hard disk is called harddisk. First, insert the APW disk in a drive
and start up APW, then type these commands:

COpy -c /APw/= /harddisk/APw/

COpy -C / APW/SYSTEM/= /harddisk/SYSTEM/

These steps take several minutes, as they involve copying hundreds of ftles.

Now insert the most recent Apple IIGS System Disk and type

COpy -C / SYSTEM.DISK/= /harddisk/

This will take a few minutes.

When you are done, you have APW installed. It will work fIne, but several files are
duplicated: the copies in the directory / harddisk/ APW will never be used. You can save
space by typing these commands:

DELETE /harddisk/APW/PRODOS

DELETE /harddisk/APw/SYSTEM/P16

DELETE -C /harddisk/APw/SYSTEM/SYSTEM.SETUP/=

APDADraft Page2-l 9Marchl987

APWC

DELETE /harddisk/ APw/ SYSTEM/SYSTEM . SETUP

DELETE -C / harddisk/ APw/ SYSTEM/DESK .ACCS / =

DELETE / harddisk/APw/SYSTEM/ DESK.ACCS

DELETE -C /hardd~k/APW/SYSTEM/TOOLS /=

DELETE / harddisk/APw/SYSTEM/ TOOLS

Installing APW C on a Hard Disk

Chapter 2

Before doing anything else, make a backup copy of your APW C disk and put the original
in a vault We will assume you have already installed APW in a directory called APW on a
disk called harddisk.

First, launch APW from your hard disk. To install APW C, type these commands:

COpy -C /APWC/LANGUAGES /= /harddisk/APW/ LANGUAGES/

COpy - C / APWC/LIBRARIES / = / harddisk/APW/LIBRARIES /

These steps also take some time.

Next, add this command to your LOGIN file:

CC

Installing APW C on two 3.5-inch disks

Before doing anything else, make a backup copy of your APW and APW C disks and put
the originals in a vault To install C, you will have to replace some of the flies on the APW
disk, and delete ftIes not needed for C. (Two 3.5·inch disks will not hold all the files you
need to program in both assembly language and C.) Type these commands:

COpy -C /APW/LANGUAGES / LINKED /APWC / LANGUAGES/

DELETE -C / APW/ LANGUAGES / =

DELETE /APW/ LANGUAGES/

COpy -C /APW/LIBRARIES / = /APWC/LIBRARIES /

DELETE -C / APW/LIBRARIES / =

DELETE /APW/ LIBRARIES/

Next, add these commands to your LOGIN file:

PREFIX 2 / APWC / LIBRARIES /

APDADraft Page 2-2 9 March 1987

Chapter 2 APWC

PREFIX 5 /APWC / LANGUAGES/

CC

Writing and running a sample program
Here is how to write, compile, link, and run a trivial sample program.

Writing the sample program

First set the current language to C by typing CC and pressing Return. Now create a new
file named SHE . SELLS by typing ED IT SHE . SELLS and pressing Return. You are
now in the APW editor, so type a program: for example,

main ()
I

printf("She sells C shells by the C shore . \n");

Now press Apple-Q and then S to save the program, then press E et exit the editor.

Note that APW does not require the usual C filename extension" . c", because APW uses a
unique file type for source files of each language. You can end a filename with " . c", but
the APW C compiler regards the " . c" as part of the name, rather than as an extension. In
particular, when forming an object filenames, the compiler appends an extension to the
" . c", rather than replacing it. Using" . c" on a source filename can be confusing, as some
object filenames have a " . c" extension.

Compiling and linking the sample program

To compile your program, use the COMP ILE command; to compile and link it, use the
CMPL command. This command takes the source fIle and load file names (KEEP) as
arguments: they must be different, or your load file will overwrite your source file.

For example, to compile and link SHE . SELLS, creating an object file C • SHELLS . ROOT
and a load file C • SHELLS, type the following, and then press Return:

CMPL SHE. SELLS KEEP- C. SHELLS

Note: If you get the error message ProDOS: File not found, make sure you've
typed the command correctly. If you had typed COMPL rather than CMPL, for example,
the APW shell would give you this message, because it knew no command named COMPL
and couldn't find any file of that name. You could spend hours hunting for missing
libraries and include mes (described in the section "Files for Compiling and Linking" at the
end of this chapter), when the real problem was a misspelled command.

APDADrqft Page 2-3 9 March 1987

APWC Chapter2

Running the sample program

To run your program under the APW shell, type C . SHELLS and press Return. You will
see

She sells C shells by the C shore.

on the screen.

A longer sample program

A more interesting sample program, written in both C and assembly-language, is in
Chapter 3.

The APW C compiler
This section discusses the compilation process, how compilation is suspended or aborted,
and error messages.

The compilation process

The APW C compiler is a one-pass compiler. In one pass, it resolves preprocessor
macros, scans the source fIles, and generates code into a code buffer, and then writes the
code out to an object file. Each C function is assigned to a separate object segment: the
object-segment name is the function name. The default load-segment name is MAIN.

The segment command can be used to assign an object segment or group of segments to
a load segment. The command

segment "segname" [, dynamic 1

assigns all objects following it, up to the next segment command or the end of file, to the
load segment named segname. (Note that the quotation marks are required.) By default,
this command creates a static load segment. The dynamic option creates a dynamic .
segment.

No listing is printed. The compiler prints errors to the screen.

Object code output is in object module format (OMF). Each APW language outputs object
code in object module format, allowing you to link together subroutines wrinen in different
languages. Object module format is discussed in detail in Chapter 8, "File Formats," of the
Apple IIGS Programmer's Workshop Reference.

If there are no more subroutines to compile, the C compiler returns control to the Shell.
Depending on the command you used to invoke the C compiler, the Shell either passes
control to the linker or returns with the Shell prompt If the linker is called, it uses the
object modules produced by the C compiler as input. These are relocated and global
labels are resolved, giving an executable binary file as output.

APDADraft Page 24 9 March 1987

Chapter 2 APWC

Suspending or aborting the compilation

You can suspend the compilation by pressing any key; pressing any key again causes
compilation to resume. Note that you can suspend the compilation only while error
messages are being printed. To abon the compilation, press Apple-period.

C compiler error messages

If the C compiler detects an error in the source code, an error message is printed on the
screen: each error message includes the source fIle name, the line number, and the text of
the offending line of code. In other cases, the compiler will print a warning message rather
than an error. Error messages can be redirected, as explained in the section "Redirecting
Input and Output" in Chapter 3 of the APW Reference. If no errors or warnings are
detected. the compiler runs without comment.

C compiler shell commands
This section discusses the commands you'll use most often when working with the C
compiler. With these commands, you can perform the following tasks:

• Edit new and existing files

• Compile, link and execute your program

• Make a library file

• Debug your program

Editing a source file

You will need three shell commands when you edit a new or existing source file:

CC
EDIT filename
CHANGEfileTUlme CC

Change the default language to C
Edit an new or existing fIle
Change the type of an existing file to C source file

The CC command sets the default language to C: any new fIles you create with the editor
will automatically get the appropriate type for a C source file. The EDIT command edits
an existing file or creates a new file. The CHANGE command changes the type of a file
from one language to another: this is useful if you have imported an ASCII fIle from some
other implementation of C, such as MPW, and the file type is not set for APW C, or if you
had edited a C source fIle what the default language was not C.

Compiling a program

You'll need five commands when compiling, linking, and running your program:

APDADraji Page 2-5 9 March 1987

APWC

COMPILE
CMPL
CMPLG
RUN
LINK

Compile a program
Compile and link a program
Compile, link, and execute a program
Compile, link, and execute a program
Link a program

Chaprer2

In its simplest form, the COMP ILE command compiles the source file, but saves no
object flle: it simply verifies the program's correctness. To create an object flle, use the
KEEP option or the KEEPNAME shell variable, both described below.

The COMPILE command is a synonym of the ASSEMBLE command. Either of these
commands can be used interchangeably to compile or assemble programs. Similarly,
CMPL is a synonym of ASML and CMPLG and RUN are synonyms of ASMLG.
Synonymous commands have the same options, but one language processor may ignore
options that another recognizes. For example, the C compiler ignores the + L I - L and
+ S I - S options.

Note: The CMPL, CMPLG, and RUN conunands cannot be used if you're developing a
program whose main entry point is not written in C.

Command Notation

The following notation is used to describe conunands:

UPPERCASE Uppercase letters indicate a conunand name or an option that must be
spelled exactly as shown. The Shell is not case sensitive; that is, you
can enter commands in any combination of uppercase and lowercase
letters.

prefix

filename

pathname

APDADraft

Italics indicate a variable, such as a filename or address.

This parameter indicates any valid directory pathname or partial
pathname. It does not include a filename. IT the volume name is
included. prefix must start with a slash (I); if pre[u does not start with
a slash, then the current prefix is assumed For example, if you are
copying a file to the subdirectory SUBDIRECfORY on the volume
VOLUME, then the prefix parameter would be
! VOLUME ! SUBDIRECTORY!. If the current prefix were !VOLUME! ,
then you could use SUBDIRECTORY for pathname.

The device numbers . D1, • D2, •... Dn can be used for volume
names; if you use a device number, do not precede it with a slash. For
example, if the volume VOLUME in the above example were in disk
drive . D 1, then you could enter the prefix parameter as
.D1 ! SUBDIRECTORY!.

This parameter indicates a filename, not including the prefix. The unit
names. CONSOLE and . PRINTER can be used as filenames.

This parameter indicates a full pathname, including the prefix and
filename, or a partial pathename, in which the current prefix is assumed.
For example, if a me is named FILE in the subdirectory DIRECTORY
on the volume VOLUME, then the pathname parameter would be

PageUi 9 March 1987

Chapter 2 APWC

/VOLUME/DIRECTORY/FILE. If the current prefix were
/VOLUME/, then you could use DIRECTORY/FILE for pathname. A
full pathname (including the volwne name) must begin with a slash (I);
do not precede pathnome with a slash if you are using a partial
pathname.

The unit names . CONSOLE and . PRINTER can be used as filenames;
the device numbers . D 1, • D2, • • • • Dn can be used for volume
names.

A vertical bar indicates a choice. For example, + L I - L indicates that
the command can be entered as either + L or as - L .

Parameters enclosed in square brackets are optional.

Elipses indicate that a parameter or sequence of parameters can be
repeated as many times as you wish.

The following pointers will help you use the APW Shell command interpreter:

• You must separate the command from its parameters by one or more blanks.

• You can use the right-arrow key to expand command names as described in the
"Entering Coinmands" section in Chapter 2 of the APW Reference, you can use the
Up- and Down-Anow keys to scroll through previously-entered commands.

• . There are no abbreviations for command names (unless you add aliases to the
SYSCMND file).

• All commands and parameters (except for segment names) can be entered in any
combination of uppercase and lowercase characters.

• For case-sensitive source languages, like C, segruent names must be entered exactly as
they appear in the source code.

• When a parameter in a command line conflicts with a source-code command, the
command'line parameter takes precedence. When neither a source-code command nor
a command-line parameter has been used, the default parameter is used.

• If you fail to enter a required parameter, you are prompted for it.

• Any of these commands can be placed in an Exec command file for automatic
execution; Exec files are described in the section "Exec Files" in Chapter 3 of the APW
Reference.

The APW Shell and C compiler recognize the following commands. The options for each
command are described below it.

Cc

This command sets the shell default language to APW C. Any file created by the APW
editor while this command is in effect will have the file type identifying it to APW as a C

APDADraji Page 2-7 9 March 1987

" APWC Chapter 2

source file. (This cOIIllDlll)d is described in the section "Command Descriptions" in
Chapter 3 of the APW Reference.) .

CHANGE

CHANGE filename CC Change the type ofan existing fIle to C source file

This command changes the file type of an existing file named filename so that APW will
recognize it as a C source file. It is useful when you have imported a C source file from
another development system, such as MPW, that does not identify the language of a source
file by a unique file type. (This command is described in the section "Command
Descriptions" in Chapter 3 of the APW Reference)

CMPL

CMPL [+LI- L] [+sl-S]filel [file2 .. .] [KEEP=outfile] [NAMES= (segl[seg2[... J]) 1
[languagel= (option ...) [language2= (option ... j .. . J]

This command compiles (or assembles) and links a source tile or group of files. Its
function is identical to that of the ASML cOmmand. The APW Shell checks the langnage of
the source file and calls the appropriate compiler or assembler. If the maximum error level
returned by the compiler or assembler is less than or equal to the maximum allowed (0 by
default), then the resulting objectrilodule is linked, producing a load module with the
filename outfile. The linker is described in Chapter 5 of the APW Reference.

Note: The commands CMPL, CMPLG, ASML, ASMLG, and RUN cannot be used if
you're developing a program whose main entry point is not written in C. In this situation,
you must use COMPILE or ASSEMBLE, then LINK.

The options peculiar to APW C are described fully below. The other options are described
briefly: they are described fully in Chapter 3 of the APW Reference.

Important: If you are using a LinkEd file totake advantage of the advanced link-edit
capabilities it provides, do not use the CMPL command. Instead, use the COMPILE
command to compile your program. You can process the LinkEd file automatically by
appending it to the end of your program with an tappend directive (or the equivalent), or
you can process it independently with the ALINK command.

Note: You can use tappend directives (or the equivalent) to tie together source
files written in different computer languages; APW compilers and assemblers check
the language type of each ftleand return control to the Shell when a different
language must be called. See the section "Compiling (or Assembling) and Linking
a Program" in Chapter 2 of the APW Reference for a description of the assembly
and compilation process.

+ L 1 - L (The APW C compiler ignores this option.)

+SI-S (The APW C compiler ignores this option.)

APDADraji Page 2-8 9 March 1987

Chapter 2 APWC

filel file2 ... The full pathname or partial pathname (including the filename) of the
source files to be compiled (or assembled). Multiple files (source, object,
or library) can be listed, but at least one must be a source file.

KEEP=outfile You can use this parameter to specify the pathname or partial pathname
(including the filename) of the object file to be produced. If this is a partial
assembly or if several source files with different programming languages
are being compiled, then other filename extensions may be used; see the
section "Partial Assemblies or Compiles" in Chapter 3 of the APW
Reference. If the assembly is followed by a successful link, then the load
file is named outfile.

Important: Keep the following points in mind regarding the KEEP
parameter:

• If you use neither the KEEP parameter nor the KeepNames shell
variable, the object modules are not saved at all. In this case, the link
cannot be perfonned, because there is no object module to link.

• The filename you specify in outfile must not be over 10 characters long.
This is because the extension . ROOT is appended to the name, and
ProDOS 16 does not allow fllenarnes longer than 15 characters.

• If a load file named outfile or an object fJle with root fllename outfile
already exists, it is overwritten without a warning when this command
is executed. If a source file named outfile exists, it will not be
overwritten: the link will fail.

NAMEs=(segl seg2 ...) (The APW C compiler always compiles the whole source
file.)

languagel=(oplion ...) ... This parameter allows you to pass parameters directly to
specific APW compilers or assemblers. For each compiler or assembler for
which you want to specify options, type the name of the language (exactly
as defined in the Command Table), an equal sign (=), and the string of
options enclosed in parentheses. The contents and syntax of the options
string is specified in the compiler or assembler reference manual; the APW
Shell does no error checking on this string, but passes it through to the
compiler or assembler. You can include option strings in the command line
for as many languages as you wish; if that language compiler is not called,
then the string is ignored.

Note: No blanks are permitted immediately before or after the equal sign
in this parameter.

CC=(oplion ...) This is a special case of the languagel =(option .. .) option, defined
above. This option's options are as follows:

-Dname=value This parameter defines name as if a #define had occurred
at the top of the flle; name is given the value value if "=value" is
present.

-Jpath This parameter adds palh to the include-file path list. For
example:

-I/APW/LlliRARIES/CINCLUDE/

Listings and error messages are sent to the screen unless you include a PRINTER ON
directive (or equivalent) in the source flle; or redirect output to a disk file or the printer.

APDADraft Page 2-9 9 March 1987

APWC Chopter2

Output redirection is described in the section "Redirecting Input and Output" in· Chapter 3
of the APW Reference. . ..

CMPLG

CMPLG [+LI-L] [+sl-s]file1 [file2 .. .] [KEEP=ouifjle] [NAMES= (seg1[seg2[... J])]
[language1= (option ...) [language2= (option ...) ...]]

This internal command compiles (or assembles), links, and runs a source file or group of
files . Its function is identical to that of the ASMLG command. See the CMPL command for
a description of the parameters.

Note: The commands CMPL, CMPLG, ASML, ASMLG, and RUN cannot be used if
you're developing a program whose main entry point is not written in C. In this situation,
you must use COMPILE or ASSEMBLE, then LINK.

COMPILE

COMP ILE [+LI-L] [+sl-s]file1 [file2 ...] [KEEP=ouifjle] [NAMES= (seg1[seg2[...]])]
[languagel= (option ...) [language2= (option ... J .••]]

This internal command compiles a source file or group of files. Its function is identical to
that of the ASSEMBLE command. See the CMPL command for a description of the
parameters.

EDIT

ED IT filename

This command does one of two things. If a file namedfilename already exists, the
command ED IT filename calls the editor and opens the file filename. The editor uses the
language the file is already in. If a file namedfilename does not already exist, the
command ED IT filename calls the editor and a new file called filename.· The editor uses
the default language established by the last language command (CC, ASM65816, or
whatever).

LINK

LINK [+LI-L] [+sl-S] 21STARTfile1 [file2 ...] [KEEP=outfile] [NAMES= (segl[seg2[
...]])] [language1= (option ...) [language2= (option ...) ...]]

This command links an object file or group of files. If you use a COMP I LE command
followed by a LINK command and if your main entry point is written in C, you must

APDADraft Page 2-10 9 March 1987

Chopter2 APWC

include the pathname 2/START in the LINK command. (The linker is described in
Chapter 5 of the APW Reference.)

RUN

RUN [+LI-L] [+sl-S]ft/ei (fi/e2 ...] [KEEP=ouifj/e] [NAMES= (seg1[seg2[... J])]
[/anguage1= (option ... J [/anguage2= (option ... J ••• J]

This internal command compiles (or assembles), links, and runs a source file or group of
files. Its function is identical to that of the CMPLG conunand. See the COMP ILE command
for a description of the parameters.

Note: The commands CMPL, CMPLG, ASML, ASMLG, and RUN cannot be used if
you're developing a program whose main entry point is not written in C. In this situation,
you must use COMP ILE or ASSEMBLE, then LINK.

Examples of these commands

The following command compiles and links a source file named MYF ILE, and writes the
load file to disk as the file MYPROG. No source listing or symbol table is produced unless
called for by directives in MYF ILE:

CMPL MYFILE KEEP=MYPROG

The following command compiles the segments TOOLCALL and TEXT OUT in the source
file named MYFILE, links the program, and writes the load file to disk as the file MYPROG.

CMPL MYFILE KEEP=MYPROG NAMES=(TOOLCALL TEXT_OUTJ

The following command compiles the source file named MYCF I LE.

CMPL MYCFILE KEEP=MYPROG CC=(-Ddebug -I/APW/MYINCLUDESJ

Because MYCF I LE is a C program, two C-compiler options are passed to the C compiler:
the -Ddebug option defines a compiler flag that you can use to conditionally compile .
debugging code; and the - II APW /MY INCLUDES option tells the compiler where to
search for additional include fIles. After the program is assembled or compiled. it is linked
and the load file is written to disk as the file MYPROG.

Note: The ASML, ASMLG, CMPL, and CMPLG commands first assemble or
. compile the source file (or files), then send the object file specified in the KEEP

parameter (or in a KEEP directive in the source file) to the linker as its only input.
These commands cannot be used to send several object files with different root
filenames to the linker. To link two or more object files, use the LINK command.

Appending files

APDADraft Page 2-11 9 March 1987

APWC Chapter 2

When APW sees a tappend directive in a file, it checks the language type of the appended
file: if it is not CC, the compiler returns control to the shell, which brings in the appropriate
compiler or assembler to open the file. If the appended file is in the same language, the
effect is the same as if they had been concatenated into one file. If they are in different
languages, APW begins a new assembly or compilation. This has curious effects, as we'll
show.

Let's take three files, rwo in C and one in assembly language, each appended to the
preceding file:

cl
c2
asml

When you use the COMPILE command, cl and c2 will be compiled together, then asml
will be assembled. All symbols in c 1 will be available while c2 is being compiled.

Something very different happens when we compile the same files, appended in a different
order:

cl
asml
c2

When you use the COMPILE command, cl is compiled, then asml is assembled, then the
C compiler is called afresh to compile c2. Since the compilations were separate, the
compiler knows nothing about symbols in cl when compiling c2.

Partial compilation or assembly

Program development can often be speeded by compiling or assembling only the part of a
program that you have changed most recently. The APW assembler has an option NAMES
(to the ASSEMBLE, ASML, ASMLG, COMPILE, CMPL, CMPLG, and RUN
commands) that lets you do partial assemblies, and future APW compilers may also
support this option. APW C does not support partial compilation. The compiler will
execute a COMPILE command with the NAMES option, but it will compile the entire
source. file, as if you had omitted the NAMES option.

The linker

The linker takes object files and file segments created by the C compiler and generates load
files. The linker resolves external references and creates relocation dictionaries which
allow the system loader to relocate code at load time. The linker supports data, code,
dynamic, and static segments, and library files.

Normally, the linker is called by the Shell command LINK which provides a limited
number of options. Additionally, you can control all functions of the linker by using a
language-like set of commands called LinkEd. LinkEd is for advanced programmers who
require maximum flexibility from the system; for most purposes, the ordinary Link
commands are adequate. LinkEd commands are described in Chapter 5 of the APW
Reference; other APW commands are in Chapter 5 of that book.

APDADraft Page 2-12 9 March 1987

Chapter 2 APWC

When you use CMPL to compile and link a series of files in different languages, the last file
in the append sequence must be a C fIle. The fIles under the library prefix (prefix 2) are
searched for unresolved references.

To link manually and search all libraries, use this command:

LINK 2/START objectfilename KEEP=loadfilename

The objectfilename parameters do not have . ROOT extensions. For example, the
command

LINK 2/START FILEl FILE2 FILE KEEP=LOADNAME

links the files FILE!. ROOT, FILE2. ROOT, and FILE3. ROOT with the file
2/START. ROOT.

The linker searches every library (file offIletype LIB) in the library prefix (12).

Making a library

The MAKEUB utility allows you to make a library file. Libraries are useful for storing
often· used code, as the linker can search a library much faster that an ordinary object file.
TheAPW Reference explains how to use MAKELIB.

Files for compiling and linking
To create a program from source ftles, the compiler usually needs include files and the
linker usually needs libraries. Include fIles, or header files, must be named in #include
statements in the source files. Library ftles are either searched implicitly or can be named in
L INK statements or in LinkEd ftles.

Include-file search rules

Appendix B, "Files Supplied with APW C," contains a list of include files to be used with
APW C. If the include·ftle name is a full pathname, the compiler uses that name. A full
pathname begins with a slash (j) and contains at least one embedded slash. A partial
pathname does not begin with a slash. (For more information about pathname syntax, refer
to the Apple IIGS Programmer's Workshop Reference and the Apple IIGS ProDOS 16
Reference.)

If the include·fIle name is a partial pathname, the compiler searches for include files using
the rules shown in Table 2-2. The first file successfully opened using these rules is
included.

Table 2·2. Include-file search rules

Include-File Name Example Search for Partial Pathname

In double quotes. "CONSTANTS. H" Look in the following directories:

APDADrajt Page 2-13 9 March 1987

APWC

In angle brackets. <CTYPE.H>

(1)

(2)

(3)

(4)

Chopter2

The directory of the source file that
contains the include statement.

The current prefix (0 /) at the time the
compiler was invoked . .

Directories specified by the - I
option, in the order given.

2/ClNCLUDE/

Look in the directories described under (3),
or (4) if there is no -I option.

Note that ProDOS flienames are not case-sensitive. By convention, filenames and
pathnames are notated in uppercase.

Library files

Appendix B, "Files Supplied with APW C," contains a list of library files to be used with
C. (If you use the CMP L or CMP LG command, the flies under the library prefix are
searched, and you can't specify any others). For more information on linking C programs,
refer to Chapter 5, ''The Linker" of the APW Reference.

You can control which library files are to be searched by using a LinkEd script. If you
specify library files, you will usually want to specify

• all the Standard C Library files listed in Appendix B

• only the particular Toolbox files you refer to in your program.

APDADroft Page 2-14 9 March 1987

\

Chapter 3
Sample Program

This chapter provides a tutorial example that illustrates the creation of a program in the
APWenvironment. The program includes a main routine in C and a subroutine in
assembly language. You are shown how to use the APW Editor to create source files in
both languages, as well as how to compile, assemble, link, and run the program.

The purpose of this chapter is to give you a tutorial introduction to compiling and linking a
simple multilanguage program in the APW environment. This example is placed in the
APW C Reference, rather than in the APW Reference, because both APW and APW C are
needed to run the example, and only owners of APW C can be assumed to have both.

Note: The instructions in this chapter assume that you have both the APW
Assembler and the APW C compiler installed in your system. Assembly language
is included on your APW disks; the C compiler is on the APW C disk. See Chapter
2 for instructions on installing APW and APW C in your system.

If you have a hard disk, the instructions in this chapter are straightforward. If you
have two 3.5" drives, you may have to do some disk swapping, and tweaking of
prefixes, to follow thes.e instructions.

General procedure
This section describes the general procedure that we follow in this chapter. A simpler
procedure for compiling, linking, and running a single-language program is given in the
section "Writing and Running a Simple Program" in Chapter 2.

Note: For simplicity's sake, the words compiler and compile are used in this
chapter to include assembler and assemble.

I . Set the system language to the language type of the source code you intend to write,
open a file for editing, and write the source code for the first part of your program.
Save the fIle to disk.

2. Execute the shell COMPILE (or ASSEMBLE) command.

You now have several files on disk: the source-code file and one or more object
code files (the root file and files with alphabetic extensions such as . A).

4. Write the next part of the program. This part need not be in the same programming
language as the first part. Give this part a different source filename than the first part
and a different KEEP filename.

5 . Execute the shell COMP I LE command. Debug the program and recompile as
necessary until successful.

6. Repeat steps 4 and 5 for each part of the program, until you are sure that each part
compiles successfully.

7. Execute the L INK command, specifying the root filenames of all of the object files in
the program.

APDADraft Page3-1 9 March 1987

APWC Chapter 3

8. If you wish, execute the COMPACT command to create a more compact version of
the load file.

If you prefer, you can write the entire program, including parts in several languages, and
compile and link them all at once. Use the CMPL command to compile and link the
program. Each source file except the last can end in an APPEND directive (or the
equivalent), or you can specify multiple source ftles in the CMPL command. Every time an

. APW compiler executes an APPEND directive, it checks the APW language type of the file
being appended. If the language doesn't match that of the compiler, then the compiler
returns control to the shell, which calls the appropriate compiler to continue processing the
program. If all compiles are successful, the APW Linker is called automatically. The
linker processes the ftle, writes out any errors, and (if the link was successful), writes the
load file to disk.

Note: The compiler may check the language type of a file when executing a COpy
directive, but does not return control to the shell; instead, the compiler returns an
errorif any file being copied into the program does not match the language of the
compiler.

Writing and editing the sample source code
The sample program shown in Figures 3.1 and 3.2 takes input from the keyboard, converts
every letter to uppercase, and prints the result to the screen. It is written with a main
segment in C and a subroutine in assembly language. The C routine handles the input and
output. The assembly language routine does the lowercase to uppercase conversion.

Use the following steps to write the source code for the C routine shown in Figures 3.1
and 3.2:

1. Boot APW and type the following command to set the system default language (the
current language) to C. (To execute an APW command, press the Return key.)

CC

2. Call the editor to open a file called SAMPLEC with the following command:

EDIT SAMPLEC

3. Type in the program in Figure 3.1. Use the cursor keys to move around in the file.
The Delete key deletes the character to the left of the cursor. The Tab key moves the
cursor for indenting subroutines. Other basic editor commands are given in .
Table 2.3.

4. Press Ll-Q to quit the editor. Press S to save the ftle to disk, then press E to exit the
editor and return to the shell.

APDADraji Page 3-2 9 March 1987

Chapter 3 APWC

/ * Convert all characters taken from standard input to uppercase */
/* and write the result to standard output. */
/ * * /
/ * NOTE: Control-C terminates the input */

finclude <stdio.h>
fdefine MAXLEN 1024
extern void UPSTR();
char *gets();

rna in (argc, argv)
int argc;
char *argv [] ;
{

char str[MAXLEN];
while (gets (str) != NULL)

{ .

UPSTR (str) ;
printf("%s\n", str);

Figure 3.1. Sample C Source Code

5. Type the following command to set the current language to 65816 assembler.

ASM65816

6. Call the editor to open file called SAMPLEA with the following command:

EDIT SAMPLEA

7. Type in the program in Figure 3.2. Note that the default tab stops are different for
assembly language than for C.

8. Press O-Q to quit the editor. Press S to save the file to disk, then press E to exit the
editor and return to the shell.

UPSTR

APDADraft

LONGA ON
LONG I ON
START

Set long accumulator
Set long index registers
Start first object segment
Stack at beginning of routine:

Bank of pointer to character string
High byte of character-string address
Low byte of character-string address
Bank of return address
High byte of return address
Low byte of return address
Stack pointer

TSC
CLC
ADC
TCS

Transfer stack pointer to accumulator
Clear carry flag (required before addition)

!$0003 Add 3 to accumulator
Transfer accumulator to stack pointer . Stack pointer

is now above return address.

Page3-3 9 March 1987

APWC

LOOP

UPPER

ITERATE

FINISH

PLA

STA $AA
SEP #$20
LONGA OFF
PLA

STA $AC

REP #$20
LONGA ON
TSC
SEC
SBC #$0006
TCS

END

START
LDA [$AAl
AND #$OOFF
CMP #$0000
BEQ FINISH
CMP #$0061
BLT ITERATE
CMP #$007A
BEQ UPPER
BGE ITERATE
SEC
SBC 1$0020
SEP #$20
LONGA OFF
LONG I
STA
REP
LONGA
LONG I
INC
BNE
BRA
END

START
RTL
END

ON
[$Ml
#$20
ON
ON
$AA
LOOP
LOOP

Chapter 3

Pull word off stack into accumulator. This is first
two bytes of pointer to character string.

Store accumulator in direct page at $AA
Set a-bit accumulator
Set long addresses off
Pull next 8 bits into accumulator. This is bank

address of pointer to character string.
Store accumulator into $AC Full 3-byte pointer

to character string is now in direct page starting
at $M.

Set l6-bit accumulator
Set long addresses on
Transfer stack pointer to accumulator
Set carry flag (required before subtraction)
Subtract 6 from accumulator
Transfer accumulator to stack. Stack pointer is now

back where it was when control was transferred to
this routine.

End of first object segment

Start of second object segment
Load accumulator with the value of the character
Extract the value of the character
Is it end of string?
If it is then go to FINISH
Compare accumulator to 'a' ($61)
Character is smaller than 'a' - go to the next one
Compare accumulator to 'z' ($7A)
If equal then convert to upper case
Character is greater than 'z' - go to the next one
Set carry
Convert the character in accumulator to upper case
Set 8-bit accumulator
Switch to short addresses
Switch to long integers
Store accumulator (a-bit only!) to string elemen t
Reset m status bit
Set long addressing on
Set long integers on
Increment by one (go to the next char)
Branch non-zero to 52
Perform the next iteration of the LOOP
End of second object segment

Start of third object segment
Return to C routine
End of third object segment

Figure 3.2. Sample 65816 Source Code

Creating object code: compiling and assembling
To compile and assemble your programs, use the following commands:

COMPILE SAMPLEC KEEP=SAMPLEC.O

APDADraft Page34 9 March 1987

Chapter 3 APW C

ASSEMBLE SAMPLEA KEEP~SAMPLEA.O

Note: If you have a two 3.5" drives and no hard disk, you will have to compile
using the APW C disk and assemble using the APW assembler disk. You may
have to restan APW from the APW assembler disk before you can assemble. Once
you have compiled and assembled your source files, you can link the object files
using either the APW assembler disk or the APW C disk.

If an APW compiler finds a fatal error (one that prevents the compile from continuing), it
writes out an error message to standard output (normally the screen) and waits for you to
press any key. When you press a key, the compiler passes control to the APW Editor,
whie)1 loads the source file that the compiler was working on, placing the line that caused
the error at the top of the screen.

If the compiler finds a nonfatal error, it fmishes processing the program, writes aut the
error messages, and returns control to the shell.

If your first attempt was not successful, correct the source code and try again. Repeat this
process until the module compiles successfully. Remember to save the source file each
time you make changes: the disk file is updated only when you save it.

When the compiler processes the file, it takes the first segment that will be executed when
the program is run and places it in an object flle with the root filename you specified and the
extension. ROOT (some compilers do not append any filename extension to the root flle).
All other segments (if any) are placed in a second object file with the same root filename
and the extension .A.

The following files should be on your disk after using these commands:

• SAMPLEC

• SAMPLEA

• SAMPLEC.O.ROOT

• SAMPLEA.O.ROOT

C source code

658 I 6 source code

object segment created by the C compiler

first object segment created by the assembler

• SAMPLEA.O.A the rest of the object segments created by the assembler

Note that since the C routine contains only one function call, there is only one segment in
the object file created by the C compiler and hence only the root file is created.

Alternatively, you can compile both files in one operation. To do this, you can add a line to
the file SAMPLEC as follows:

I . Reopen the file in the editor with the following command:

EDIT SAMPLEC

2. Press 0-9 to jump to the end of the file. Add the following line to the file:

tappend "SAMPLEA"

3. Press o-Q to quit the editor, S to save the file, and E to exit the editor.

4. Now when you use the following command, the shell calls the C compiler to
compile the C routine, then calls the APW Assembler to assemble the 65816 routine:

APDADraft Page 3-5 9 March 1987

APWC Chapter 3

COMPILE SAMPLEC KEEP=SAMPLE.O

The following files should be on your disk after using this command:

• SAMPLEC C source code

• SAMPLEA 65816 source code

• SAMP LE .0 . ROOT first object segment created by the C compiler

• SAMP LE .0 . A object segments created by the assembler

Creating load files: linking
When you execute the LINK command, the APW Linker combines all object segments that
have the same load segment name into the same load segment, and places the entire
program into a single load file with the KEEP fIlename you specified. (For a discussion of
object segments and load segments, see the section "APW C Concepts" in Chapter 1.)

Important: Be sure to include the KEEP parameter in the L INK command. If
you do not specify a KEEP filename in the LINK command, no load fIle is
saved to disk.

Here are two ways to link the object fIles you have just created:

I. If you did not add the tappend directive to the end of the C routine, use the
following command to link the object files into a single executable load file:

LINK2 / START SAMPLEC.O SAMPLEA.O KEEP=SAMPLE

The first fIle listed links the fIle START. ROOT in the library prefix. This file must
be linked to the beginning of every program when the main segment is in C.

The load fIle is named SAMPLE.

The following fIles should be on your disk after using this command:

• SAMPLEC C source code

• SAMPLEA 65816 source code

• SAMP LEC .0 . ROOT first object segment created by the C compiler

• SAMP LEA. 0 . ROOT first object segment created by the a~sembler

• SAMP LEA. 0 . A the rest of the object segments created by the assembler

• SAMP LE load file

2. If you did add the tappend command to the end of the C routine, use the following
command to link the object files into a single executable load file:

LINK 2/START SAMPLEC.O KEEP=SAMPLE

APDADraft Page 3-6 9 March 1987

Chapter 3 APWC

The following files should be on your disk after using this command:

• SAMPLEC C source code

• SAMPLEA 65816 source code

• SAMP LE . 0 . ROOT first object segment created by the C compiler

• SAMP LE . 0 . A object segments created by the assembler

• SAMP LE load file

Running your program
To run the program you just created, use the following command:

SAMPLE

Each character you type is printed on the screen as you type it. Press Return to have the
program retype the line in all uppercase. Press Control-C to terminate the program. The
following sequence illustrates the use of this routine. The characters in boldface are the
ones you type (remember to press Return at the end of each line you type):

tSAMPLE
Now ill the TilDa for aLL good PeoPle to Buy an Apple :II gs
NOW IS THE TIME FOR ALL GOOD PEOPLE TO BUY AN APPLE II GS
Granny Smith is always getting her apples into a jam
GRANNY SMITH IS ALWAYS GETTING HER APPLES I NTO A JAM
Control-C
t

You can use I/O redirection to use this routine to convert the characters in a me to
uppercase. The following command converts all the characters in the file TEXT . IN to
uppercase and writes them out to the file TEXT. OUT:

SAMPLE <TEXT.IN >TEXT . OUT

The file TEXT. OUT contains the output that would have appeared on the screen; that is.
each line of text in the file TEXT. IN is printed, followed by the same line converted to
uppercase.

Compiling, linking, and running in one step
·**Note: In the present (B3) incarnation of APW, this example does not
work. This must be tested before the final draft to make sure it works as
described .•••

If you are using a hard disk, you can use a single APW conunand to compile, link, and run
your program in one step. Here are two ways to do so:

1. If you did not add the #append directive to the end of the C routine, use the
following commands to compile, link, and run the program:

S ET KEEPNAME %.0

APDADraji Page 3-7 9 March 1987

APWC Chapter 3

RUN SAMPLEC SAMPLEA

The SET KEEPNAME command establishes a default filename for output files. The
percent sign (%) is a wildcard character that APW replaces with the source filename;
the default root filename for the file SAMPLEC is thus SAMPLEC. o. The load file is
given the same name as the root filename of the first object file created. For this
command, for example, the fIrst object file created has the name
SAMPLEC. o. ROOT 'and the load file has the name SAMPLEC. 0

The fIrst file listed links the file START. ROOT in the library prefIx (be sure to use
the correct prefix for your system). This file must be linked to the beginning of
every program when the main segment is in C.

The following files should be on your disk after using this command:

• SAMPLEC

• SAMPLEA

C source code

65816 source code

• SAMP LEC .0 • ROOT first object segment created by the C compiler

• SAMP LEA. 0 . ROOT first object segment created by the assembler

• SAMPLEA. O. A the rest of the object segments created by the assembler

• SAMP LEC • 0 load file

2. If you did add the tappend command to the end of the C routine, use the following
command to compile, link, and run the program:

RUN SAMPLEC KEEP=SAMPLE

The following files should be on your disk after using this command:

• SAMPLEC C source code

• SAMPLEA 65816 source code

• SAMPLE • ROOT

• SAMPLE.A

• SAMPLE

first object segment created by the C compiler

object segments created by the assembler

load file

When you use the RUN command, APW automatically executes the program after the
compile and link processes are complete.

Creating a compact load file
As a fmal step in program development, you can run the Compact utility program.
Compact converts a load fIle to the most compact form provided by the object module
format. If your load file is named SAMPLE, type the following line and press Return:

COMPACT SAMPLE SAMPLE.CMPCT

Compacted load files take up less space on disk and load faster than noncompacted load
fIles. The SAMPLE program you created here, for example, should be about 31 blocks in
size (as shown in a catalog listing), while SAMPLE. CMPCT should be about 25 blocks.

APDADroft Page 3-8 9 March 1987

Chapter 3 APWC

The Compact utility writes to the screen an account of the records it has converted If you
an: interested in understanding the format and use of these records, see the section
"Segment Body" in chapter 8 of the APW Reference.

Not all load files are significantly improved by compacting, however, so you may want to
test both a compacted and noncompacted version of your program before releasing it.

Important: In order to load a compacted load fIle, you must have version 1.2 or
later of the System Loader on your boot disk.

APDADraft Page 3-9 9 March 1987

APWC Chapter 3

APDADroft Page 3-10 9 March 1987

APDADraft

Part II

Language Reference

9 March 1987

APDADraft 9 March 1987

'-.

Chapter 4
The APW C Language

The infonnation provided in this chapter supplements The C Programming Language by
Kernighan and Ritchie. Where their language definition leaves choices to the
implementers, this chapter describes how these aspects of C have been implemented on the
Apple nOS. Where Apple has modified or extended their language defmition, this chapter
documents the changes.

Language definition
This section describes the APW C language, including language extensions such as type
void, type enum, the SANE data types, and calling Pascal-compatible functions.

Variable names

The compiler limits the length of each local variable name to 1000 characters. Global
variable names and function names are limited to 250 characters by the object-module
fonnat. Therefore, different function names whose first 250 characters are identical will be
treated as different functions by the compiler but will be treated as the same function by the
linker.

Data types

Table 4-1 lists the arithmetic and pointer types available in APW C and shows the number
of bits allocated for variables of these types. Types short and long represent 16-bit
and 32-bit integers, respectively. The machine type int is a l6-bit integer on the Apple
IIOS: it is the type the 65C8l6 uses most efficiently. Pointers require 32 bits,
Enumeration types require 16 bits. Types char, short, int, and long use two's
complement representation. Note that The Apple nOS has no signed 8-bit type: char
and unsigned char are identical. Naturally, a prudent programmer will make no
assumption about features not guaranteed to be portable.

APDADraft Page 4-1 9 March 1987

APWC Chapter 4

Table 4-1. Size and range of data types

Data type Bits .. U'escr'iption

char ·;'8 · R~ge o,i~ 2~5 ' ,
unsigned char 8 Range 0 to 255

short 16 .. Range -32,768 to 32,767

unsigned short 16 Range 0 to 65,535

int 16 Range -:-34,768 to 32,767

unsigned int 16 Range 0 to 65,535

long 32 Range -2,147,483,648 to 2,147,483,647

unsigned long 32 Range 0 to 4,294,967,295

enum 16 . Range 0 to 65,535

* 32 Pointer types .

float 32 IEEE single-precision floating point

double 64 IEEE double-precision floating .point

comp 64 SANE signed integral values

extended 80 IEEE extended-precision floating point

Note: Some programs assume that

sizeof(int) ~ sizeof(char *)

These programs may not work properly under APW C, because an int is 2 bytes long and
a pointer is 4 bytes. .

You can find more Wormation on types in Table 4-2.

Numeric constants

Integer constants in the range of ·l ong are treated as type long. Integer constants in the
range of uns igned long are treated as type . uns igned long. Integer constants
outside the union of the ranges of the long and uns igned long types are treated as
type ext ended. For example, the initialization statement

long i = 4000000000;

is incorrect because 4,000,000,000, being too big for a long, is interpreted as an
extended value. However, the initialization statement

unsigned long i = 4000000000;

is correct because 4,000,000,000 is within the range of u nsigned long values.

APDADraft Page 4-2 9 March 1987

Chapter 4 APWC

Type void

The void keyword tells the compiler that the function being declared does not return a
value. Calls to functions of type vo id may not be used in expressions, where a value is
required. (See "Pascal-Style Functions" later in this chapter.)

Type enum

Type en urn is a type analogous to the enumeration types of Pascal. Its syntax is similar to
that of the struct and unio n declarations:

enwn-specijier:
enum { enwn-list
enum enwneration-tag {enwn-list)
enum enwneration-tag

enwneration tag:
identifier

enwn-list:
enwneration-deciaration
enwneration-declaration , enum-list

enwneration-declaration:
identifier
identifier ~ constant-expression

The optionalenwneration-tag in enwn-specifier,like the structure tag in a struct-specijier,
names a particular enumeration type, and allows you to define other objects of that type.
For example,

enum col o r {chartreuse , burgundy, cla ret, wineda rk} ;

e num c olo r *cp, c o l;

This enumeration makes color the enumeration-tag of a type describing various colors
and then declares cp as a pointer to an object of that type and c ol as an object of that
type. The identifiers in enwn-list are declared as constants and may appear wherever
constants are required.

If no enumerators with a constant-expression appear, the values of the constants begin at °
and increase by 1 as the declaration is read from left to right. Each enumerator with a
constant-expression is given the value indicated Each enumerator without a constant
expression is given a value one greater than the enumerator before it. This means that two
or more enumerators with constant-expressions can be assigned the same constant value,
and that an enumerator without a constant-expression may have the same value assigned by
the compiler as one with a constant-expression in the same enumeration list. Let us

. consider some examples:

enum digit { zer o , o ne,two ,three,fo ur,five, s ix, seven,eight,nine } nUffi;

has the values 0, 1,2,3,4,5,6,7, 8,9

APDADraft Page 4-3 9 March 1987

APW C Chapter 4

enum rnixedup {a,b,c,d = l,e,f mix;

has the values 0, 1,.2, I, 2, 3

enum zapped {g = 1, h,i,j =2,k,11 zap:

has the values 1,2,3, 2, 3, 4

enum ok {rn=45,n,o,p=100,q,r};

has the values 45, 46, 47, 100, 101, 102

It you declare values, it is safest to declare all of them.

Each enumeration-tag and enumeration-constant must be unique. They are drawn from the
set of ordinary identifiers, unlike structure tags and members. Objects of a given
enumeration type have a type distinct from objects of all other types.

Enumeration types are allocated the amount of space required by the smallest predefmed
type that allows representation of all of the literal values specified by the enumeration. The
predefined types considered are unsigned char (8 bits) and unsigned short
(16 bits).

Register variables

Most versions of C support register variables. Their function is undefmed in The Apple
IIas as a result of the small number of registers available on the 65C816 microprocessor.
Use of the reg ister declaration causes the compiler to generate code at least as efficient
as that generated by the same program without register declarations.

Structures

Structures may be assigned, passed as parameters, and returned as function results. The
left and right sides of a structure assignment must have identical types. Sirniliarly, actual
and formal parameters must have identical types. Equality comparison for structures has
been implemented, provided the structures have the same type. (The equality test may give
unpredictable results if the structure contains a union.)

Since the 65C816 is a byte-oriented machine, data structures can be aligned on byte
boundaries. For this reason, APW C does not pad structures to ensure word alignment.

Important: In functions that return structures, if an interrupt occurs during the
return sequence and the same function is called reentrantly during the interrupt, the
value returned from the first call may be corrupted. The problem can occur only in
the presence of interrupts. Recursive calls are quite safe.

Reserved symbols

LINE is a reserved preprocessor symbol whose value is the current line number
WIthin thecurrent source fIle.

APDADraft Page 44 9 March 1987

,-

Chapter 4 APWC

FILE is a reserved preprocessor symbol whose value is a character string
consisting of the current file name.

LINE and FILE begin and end with two underscore characters. - - - -

The symbol Apple:I:Iqs is predefined for use in conditional compilation. It can be
used to distinguish C code written for the APW C compiler from C code written for, say,
the MPW C compiler. The symbol has the value 1, as if a statement of this form had
appeared at the beginning of the source code:

#define AppleIIgs 1

The symbol APW is predefined for use in conditional compilation. It can be used to
distinguish C code written for the APW C compiler from C code written for some other
compiler. The symbol has the value I, as if a statement of this form had appeared at the
beginning of the source code:

fdefine APW 1

The symbol wo65816 is predefmed for use in conditional compilation. It can be used
to distinguish C code written to run on the Western Design Center 65SC816 from C code
written to run on some other microprocessor, even for some other flavor of 65816.The
symbol has the value 1, as if a statement of this form had appeared at the beginning of the
source code:

fdefine WD65816 1

Any of these can be tested by an if de f statement

Standard Apple Numeric Environment extensions

APW C has built-in support for the Standard Apple Numeric Environment (SANE). In
combination with the C SANE library the language composes a scrupulously conforming
extended-precision implementation of the IEEE Standard for Binary Floating-Point
Arithmetic (754). SANE provides an extra data type for storing large integral values and
basic functions for application development. APW C recognizes the SANE data types,
uses SANE for all C floating-point operations and conversions, and correctly handles
NaNs (Not-a-Number) and infinities in comparisons and in ASCII-binary conversions.
Furthermore, source programs from other C implementations, if they are written using only
float and double types and standard C operations, will compile and run under APW C
without modification.

Much of SANE is provided through the run-time library CLIB and the include file
SANE. H. However, to use extended-precision arithmetic efficiently and effectively, and to
handle IEEE NaNs and infinities, some extensions to standard C are required, including
use of the extended data type.

A change from double to extended as the basic floating-point type is the most
important difference from standard C. Since C was originally developed on the DEC
PDP-ll, the PDP-ll architecture is reflected in standard C in the use of float and
double as floating-point types, with double as the basic type: floating-point

APDADrqft Page 4-5 9 March 1987

APWC Chapler4

expressions are evaluated to double, anonymous variables are double, and floating
point parameters and function results are passed as double values. However, the low
level SANE arithmetic (as well as the Intel 8087, Motorola 68881, and Zilog Z8070
floating-point chips) evaluates arithmetic operations to the range and precision of an 80-bit
extended type. Thus, extended naturally replaces PDP-ll double as the basic
arithmetic type for computing purposes. The types float (IEEE single), double, and
comp serve as space-saving storage types,just as flo at does in standard C. The comp
type, a 64-bit type for storing integral values, is a SANE extension. It has two properties
that suit it to accounting applications: it is sufficiently large to represent the U.S. national
debt in Argentine pesos, and it has a NaN value to record overflows and other exceptions.

The IEEE Standard specifies two kinds of special representations for its floating-point
formats: NaNs and infirtities. APW C expands the syntax for I/O to accommodate NaNs
and infirtities, and includes the treatment of NaNs in relationals as required by the IEEE
Standard.

The SANE extensions to standard C are backward-<:ompatible: programs written with only
the float and double floating-point types and standard C operations compile and
run without modification. All intermediate values are computed in the ext ended type,
an 80-bit floating-point type, and the results are returned to the types specified in the
program. SANE does not affect integer arithmetic.

The Apple Numerics Manual contains detailed documentation of SANE. The Apple IIGS
Toolbox Reference contains detailed documentation of the Apple IIGS SANE Toolset,
which makes SANE available on the Apple IIGS.

Constants

Numeric constants that include floating-point syntax--a point (.) or an exponent field-or
that lie outside the urtion of the ranges of the long and uns igned long types are of
extended. Decimal-to-binary conversion for numeric constants is done at compile time
(and hence is governed by the default numeric environment: see the section "Numeric
Environment" in this chapter)_

Expressions

The SANE typeS-float, double, comp, and extended-can be mixed in
expressions with each other and with integer types in the same manner that float and
double can in standard C. An expression consisting solely of a SANE-type variable,
constant, or function is of type extended. An expression formed by subexpressions
and an arithmetic operation is of type extended if either of its subexpressions is.
Expressions of type extended are evaluated using extended-precision SANE
arithmetic, with conversions to type extended generated automatically as needed.
Parentheses in extended-type expressions are honored: the compiler will not rearrange
terms in violation of parentheses. Initialization of external and static variables, which may
include expression evaluation, is done at compile time; all other evaluation of extended
type expressions is done at run time.

APDADraft Page4.(j 9 March 1987

Chapter 4 APWC

Comparison involving a NaN

The result of a comparison involving a NaN operand is unordered. The usual set of
comparison result!r-less than «), greater than (», and equal to (==}-is expanded to
include unordered. For example, the negation of "a less than b" is not "a greater than or
equal to b" but "(a greater than or equal to b) OR (a and b unordered)." The CLIB function
relation tests all four alternatives.

Parameters and function results

A numeric actual parameter passed by value is an expression and hence is of extended or
integer type. All extended-type arguments are passed as extended values.
Similarly, all results of functions declared float, double, comp, or extended are
returned as extended values.

Numeric input/output

In addition to the usual syntax accepted for numeric input, the Standard C Library function
scanf recognizes the string "INF" as infinity and the string "NAN" as a NaN. "NAN" may
be followed by parentheses, which may contain an integer (a code indicating the NaN's
origin). "INF" and "NAN" are optionally preceded by a sign and are case-insensitive. The
scanf specifiers for SANE types extend standard C as follows: conversion characters f,
e, and g indicate type float; If, Ie, and 19 indicate type double; mf, me, and mg
indicate type comp; and ne, nf, and ng indicate type extended.

The Standard C Library function printf writes infmities as "INF" and NaNs as
"NAN (ddd) ", where ddd is the NaN code. "INF" and "NAN (ddd) "may be preceded by a
minus sign.

Numeric environment

The numeric environment comprises the rounding direction, rounding precision, halt
enables, and exception flags. IEEE Standard defaults-rounding to nearest, rounding to
extended precision, and all halts disabled-are in effect for compile-time arithmetic
(including decimal-to-binary conversion). Each program begins with these defaults and
with all exception flags clear. Functions for managing the environment are included in the
library CL lB. The compiler, in optimizing, will not change any pan of the numeric
environment, including the exception-flag setting, which is a side effect of arithmetic
operations.

About the C SANE Library

The SANE library provides the basic tools for developing a wide range of applications. It
includes the following:

• logarithmic, exponential, and trigonometric functions

• fmancial functions

• random-number generation

APDADraft Page 4-7 9 March 1987

APWC Chaprer4

• conversions between binary and decimal

• numeric scanning and fonnatting

• environment control

• other functions required or recommended by the IEEE Standard

Additional information can be found in the SANE Tool Set chapter of the Apple lIGS
Toolbox Reference.

Programming with IEEE arithmetic

APW C's automatic use of the extended type produces results that are generally better
than those of other C systems. For example, extended precision yields more accuracy and
extended range avoids unnecessary underflow and overflow of intermediate results. You
can further exploit the e xtended type by declaring all floating-point temporary variables
to be of type extended. This is both time,efficient and space-efficient, since it reduces
the number of automatic conversions between types. External data should be stored in one
of the three smaller SANE types (float, double, or comp), not only for economy but
also because the extended format may vary between SANE implementations. As a
general rule, use float, double, or comp data as program input; extended arithmetic
for computations; and float, double, or comp data as program output

In many instances, IEEE arithmetic allows simpler algorythms than were possible without
IEEE arithmetic. The handling of infmities enlarges the domain of some formulas. For
example, 1+ l/x2 computes correctly even if x2 overflows. Running with halts disabled
(the default), a program will never crash because of a floating-point exception. Hence, by
monitoring exception flags, a program can test for exceptional cases after the fact. The
alternative of screening out bad input is often infeasible. and sometimes impossible.

Pascal-style functions
The function-calling conventions used by APW C and by conventional Pascal
implementations differ in the order of parameters on the stack, the type coercions applied to
parameters, and the location of the return result. Like the Macintosh Toolbox, the Apple
lIas Toolbox adheres to Pascal-style calling conventions. APW C has been extended to

allow you to use both C-style and Pascal-style calling conventions. The specifier pascal
in a function declaration or defmition indicates a Pascal-style function. This extension is
intended to allow for the addition of Pascal and other lanugages to APW.

Pascal-style function declarations

A function or procedure written using Pascal-style calling conventions can be called from
APW C. Before it can be called, it must be declared as an external function. Here is the
general fonn for a declaration:

[extern] pascal [resuit-rype]junc-name 0;

APDADraft Page 4-8 9 March 1987

, - - --'

'-- -"

Chapter 4 APWC

This declaration says that the Pascal procedure namedfunc-name can be called from your
program. returning a result of type result-type.

For example. the DrawText procedure would be defmed in Pascal as follows:

PROCEDURE DrawText (textBuf: Ptr;
firstByte, byteCount: integer);

The syntax for declaring this procedure so that it can be called from APW C is

extern pascal void DrawText();

To make the code more informative. we can list the parameters in a comment:

extern pascal void DrawText();
/* Ptr textBuf;
sho rt firstByte, byteCount ; */

Inline declarations

An inline declaration is used for declaring Apple llGS tool routines. Its syntax is

[extern] pascal [result-type]func-name () inline (m, n) ;

This says that the tool routine with tool call number m and tool locator entry point m can be
called by the function name June-name and that it returns a result of type result-type. The
pascal keyword is necessary because the tools use Pascal-style conventions.

Inline assembly-code declarations

Your C program can contain assembly code inline . . Anywhere a statement is legal. you can
insert a series of assembly-language statements with this format:

asm {assembly-statements}

Anywhere a function definition is legal. you can have a definition with this format:

asm (external-name) {assembly-statements)

This function can be called in the same way as a C function called external-name. Here
external-name is the entry point of the segment containing the assembly-language code.

Pascal-style function definitions

A C function definition (the actual function). like a function declaration. can also be
preceded by the pascal specifier. The C compiler then produces code that adheres to
Pascal-style calling conventions and the function can be called using these conventions.

The APW syntax for defming this procedure as a C function is

pascal [result-type) June-name (jormal-parameter-Jist) (statement-Jist)

APDADraji Page 4-9 9 March 1987

APWC

For example, the following C function could be called from Pascal:

pascal void MyText(byteCount,textAddr,numer,denom)
short byteCount;
Ptr textAddr;
Point numer,demoni

The corresponding Pascal function declaration would be

PROCEDURE MyText(bytecount: INTEGER; textAddr: Ptr;
numer,denorn: Point);

Chapter 4

For compatibility with Pascal and assembly language, the compiler convens the names of
Pascal-compatible functions to uppercase before writing them to the object file. When they
are called in C programs, these routines should be capitalized exactly as they were declared
in C. Pascal-compatible functions whose names differ only in their capitalization will
become duplicate declarations when their names are convened to uppercase by the
compiler; therefore such names should be avoided.

Pascal-style strings: \p

One of the complications of calling Pascal-style functions from C is that the two languages
have different conventions for handling strings. A C-style string is a set of characters
followed by a null byte; a Pascal-style string is a count byte n followed by a set of n
characters. Conveniently, these two forms are the same length, so conversion from one to
the otheris not hard. The functions c2pstr and p2cstr perform runtime
conversions between the two types of strings.

If you wish to call a Pascal-style function that expects a Pascal-style string, you can use an
Apple extension to the standard C character escapes: \p. When the compiler encounters
this escape sequence at the beginning of a string, it substitutes for the \p the character
value equivalent to the number of non-null characters in the remainder of the string. Thus a
string constant is created that is equivalent to a Pascal-style string. Since it is also a C-style
string, it is also terminated by the null character: this character is not included in the
character count.

You can use it like this:

WriteString("\pHello, world.\n");

Parameter and result data types

C and Pascal suppon different data types. When writing a Pascal-style function declaration
in C, a translation of the parameter types and function-result type (from Pascal to C) is
therefore required. Often this translation is obvious. but some cases are surprising.

Table 4-2 summarizes this translation. Find the Pascal parameter or result type in the first
column. Use the equivalent C type found in the second column when declaring the

APDADrajr Page 4-10 9 March 1987

Chapter4 APWC

function in C. Comments in the table point out unusual cases which may require special
attention.

Table 4-2. Parameter and result data types

Pascal Data Type C Equivalent

enumeration enum ,

var enumeration enum *
enumeration result enum

char

var char

char result

integer

var integer

integer result

longint

var longint

long int result

real

var real

real result

double

var double

double result

comp

var comp

comp result

extended

var extended

extended result

APDADraji

char

char *

char

int or short

int * or short *
int or short

long

long *
long

float *

float *
float

double *

double *
double

comp *

comp *
comp

extended *
extended *
extended

Page4-J1

Comments

Use identical ordering of the
enumeration literals.

Pascal passes chars as 16-bit values.

Pascal stores unpacked chars as 16-
bit values.

16-bit signed values

32-bit signed values

Pascal passes real parameters as
extended.

Pascal passes double parameters as
extended.

Pascal passes comp parameters as
extended.

9 March 1987

APWC

pointer

var pointer

pointer result

array

var array

array result

record

var record

record result

set

var set

set result

pointer

pointer *
pointer

array

array

struct

struct *
struct

struct

struct *
struct

CIul[Jler4

32-bit addresses

Pascal passes arrays by address.

C does not allow array results.

Pascal passes records by value.

Pascal passes sets by value.

Note: The C struct type and the Pascal record type do not exactly correspond, as
C lacks an equivalent to the Pascal variant record type.

Global and external data types

When a C program and a Pascal program use the same global or external variables, they
must use types of like size. This requires care, as one can't be sure whether a given Pascal
compiler puts 0 .. 255 into a byte or a word. If possible, use a signed type for a signed type.
If you have to pass values from a signed type into an unsigned type, or vice versa, you will
have to test the sign bit and perform the appropriate conversions.

How parameters are passed
High-level languages on the Apple llgs use the stack and the A and X registers to pass
parameters. Assembly-language programs have other means of passing parameters, such
as the direct page, but they must use the stack to communicate with C programs, because
this is how C expects parameters to be passed. Here's how it works.

C-style functions

Let's declare a typical C-style function:

int foo () ;

This function takes three values and returnS one result. We can call it like this:

APDADraft Page 4-12 9 March 1987

Chapter 4 APWC

zoo = foo(a,b,c);

When the call is executed, the values c, b, and a are pushed, in that order. Function
foo returns its result in the A register. The calling program then pulls a, b, and c off
the stack and stores the contents of the A register into the variable zoo.

If foo had been 4 bytes long, it would have been returned in the A and X registers: the
high bytes in X and the low bytes in A. Structure and extended results are rerurned by
passing a pointer to them in the A and X registers.

Pascal-style functions

Pascal-style functions use the stack for the return value and also reverse the order of
reading parameters. Consider this function:

pascal int foobar();

This function also takes three values and returns one result. We can call it like this:

x = foobar(a,b,c);

When the call is executed, space for the result foobar is pushed on the stack, then the
values a, b, and c are pushed, in left-to-right order. The routine pulls c, b, and a
off the stack, computes foobar, and pushes foobar on the stack. The calling
program then pulls foobar off and copies it into the variable x .

When you write a function, you can declare it as a C or a Pascal-style function, thus
determining the way the parameters are passed. The C style of passing parameters is more
efficient than the Pascal style, but it should be used only with functions that will be called
from C and not from Pascal. Whatever language a function is written in, if declared as a
Pascal-style function it can be called from either Pascal or C; if declared as a C-style
function it can be called only from C.

Implementation notes
A number of details in any language definition are left to the discretion of its individual
implementations. Most programs do not rely on these details and therefore yield the same
results on the various implementations. Knowledge of the major differences between
implementations can, however, help you avoid reliance on language semantics that vary
from implementation to implementation. This section explains several areas of the language
definition that are specific to APW C.

Size and byte-alignment of variables
Because the 65C816 is a byte-oriented processor, it levies no speed penalty for using odd
addresses. Therefore, APW C does not align variables on word boundaries. In particular,
enumerated types and structures are not padded to make fields fall on word boundaries.

APDADraft Page 4-13 9 March 1987

APWC Chapter 4

When you recompile an MPW C program on the APW C compiler, for example, all
padding added by the MPW C compiler disappears. Any padding you added remains. You
can save space and possibly time by removing this padding from data structures and
deleting code that does word alignment.

Byte ordering

On the 65C816, the microprocessor used in the Apple IIgs, the least significant byte of a
short or long integer has the lowest memory address. This byte ordering is also used on
the PDP-ll, VAX., 8086, and NSl6000 processors. The 68000, IBM/370, and Z8000
processors store the least significant byte at the highest address. Programs that rely on the
order of the bytes within words and long words will not be portable from machines of one
of these classes of machines of the other.

Sign extension

In APW C, the » operator always performs a logical right shift: that is, the left bit
positions are filled with O's.

Variable allocation

The APW C compiler allocates static and global variables in the order in which they appear
in the source. This is also true for the order of fields within structures.

Array indexing

Array indexing is done using long arithmetic wherever the compiler cannot determine the
actual size of the array (as in extern int array [1 i) or determines that the size
requires long arithmetic for correct calculation of offsets for the whole array.

If the compiler determines that the entire array can be accessed using word arithmetic, it
will do so, for example:

extern int array[N]i / * N <= Ox8000 */

char string[) = "It would be hard to create a string long
enough to require long indexing, wouldn't it?"

int notToMany[] = (O,1,2,3,4,5,6,7,8,91i
long larray[Ox4000);

long larray[Ox4000)i / * Though the array is too large, the
second index will be done with word arithmetic. This is of
dubious advantage. * /

Because word arithmetic is more efficient than long arithmetic, you can use certain tricks to
force word arithmetic when speed is important These apply whenever you only need to
access 64K (OxlOOO) bytes within an array.

APDADraft Page 4-14 9 March 1987

Chapter 4 APWC

1. Thefonn

extern int array[lOOO];

is better than the fonn

extern int array[];

(as long as you know about how much of the array you need to access.)

2. To optimize access to a part of a larger array, place the code in a subroutine and pass a
pointer to the fITst element of the part to the subroutine: e.g.,

long array[OxlOOOO] /*This will normally cause long index
arithmetic.* /

main ()
[unsigned int i;

for(i=O; i<4; i++) fill(array+i*Ox4000);}
fill (smaller)
long smaller[Ox4000]; /*This is just small enough to fo r ce

word index arithmetic.·/
[unsigned i;

for (i=O; i < Ox4000; i++) smaller[i] = OxFFFFFFFF;

Calling fill () four times allows us to ml an array whose actual size in bytes is
Ox4 000 0, using long-arithmetic index calculation only four times, once at each call
from main. Note that the arithmetic is further optimized by the use of unsigned
for 1.

Types unsigned char, unsigned short, and unsigned long

Types unsigned char, unsigned short, and unsigned long are supported
by the APW C compiler and by many implementations of PCC, although they are not
required by the basic C language definition. The VAX implementation of PCC and the
APW C compiler differ in the way they evaluate expressions involving these types. For
example, the negation operator subtracts an unsigned short from 216 under PCC,
and from 232 under APW C.

Bit fields

APW C does not support signed bit fields. In the following example, implementations
using unsigned bit fields will sel i to 3:

struct {unsigned int field:2;} Xi
x.field = 3;
i =< x.field;

APDADraft Page 4-15 9 March 1987

APWC Chapter 4

Evaluation order

APW e does not defme the evaluation order of certain expressions. Expressions with side
effects, such as function calls and the ++ and - - operators, may yield different results on
different machines or with different compilers. Specifically, when a variable is modified as
a side effect of an expression's evaluation and the variable is also used at another point in
the same expression, the value used may be either the value before modification or the
value after modification.

Programs that rely on the order of evaluation in these situations are in error. The function
call

f(i,i++)

is an example of an expression whose value is undefined.

Case statements

Some implementations of e, including pee, allow cases of a switch statement to be
nested within compound statements. APWe considers this an error. The following
switch statement compiles using pee but generates an error message using the APWe
compiler. The error is that case 2: is within the if statement.

switch (i)
case 1:

if (j) (
case 2:

i Ie 3;

Language anachronisms

Several constructs formerly considered part of the e language are now considered
anachronisms. The compiler considers these invalid. The anachronisms are described
below.

Assignment operators

The =op form of assignment operators is not supported. Alternative interpretations are
accepted without warning. In particular,

x =- 5;

x =* 5;

x =& p;

Initialization

is interpreted as

is interpreted as

is interpreted as

x-(-5);

x=(*5);

x = (&p);

The equal sign that introduces an initializer must be present. The anachronism

APDADraft Page 4-16 9 March 1987

Chopter4 APWC

int i 1;

is considered an error.

Compiler limitations

On the Apple fiGS, the total size of all declared global scalar variables, static scalar
variables, and scalar constants cannot exceed 64K, because they are accessed using short
addressing. Aggregate types (structures, arrays, and string constants) are stored in a
separate large memory segment and accessed with long addressing. Their size is
effectively limited only by available memory.

Automatic variables are limited by the available stack space, which can never exceed 32K.

Each code segment is limited to 64K.

Performance tips

The following practices improve performance:

• Use unsigned types whenever possible. (This improves performance markedly.)

• Declare auto aggregate variables after all auto scalars. (This improves
performance markedly.)

• Declare auto pointers before other auto variables.

Creating load segments: tbe segment command

segment "segname" {, dynamic}"

When this command is used, it must appear between functions. It assigns the load segment
name segname to a function: all code following the directive until the end of file or the next
segment command will be assigned to the load segment segname. By default, this
command creates a static load segment. The dynamic option creates a dynamic
segment.

The segment command can be used to split up a code segment that would be larger than
64K.

The #append directive

The APW C preprocessor processes the usual directives, plus one that is peculiar to APW
C:

#appendfilename

APDADraft Page 4-17 9 March 1987

APwc . Chapter 4

When this directive is used, it must appear between functions:jilename is the name of the
next file in the compilation sequence. This directive nonnally appears at the end of a file,
as everything after it will be ignored. It should not appear in an include file.

Code Generation Memory Model

The memory model used by the code generation is a mixed model, intended to most
effectively exploit the architecture of the 65816, which has addressing modes that deal
with memory in a linear fashion, and others which treat memory as being divided into
segments.

Essentially, long, or linear, addressing is used for all pointer values: pointers are 32-bit
values, which contain 24-bit machine addresses. Global scalar variables, however, are
referenced internally using the more efficient 16-bit addressing modes. For these
operations, the high byte of the 24-bit address is derived from the processor's data bank
register, which is initialized by the START. ROOT module to point to the bank in which
the load segment containing the global data has been loaded. This feature is why total
global scalar storage is limited to 64K. Global arrays and structures, on the other hand, are
always addressed using long addressing, so it is possible to have more than 64K of array
space. Structs and unions are accessed using indexed addressing, so they are limited
in size to 64K Array refences will use the faster 16-bit indexed addressing modes if the
array is less than 64K in size. To access elements within large (greater than 64K) arrays,
the index expression must evaluate to a long; if necessary, a cast must be used. In this
context, static variables are treated as if they were global variables.

Local variables ("auto") variables are allocated on the 65816 machine stack. The machine
stack is a 16-bit register; the bank address of the stack is always bank O. Thus the
maximum stack size is limited to a theoretical 64K: in practice, this is considerably smaller,
due to competing use of bank-O memory by the system and other potentially resident
programs. The start code initializes a default stack size of 8IC; by creating a global integer
variable named stack size in your program, and initializing its value, you can
define your own Stack size (recogiiizing that the initialization code will fail if you specify a
stack size larger than the memory manager can allocate in bank zero). For example, the
following global declaration will cause the initialization code to allocate a 16K stack:

int stack_size_ = 1024 * 16;

Storage for local variables is created dynamically on the stack upon function entry. If less
than 256 bytes are required for parameter storage, internal temporary variables, and local
variables, then all of the local variables will be addressed via direct page addressing, and
pointer derefrencing using local variables will generally use indirect long addressing. If
more than 256 bytes are required, the compiler will have to use indexed addressing to
access variables that extend beyond the ftrst 256 bytes of stack storage allocated. The first
declared variables are the first allocated, so declaring your frequently-used local variables
first will guarantee that the most efficient addressing modes Will be used in referencing
them.

Function calls are all made via long subroutine calls.

APDADraft Page 4-18 9 March 1987

Chapter 5

The Standard C Library

-- -

About the Standard C Library
This chapter describes the Standard C Library provided with APW C. The Standard C
Library is a collection of basic routines that let you read and write flies, examine and
manipulate strings. perform data conversion, acquire and release memory, and
perform mathematical operations.

The chapter begins with an introduction to the error-number conventions used in lhe
Standard C Library, followed by the library functions and macros arranged
alphabetically under the name of the header file containing them. Each header file
contains a group of related functions or macros. For example, both the f read and
fwrite macros are found under the fread header. All of the function names and
other identifiers used in Standard C Library routines are listed in Appendix D, 'The
Library Index." To find out where in this chapter a particular identifier is described,
consult Appendix D .

• :. Note; Remember that identifiers in C are case sensitive and should be spelled
exactly as shown in the synopsis. Filenames (as in lIinclude statements) are
not case-sensitive. By convention, they are written in uppercase.

The library routines under each header are documented as follows:

o Synopsis shows the code you need to add to your program when using these library
routines and the flies you need to include at compile time.

D Description discusses the library routines and their input and output.

o Diagnosttcs describes error conditions.

o Return value describes the values returned by the routines.

D Example contains examples of commands.

o Note contains remarks.

D Warning gives cautions.

o See also provides the names of other library routines or sections in this chapter
related to the ones described in the current section.

Some of these will not be found under each header.

Note: Specific suppon for desk accessories has not been a consideration in the
design of this library.

2 Chapter 5 "The Standard C Library

Synopsis

Description

Error numbers

iinclude <ERRNO.H>

exter n int errno;

Many of the Standard C libraI}' functions have one or more possible error returns.
An otheIWise meaningless return value, usually -1, indicates an errOr condition: see
the descriptions of individual functions for details. The external variable e rrno
also provides an error number. Variable errno is only valid immediately after a
call; it is not cleared on successful calls, so it should be tested only if the return value
indicates an ereor. '

The error name appears in brackets following the text in a library function
description. For example:

"The next attempt to write a nonzero number of bytes will signal an error. fENospcl"

Not all possible error numbers are listed for eacb library function because many
errors are possible for most of the calls. Some UNIX operating system error numbers
do not apply to the Apple IIGS and are nOl documented in this manual. Some calls go
to the Apple IIGS ROM and as a side effect return a value in _ toolErr as well as the
value in errno. Some calls, sucb as printf and scanf, may change these
global variables even when they succeed.

Here is a list of the error numbers that can be returned in e rrno and their names as
defined in the <ERRNO. H> file.

2 ENOENT No such jlle or di71!CIOry
A file whose filename is specified does not exist or one of the directories in a
pathname does not exist.

5 EIO va error

6

Some physical I/O error has occurred. This error may in some cases be signaled
on a call following the one to whicb it actually applies.

ENXIO No such device or address
I/O on a special file refers to a subdevice that does not exist, or the I/O is
beyond the limits of the device. This error may also oCCUr when, for example,
no disk is present in a drive.

9 EBADF Badjllenumber
Either a me descriptor does nOl refer to an open file, or a read (or write) request
is made to a file that is open only for writing (or reading).

12 ENOMEM Not enough space
The system ran out of memory while the library call was executing.

Error numbers 3

Note

13 EACCES Permission denied
An attempt was made to access a me in a way forbidden by the protection
system.

14 EFAULT BadP~hname

A supplied pathname has incorrect syntax.

16 EBUSY DevIce or resource busy
Two or more online volumes have identical volume names.

17 EEXIST File exists
An existing me was mentioned in an inappropriate context; for example,
open (file, O_CREATIO_EXCL).

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; for
example, an attempt to read from a write-only device.

20 ENOTD IR Not a dIrectory
An object that is not a direaory was specified where a directory is required (for
example, in a pathname prefix).

22 EINVAL Invalid parameter
Some invalid parameter was provided to a library function.

24 ENFILE Too many openfiles
The system cannot allocate memory to record another open me.

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE IUeg~ seele
An lseek was issued incorrectly.

30 EROFS Read-only file system
An attempt to modify a me or directory was made on a device mounted for read
only access.

45 ETXTBUSY Textfile busy
An attempt has been made to perform a disallowed operation on an open file.

Calls that interface to the Apple llGS I/O system (such as open, close, read,
wri te, and ioctl) can set the external variable _ toolErr as well as errno on
errors. This is a side effect: it is not safe to assume any relationship between the error
number returned in errno and the number that may be returned in _toolErr.
To detect errors in Standard C Library calls, use errno; to detect errors in Toolbox
calls use toolErr.

This section documents the values returned in er rno. The Toolbox errors returned
in _ tool.Err are documented in the System Error Handler chapter of the Apple
IIGS Toolbox Reference.

4 Error nL.mbers

Error numbers 5

Synopsis

Description

Note

See also

6 abs

abs-return integer absolute value

int a bs (i)

in't i ;

Function abs returns the absolute value of i.

The absolute value of the negative integer with the largest magnitude is undefined.

floo r

Synopsis

Description

Diagnostics

See also

atof-convert ASCII string to floating-point number

tinclude <MATH . H>

extended atdf (st rJ
char "str;

Function atof converts a character string pointed to by str to an extended
precision floating-point number. The first unrecognized character ends · the
conversion. Function atof recognizes an optional string of white-space characters
(spaces or tabs), then an optional sign, then a string of digits optionally containing a
decimal point, then an optional e Or E followed by an optionally signed inLeger. If
the string begins with an unrecognized character, at of returns a NaN.

Function at of recognizes "INF" as infinity and "NAN" (optionally followed by
parentheses that may contain a string of digits) as a NaN, with NaN code given by the
string of digits. Case is ignored in the infinity and NaN string.

Function a tof honors the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by SANE.

scanf

str2dec, dec2num in the Apple Numerics Manual

alof 7

Synopsis

Description

Return value

Note

atoi-convert string to integer

fincl ude <STDLIB.H :>

int atoi (str)

char *str;
long atcl (str)

ch ar *str;

The character string str is scanned up to the first nondigir character other than an
optional leading minus sign (-). Leading white-space characlers (spaces and labs)
are ignored.

A plus sign (+) is considered a nondigil character.

Function atoi returns as an integer the decimal value represented by st r .
Function atol returns as a long integer the decimal value represented by str.

Overflow conditions are ignored.

See also atot, scant, strtol

8 aloi

Synopsis

Description

Diagnostics

See also

close-close a file descriptor

i n t c lose (fi ldes)

i nt fi l des;

Parameter fildes is a file descriptor obtained from an open, cre at, dup. or
fcnt l call. Function c lose closes the file descriptor indicated by f ild es .

Function close fails if filde s is not a valid open fil e descriptor. [EBADF]

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

creat,dup, f e ntl, open

close 9

Synopsis

Description

conv-translate characters

'include <CTYPE.H>

int touppe r (el
int c;

int tolower (el

int c;
int _toupper(c)

int c:
int _tolower (c)

int c;
int toase!i (el

lnt c;

Functions toupper and tolower have as their domain the set of ASCII characters (0
through 127) and the constant EOF (-1). If parameter e to toupper represents a
lowercase letter, the result is the corresponding uppercase letter. If parameter e to

tolower represents an uppercase letter, the result is the corresponding lowercase
letter. All other parameters in the domain are returned unchanged.

Macros _toupper and _tolower produce the same results as functions toupper
and tolower but have restricted domains and arc faster. Macro _toupper
requires a lowercase letter as its parameter; its result is the corresponding uppercase
letter. Macro _ tolower requires an uppercase letter as its parameter; its result is the
corresponding lowercase letter. Parameters outside the domain cause undefined
results.

Function toaseii converts c by dearing all bits that are not part of a standard ASClI
character. It is used for compatibility with other systems.

Note These routines do not support the Apple lIGS extended character set (with values
greater than Ox7F). For values outside the stated domain, the result is undefined.

See also etype, gate

10 cony

Synopsis

Description

creat-create a new file or rewrite an existing file

int creat (filename)
char *filename;

Function creat creates a new file or prepares to rewrite an existing file, filename.
If the file exists, the length of its data fork is set to o.
Function c rea t (fi lename) is equivalent to

openCfi lename,O_WRONLYI O_TRUN CIO_C REAT)

Upon successful completion, a nonnegative integer (the file descriptor) is returned
and the file is open for writing. The file pointer is set to the beginning of the file. A
maximum of about 30 flies may be open at a given time; the acrual maximum depends
upon the current system environment.

Retum value Upon successful completion, a nonnegative integer (the file descriptor) is returned.
Otherwise, a value of -1 is rerurned and errno is set to indicate the error.

Note Other implementations of creat specify a second parameter, mode . This version
ignores any second parameter.

See also close, open

ereat 11

Synopsis

Description

12 ctype

ctype-classify characters

finclude <CTYPE.H>

int isal pha {c)
int c;

in t isupper (c)

int c;
int islower (c)

int c;
int isdigit (e)

int c;
int isxdigit (e)

int Ci

int !salnum(c)
int C;

int isspace (e)
int c;

int ispunct(c)
int c,

int isprint (e)
int C;

int isgraph (e)
int c;

int iscntrl ee)
int c;

int isascii (c)

int c;

These macros classify character-coded integer values by table lookup, returning
nonzero for true, zero for false . Macro is ascii is defined On all integer values;
the rest are defmed only where isascii is true and on the single non-ASCII value
EOF (-1).

Macro

isascii
isalpha
isupper
islower
isdigit
isxdigit
isalnum
isspace
ispunct
isprint

Retums true W

c is an ASCII character code lower than octal 0200.
c is a letter IA-Z) or (a-z).
c is an uppercase letter (A-Z).

c is a lowercase letter (a-zJ
c is a digit (0-9).
c is a hexadecimal digit [0-9), [A-F), or (a-/l.
c is alphanumeric (letter or digit).
c is a space, tab, return, new line, vertical tab, or form feed.
e is a puncruation character (neither control nor alphanumeric).
c is a printing character, space (octal 040) through tilde (octal 0176).

Warning

Note

isgraph
iscntrl

c is a printing character, similar to isprint except false for space.
c is a delete charaCter Coctal 0177) or an ordinary control charaCler
Oess than octal 040).

If c is not in the domain of the function, the result is undefined.

These macros do not support the Apple IIGS extended character set. For values
outside the domain, the result is undefined.

clype 13

Synopsis

Description

dup-duplicate an open file descriptor

int dup(fildes)

int f ildes;

Parameter fildes is a file descriptor obtained from an open, creat, dup, or
fcntl call. The new me descriptor returned by dup is the lowest one available.

The function call dup(fildes) is equivalent to

fentl (f ildes, F_DUPFD , 0)

Function dup fails if parameter fildes is not a valid open file descriptor. [EBADF]

Retum value Upon successful completion, a nonnegative integer (the file descriplor) is relurned.
Otherwise, a va1ue of -1 is returned and errno is set to indicate the error.

See also close, fcntl , open

14 dup

Synopsis

DesCription

Note

See also

ecvt-convert a floating-point number to a string

,include <MATH.H>

char *ecvt (value, ndigit, decpt, sign)
extended value;
int ndigit, *decpt, *sign;

char *tcvt (va lue , ndigit, c1ecpt, sign)
extended value;
lnt ndigit, *decpt, ·sign;

Function ecvt converts value to a null-terminated string of ndigit digits and
returns a pointer to this string as the function result. The low-order digit is rounded.

The decimal point is not included in the returned string. The position of the decimal
point is indicated by decpt, which indirectly stores the position of the decimal point
relative to the returned string. If the int pointed to by decpt is negative, the decimal
point lies to the left of the returned string. For example, if the string is "12345" and
decpt points to an int of 3, the value of the string is 123.45; if decpt points to -3,
the value of the string is .00012345.

If the sign of the converted value is negative, the int pointed to by sign is nonzero;
otherwise it is zero.

Function fcvt provides fixed-point output in the style of Fortran F-format output.
Function fcvt differs from ecvt in its interpretation of ndigit:

o In f cvt, ndig it specifies the number of digits to the right of the decimal point.

o In ecvt , ndigit specifies the number of digits in the string.

The string pointed to by the function result is static data whose contents are
overwritten by each call. To preserve the value, copy it before calling the function
again.

print!

str2dec, dec2num in the Apple Numerics Manual

ecvt 15

Synopsis

Description

.exit-terminate the current application

'include <STDLIB. H>

vOid exit (status)
int status;

void _ e xit (status)
int status;

Functions exi t and _exi t close open file descriptors and terminate The application
or tool. Here is the order in which exi t performs its duties:

1. It executes all exit procedures in reverse order of their installation by onexi t,
including the exit procedures for the Standard I/O Package if routines from lhal
'package were used, All buffered files are flushed and closed.

2. It closes all open files that were opened with opel' or fopen.

3. If the program is a tool runrti;'g under the APW Shell, the exi t function relurns
stalUS and control to the APW Shell by placing a return value in the lower three
bytes of status and terminating the application.

Function _ exi t circumvents the exit procedures described in step 1 above, Use
_ exi t instead of exit to abort your program when you are uncertain about the
integrity of the data space.

Return value The main program is a function that rerurns an integer. The return value of main is
interpreted by the APW Shell as the program starus. When you call exit or _exit,
the status parameter is returned to the APW Shell as the return value for the
application's main function: 0 for normal execution or a small positive value for
errors (typically 1..3). Main programs that return to the shell without setting status
to an integer value appear to be returning a random status,

There is no return from exit or _exit.

Note Functions exit and _exit do not close fIles you opened with calls to the I/O routines
documented in the Apple IIGS Toolbox Reference.

See also onexit, stdio

16 exit

Synopsis

Description

Diagnostics

See also

exp-exponential, logarithm, power, square-root
functions

'include <MATH . H>

extended exp (xl
extended x;

extended log (xl
extended x;

extended 1 0 g10 (x)
extended x;

extended pow (x, y)

extended x, y;

extended sqrt (xl
ex t en c1e c:1 1<;

Function exp (xl returns e", where e is the natural logarithm base.

Function log (xl returns the natural logarithm of x, loge'"

Function loglO (x) returns the base-lO logarithm of x, loglOx,

Function pow (x, y) returns xY.

Function sqrt (x) returns the square root of x.

For special cases, these functions return a NaN or signed infinity as appropriate.

These functions honor the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by SANE.

hypot, sinh

Apple Numerics Manual

exp 17

Synopsis

Description

Retum value

Note

See also

faccess-named-file access and control

linclude <FCNTL.H>

l nt fa ccess (filename, cmd, arg)
char *filename;
uns igned int cmd;
char *arg;

Function faccess provides access to control and starus information for named files.
(Compare function ioct 1, which provides different control and status information
for open files.)

Parameter cmd must be set to one of the constants in the following list to indicate what
operation is to be performed on the me. As noted in the list, some calls to faccess
also require the arg parameter, usually as a pointer to a char.

The following commands are available to all programs:

Value 01 cmd

F DELETE

F RENAME

FAUX

F STAT

Description

Deletes the named file, or returns an error if the file is open.
Parameter arg is ignored.

Renames the named file . Parameter arg is a pointer to a string
containing the new name.

Sets the type of the file to the value of the parameter argo

Sets the auxiliary type of the me to the value of the parameter argo

Gets the directory entry information for the me filename, and
puts the information in the struct DirectoryEntry
pointed to by argo

For example, faccess (thing, F_TYPE, Ox04) sets the type of file "thing" to

$04-ASCn text file.

Upon successful completion, faccess returns a nonnegative value, usually O. If the
device for the named file cannot perform the requested command, f acce s s returns
-1 and errno is set to indicate the error. '

The cmd value F _OPEN is reserved for operating system use.

ioctl, unlink

18 faccess

Synopsis

Description

fclose-close or flush a stream

#include <SToIO. H>

lnt fclose (stream)

FILE * stream;
int fflush (stream)

FILE *stream;

Function fclose closes a file that was opened by fopen, freopen, or fdopen.
Function fclose causes any buffered data for stream to be written out, and the
buffer (if one was allocated by the system) is released; fclose then calls close to
close the file descriptor associated with stream. The value of the parameter stream
cannot be used unless reassigned with f open, fdopen, or f reopen.

Function fclose fails if the file descriptor associated with stream is already closed.
[ENOENTl

Function fclose is performed automatically for all open FILE streams upon calling
exit.

Function fflush causes any buffered data for stream to be wrinen out; stream
remains open.

l1eturn value These functions return 0 if the operation succeeded or EOF if an error was detected
(such as trying to write to a file that has not been opened for writing).

See also close, exit, fopen, setbuf

telose \9

Synopsis

Description

fcntl-file control

.inc l ude <FCNTL.H>

int f c nt l(fildes, c md, arg)
in t f ildes;
unsigned int c md;
i n t: arg;

Function fe ntl is used' for duplicating fil e descriptors. A file remains open until all or
its file descriptors are closed.

Parameter fildes is an open file descriptor obtained from an ope n, ereat, dup,
or f e ntl call. Parameter emd takes the value F _DUPFD, which tells f e ntl to return
the lowest numbered available me descriptor greater than or equal to a rg. Normally
arg is greater than or equal to 3, to avoid obtaining the standard file descriptors 0, I ,
and 2. Function f e ntl returns a new file descriptor that points to the same open file
as f ildes. The new me desCriptor has the same access mode (read, write, or
read/write) and me pointer as fildes. Any 1/0 operation changes the file pointer
for all file descriptors that share it.

Function f e ntl fails if one or more of the following are true:

o Parameter fildes is not a valid open file descriptor. [EBADF)

o Parameter arg is negative or greater than the highest allowable file descriptor.
[EINVAL)

Retum value Upon successful completion, the value returned is a new file descriptor. Otherwise, a '
value of -1 is returned and errno is set to indicate the error.

Note The F_GETFD, F_SETFD, F_GETFL, and F SETFL commands of f e ntl are not
supported on the Apple fiGS.

See also elo"e, dup, open

20 fenH

--.

Synopsis

Description

See also

ferror-stream status inquiries

tinel ude <STDIO. H>

int feot (stream)
FI LE *stream;.

in t ferror(s t ream)
FI LE *stream;

voici clearerr (stream,
FILE *stream;

int fileno (stream)
FILE *stream;

Macro feof returns nonzero when an end-or-me condition has previously been
detected reading the named input stream; otherwise, it returns zero.

Macro ferror returns nonzero when an VO error has previously occurred reading
from or writing to the named stream; otherwise, it returns zero.

Macro clearerr resets the error indicator and end-or-file indicator to zero on the
named stream.

Macro f ileno returns the integer me descriptor associated with the named stream;
see open.

open, fopen

ferror 21

Synopsis

Description

floor-floor, ceiling, mod, absolute value functions

f i nclude <MATH. H>

extended fl oo r (x)
extended x;

e ,xtended ceil (x)
extended X;

extended fmod (x, y)

extended x , y:
extended fabs (x)

extended X;

Function floo r (x) returns the largest integer (as an extended-precision number)
not greater than x .

Function ceil (x) returns the smallest integer not less than x.

Whenever possible, fmod (x, y) returns the number f with the same sign as x, such
that x - I y + f for some integer i, and 1 f I < 1 y I. If Y is 0, fmod returns a NaN.

Function fabs (x) returns 1 xl, the absolute value of x.

See also abs

rint, setround in the Apple Numerics Manual

22 floor

Synopsis

Description

fopen-open a buffered file stream

iinclude <STOI O. H>

FILE ""fopen (f i l e n ame, type)
char -filename, - t ype;

FILE -freopen (filename , type, s t ream)
char -filename, *type;
FILE "st ream;

FILE *fdopen (fildes, type)
lnt filde s;
char "'type;

Function fopen opens the file named by filename and associates a stream wilh
it Funaion fopen returns a pointer to the FILE structure associated with the
stream.

Parameter filename points to a character string that contains the name of the file
to be opened.

The value of type should be one of the string values in the first column in the
following table, induding the quotes. The headings Open Mode Used and
Description explain how type is used. FOr more information, see open.

Value

"rn
"W"
"a"

"a+"

Open mode used

° RDONLY
O_WRONLYIO_CREATIO_TRUNC
O_WRONLYIO_CREATIO_APPEND

° RDWR
O_RDWRIO_CREATIO TRUNC
O_RDWR I O_CREAT 10_APPEND

OescrlpHon

Open for reading only.
Truncate or create for writing.
Append: open for writing at end of
file, Or create for writing.
Open for update (reading and writing).
Truncate or create for update.
Append: open or create for update at
end of file.

When a file is written to a device, normally certain characters are translated to match
the needs of the device or the expectations of ProDOS for a normal text file (such as Lr

anslating \n to CR rather than LF). The following values, with b added to the
string, suppress such translations:

Value

"rbU

"wb"

II ab II

Open made used

O_RDONLYIO_BINARY ° WRONLYIO CREATIO_TRUNCIO_BINARY

OescrlpHon

Open for reading only.
Truncate or create for

writing.
"Append: open for writing at

end of file, or create for
writing.

fopen 23

Note: The b and the + can be reversed.

Open for update (reading
and writing).

Truncate or create for
update .

Append: open or create [or
update at end of file.

Function freopen substitutes the named me for the open stream. The original
stream is closed, regardless of whether the open operation ultimately succeeds.
Function freopen returns a pointer to the FILE structure associated with
stream. Function freopen is typically used to anach the previously opened
streams aSSociated with stdin, stdout, and stderr to other files.

Function fdopen associates a stream with a file descriptor by formatting a file
stru.crure from the me descriptor. Thus, fdopen can be used to access the me
descriptors returned by open, creat, dup, or fcntl. (These calls return file
descriptors, not pointers to a FILE structure.) The type of stream must agree with
the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting
stream. However, output may not be directly followed by input without an intervening
fseek or rewind, and input may not be directly followed by output without an
intervening f seek, rewind, or an input operation that encounters an end-of-file
condition.

When a me is opened for append (that is, when type is a or a+), it is impossible
to overwrite information already in the me. Function fseek may be used to
reposition the file pointer to any position in the me, but when output is written to the
me the current me pointer is disregarded. All output is wrinen at the end of the file
and causes !pe me pointer to be repositioned at the end of the output.

Return values If they succeed, the functions fopen, freopen, and fdopen rerum a valid file
pointer. If they fail, they return NULL.

The maximum number of open FILE streams is NFILE (defined in STDIO. H,
currently 20). The maximum number oropen disk mes may be less than NF !LE, as
determined by the current release of ProOOS.

Note The parameter type must have one of the values in the first column in the table; do not
use values intended for open, such as 0_ RDONLY.

See also open, fclose, fseek

24 fopen

Synopsis

Description

fread-binary input/output

iinclude <STDIO.H>

int fread(ptr, size, nitem s , s tream)
char "' ptr;
int size, nitems;
FILE "'st re am;

lnt fwrite(pt r , size, nitems, stream)
char "'ptr;
int size, nitems;
FILE *s t ream:

Function fread copies nitems items of data from the named input stream into an
array beginning at ptr. An item of data is a sequence of size bytes (not necessarily
terminated by a null byte). Function fI'ead stops appending bytes if an end-of-file or
error condition is encountered while reading stream Or if ni terns items have been
read. Function f read leaves the me pointer in stream pointing to the byte follOWing
the last byte read.

Function fwrite writes at most nitems items of data to the named output stream
from the array pointed to by ptr. An item is a sequence of size bytes. Function
fwrite stops writing when it has written nitems items of data or if an error condition
is encountered on stream. Function fwrite does not change the contents of the
array pointed to by ptr .

. The parameter si ze is typically

sizeof(*ptr)

where sizeof speofies the length 'of an item pointed to by ptr. If ptr points to a
data type other than char, it should be cast into a pointer to char.

Return values Functions fread and fwrite return the number of items read or written. If nit ems
is 0 or negative, no characters are read or written and 0 is returned by both fread and
fwrite.

See also fopen,getc,gets,printf,putc, puts, read, scanf,stdio, write

tread 25

Synopsis

Description

Diagnostics

See also

26 frexp

frexp-manipulate parts of floating-point numbers

iinclude <MA TH. H>

extended frexp(value, ept r)
extended value;
i nt *eptr;

extended Idexp (value, exp)
extended va.lue;
int exp;

extended modf (value, iptr)
extended value, *ipt r;

Every nonzero number can be written uniquely as x' 2 n, where the mantissa
(fraction) x is in the range 0.5:,; I xl < 1.0 and the exponent n is an integer. Function
frexp returns the mantissa of an extended value and stores the exponent indirectly
in the location pointed to by eptr. Note that the mantissa here differs from [he
significand descnbed in the Apple NumeriCS Manual, whose normal values are in the
range 1.0:'; I xl < 2.0 .

Function ldexp returns the quantity value' 2exJ>.

Function modf returns the signed fractional part of value and stores the integral pan
indirectly in the location pointed to by iptr.

Function ldexp honors the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by SANE.

10gb, scalb in the Apple Numerics ManWlI

Synopsis

Description

Diagnostics

See also

fseek-reposition a file pointer in a stream

tinclude <STDIO.H>

int fseek (stream, offset, ptrname)
FILE "stream;
long offset;
int pt~name;

void rewi nd (st ream)
FILE '* st ream;

long ttel l (stream)
FILE • stream;

Function f seek sets the position of the next input or output operation on the stream.
The new position is offset bytes from the beginning, the current position, or the
end of the ·fIle, when the value of ptrname is 0, 1, or 2, respectively. If ptrname is 1
Or 2, offset may be negative.

The call

rewind (st ream)

is equivalent to

fseek (stream, OL, 0)

except that no value is returned.

Functions fseek and rewind undo any effects of ungetc.

After fseek or rewind, the next operation on a file opened for update may be either
input or output.

Function fte 11 returns the offset of the current byte relative to the beginning of the
file associated with the named stream.

Function fseek returns nonzero for improper seeks; otherwise it returns zero. An
example of an improper seek is an f seek before the beginning of the file.

lseek, fopen,ungetc

Isaak 27

Synopsis

Description

getc-get a character or a word from a stream

'include <STD IO.H>

int getc(stream)
FILE *stream;

int get char ()
int fgetc (stream)

F ILE *stream;
lnt getw (stream)

FILE ""stream;

Macro getc returns the next character from the named input stream. It also moves
the file pointer, -If defined, ahead one character in stream. Macro getc cannot
be used if a function is necessary; for example, you cannot have a function pointer
point to it Maceo getc returns the integer EOF on end of file Of error.

Macro get c har returns the next character from the standard input stream, stdin.

Function fgetc produces the same result as macro getc; function fgetc runs
more slowly than macro getc but takes less space per invocation. You can also
have a pointer to fgetc but not to getc.

Function getw returns the next int (that is, two bytes) from the named input
stream so that the order of bytes in the stream corresponds to the order of bytes in
memory. Function get w returns the constant EOF upon encountering an end-of
fIle or error condition. Because EOF is a valid integer value, feof and ferror
should be used to check the success of getw. Function getw increments the
associated me pointer, if defined, to point to the next into Function getw assumes
no special alignment in the file.

Return values These calls return either data from the stream or the integer constant EOF (-1) on
end of fIle or error condition.

Note Because it is implemented as a macro, getc treats a stream parameter with side
effects incorrectly. In particular,

getc(*f++)

doesn't work as you would expect. Instead use

fgetc (*f++)

See also ferror, fopen, fread, gets, iocntl, scanf, stdio

28 gete

Synopsis

Description

getenv-access exported APW Shell variables

" i nclude <STDLIB.H>

c har *getenv (varname)
char *varname;

The environment is the set of exponed variables provided by the APW ShelL
Function getenv provides access to variables in this set. (See the Variables section
in Chapter 4 of the Apple IIes Programmer's Workshop Reference for the list of
standard exported shell variables.)

Function getenv searches the environment for a shell variable with the name
specified by varname and returns a pointer to the character string containing its
value. The null pointer is returned if the shell variable is not defmed or has not been
exponed. The shell-variable name search is case insensitive.

Retum value Upon successful completion, a pointer to the value of varname is returned. If the
shell variable is not defined or not exported, the function returns the null pointer.

Note

Warning

For standalone applications, which do not run under the APW shell, getenv always
returns the null pointer.

The environment can also be accessed by means of a parameter to the C main-en try
point function rna in if the main procedure is declared as

main (argc, ary, envp)

The envp array represents the set of APW shell variables that have been made
available to tools by means of the APW EXPORT command. The ith envp entry has
the form

e nvp(iJ - "varname \Ovarvalue \ Ou j

The last envp entry is the null pointer.

If you use envp to search the environment, be sure to use case-insensitive string
comparisons .

Function getenv returns a pointer to the place in memory where a copy of the APW
shell variable resides. Do not modify the value of a shell variable in such a way as to
increase its length.

geterw 29

Synopsis

Description

gets-get a string from a stream

tinclude <ST DI O.H:>

char -gets (str)
char *s tr;

char *fgets(str, maxlen, stream)'
char *str;
int maxlen;
FILE "stream;

Function gets reads characters from the standard input stream stdin into the array
pointed toby str until a newline character is read or an end-of-file condition is
encountered. The newline character is discarded, and the string is terminated wittl a
null (\ 0) character.

Function fgets reads characters from stream into the array pointed to by str until
maxlen-l characters are read, a newline character is read and transferred to str, or
until an end-of-file condition is encountered. The string is then terminated with a null
character.

Return values If the cnd-oF-me is encountered and no characters have been read, no characters are
transferred to str and NULL is returned If a read error QCOlrs, NULL is returned.
Otherwise str is returned. (A read error will OCOlr, for example, if you attempt to use
these functions on a me that has not been opened for reading.)

Note The array pointed to by s t r is assumed to be large enough; overflow is not checked.

The function gets omits the newline character in the string; fgets leaves it in.

See also ferror, fopeo, fread, getc, scanf, stdio

30 gets

Synopsis

Description

Diagnostics

See also

hypot-Euclidean distance function

iinclude <MATH.H>

extended hypot (x, y)

extended x, Y i

Function hypot returns

sqrt (x '* x + y * y)

taking precautions against unwarranted overflows.

Function hypot honors the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by SANE.

exp

Apple Numerics Manual

hypot 31

Synopsis

Description

32 locH

ioctl-control a device

l i nc l ude <IOCTL.H>

int ioetl (fildes, cmd, 'arg)
int fildes;
unsigned int cmd;
long *arg;

Function ioctl communicates with a me's device handler by sending control
information, requesting status information, or both. Parameter cmd indicates which
device-specific operations ioctl must perform. Here are the control values:

Value 01 cmd

FIOINTERACTlVE

FIOBUFSIZE

FIOREFNUM

FIOSETEOF

FlO STAT

DescripHon

Function ioctl returns 0 if the device is interactive; if not, it
returns -1 and errno is set to EINVAL. Parameter arg is
ignored.

Function ioctl returns, in bytes, the optimal buffer size for
this device; the buffer size is returned in a long pointed to by
arg.lfthe device has no default buffer size, ioctl returns-l
and errno is set to EINVAL. .

Function ioctl returns the Apple IIGS me reference number
associated with f ildes; the reference number is returned in
the short pointed to by argo If the fildes is not open on a
Apple IIGS file (such as the console device), ioctl returns-J.

Function ioctl sets the logical end-of-file specified in the
long parameter argo The value of arg is the new size of the
me, in bytes. This command can be used to reduce or
increase the size of the open me. The current me pointer is not
affected unless the IDe size is set below it

Function ioctl stores the directory information associated
with fildes into the struct DirectoryEntry pointed
to by argo

Function ioct 1 fails if one or both of the following conditions exist:

o File descriptor f ildes is not valid or is not open. [EBADF]

o Parameters cmd or arg are not valid for the device handler associated with
fildes. [EINVAL]

Diagnostics

Note

Warning

See also

If an error has ocrurred, a value of -1 is returned and errno is set to indicate the
error.

For cmd values FIOINTERACTlVE and FIOBUFSIZE, a function return of -1 is a
meaningful response, not an error. For FlO INTERACTIVE, errno is set to EINVAL
for devices that ace not interaaive. For FIOBUFSIZE. errno is set to EINVAL for
devices that have no default buffering.

The cmd values FIOLSEEK and FIODUPFD are reserved for operating system use.

FIOREFNUM lets you do Apple llGS VO operations such as Allocate that are not
available through ioct 1. Do not close or modify the file pointer using the reference
number.

fcntl

iocH 33

Synopsis

Description

Iseek-move read/write file pointer

tin elude <FCNTL. H>

long Iseek (fildes, offset, whenc e)
int fildes;
long offset;
int whence;

A me descriptor, fildes, is reUlmed from a call to creat, dup. fentl, or open.
Function lseek sets the me pointer associated with fildes as follows:

o If whence is 0, the pointer is set to offset bytes.

o If whence is I, the pointer is set to irs current location plus offset.
('The value of offset may be negative, zero, or positive.

o If whence is 2, the pointer is set to the size of the me plus offse t .
('The value of offset may be negative or zero.

Upon successful completion, the me pointer value as measured in bytes from the
beginning of the me is returned.

The me pointer remains unchanged and Iseek fails if one or more of the following
are true:

o File descriptor fildes is not open. [EBADF]

o Parameter whence is not 0, I, or 2. [EINVAL]

o The resulting file pointer would point before the beginning of the fIle. [EINVAL]

Some devices are incapable of seeking. The value of the me pointer associated with
such a device is undefIned.

Return value Upon successful completion, a nonnegative long integer indicating the me-pOinter
value is returned Otherwise, a value of -1 is returned and errno is set to indicate the
error.

Note

Warning

34 Iseek

In previous versions of the Standard C Library, tell (fildes) was a function that
returned the current me position. It is equivalent to the call

Iseak (fildes, OL, 1)

Function lseek has no effect on a me opened with the 0 _APPEND nag because the
next write to the me always repositions the me pointer to the end before writing.

See also fseek, open

Iseek 35

Synopsis

Description

36 malice

malloc-memory allocator

tinclude <MALLOC. H>

char *malloc (size)
unsigned 1nt

v o id free (ptr)
char ·ptr:

size ;

char *realloc (ptr, si ze)
char *pt r;
unsigned lnt size;

char *calloc (ne lem, elsize)
uns igned lnt ne lem, e ls i ze;

void cfree (Ptr. nelem, e!size)
c har *pt r;
unsigned lnt nelem, elsize;

Functions malloe and free provide a simple general-purpose memory-allocation
package. The storage area expands as necessary when malloe is called.

Function malloe allocates the fIrst sufficiently large contiguous free space it finds and
returns a pointer to a block of at least size bytes suitably aligned for any use. It calls
NewHandle (see the Apple IIGS Toolbox Riference) to get more memory from the
system when there is no suitable space already free.

Function free takes a parameter that is a pointer to a block previously allocated by
malloe. If its size is greater than 2K bytes, it is returned to the system using
DisposeHandle. Blocks smaller than that are cached by malloe for further
allocation by malloe only. Undefined results occur if the space assigned by malloc
is overrun or if a random value is passed to free.

Function realloe changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents arc unchanged up to
the lesser of the new and old sizes. If no free block of size bytes is available in the
storage area, realloe asks malloe to enlarge the storage area by size bytes and
then moves the data to the new space. If ptr is NULL, realloe is equivalent to
malloe.

Function ealloe allocates space for an array of nelem elements of size elsize. The
space is initialized to zeros.

Function efree, like free, frees memory allocated by ealloe; efree is induded
for compatibility with other systems. Parameters nelems and elsize are ignored.

Diagnostics Functions malIoe , realloc, and calloc return NULL if there is no available
memory or if the storage area has been detectably corrupted by a program's storing
data outside the bounds of a block. When this happens. the block pointed to by pt r
may have been destroyed

malice 37

Synopsis

Description

memory-memory operations

.f incl ude <MEMORY. H>

char *memccpy (dest, source, c, n)

char *dest, * source;
int c, n;

char *memchr(sQurce, c, n)

char ·source:
lnt c, n;

int memcmp(a, b, n)

char *a, *b;
int n ;

char *memcpy (dest, source.. nJ
char *dest, .. source:
int n;

char *memset (dast, c, nJ
char *dest;
char C;

int n;

These functions operate efficiently on memory areas (arrays of characters bounded
by a count, not terminated by a null character). They do not check for the overflow of
any receiving memory area.

Function memccpy copies characters from memory area source into dest,
stopping after the first occurrence of character c has been copied or after n
characters have been copied, whichever comes flISt. It returns either a pointer to the
character after the copy'of c in dest or NULL if c was not found in the fIrst n

cbaracters of Source.

Function memchr returns either a pointer to the fIrst occurrence of character c in the
flISt n characters of memory area source or NULL if c does not occur.

Function memcmp compares its parameters, a and b, looking at the first n characters
only. It returns an integer less than, equal to, or greater than 0, depending on
whether a is less than, equal to, or greater than b.

Function memcpy copies n characters from memory area source to dest. It returns
dest.

Function memset sets the flISt n characters in memory area dest to the value of
character c. It returns dest.

Warning Overlapping moves yield unexpected results.

38 memory

See olso string

BlockMove in the Toolbox Reference Manual

memol)' 39

Synopsis

Description

Diagnostics

Note

Warning

See also

40 onexit

onexit-install a function to be executed
at program termination

int onexit (func);

void (*tunc) ();

Function onexit installs the exit function pointed to by func by adding it to a list.
The list is initially empty. A list entry is added whenever onexi t is called. Function
exi t calls the functions in the list in the reverse order in which they were added. To
ensure that buffers are flushed at program termination, the Standard I/O Package
adds its cleanup function to the liSt the first time it allocates a buffer. Each function in
the list is called without parameters either at program termination or when exit is
called.

The number of user-supplied exit functions is limited to five.

The function returns a nonzero value if the installation fails.

A call to _exit circumvents user exit procedures installed by onexit.

If a function is installed more than once, its behavior is undefIned.

exit, stdio

Synopsis

Description

' "

open-open for reading or writing

finclude <FCNTL. H>

int open (filename, of lag)
char "filename:
lnt o f lag:

Parameter filename is a filename or pseudo-filename (such as . NULL). Function
open opens a file descriptor for the named file and sets the file-status flags according
to the value of oflag. The value of of lag is constructed by OR-ing flag settings, for
example,

fildes "" open("MyFile", O_WRONLY I O_CREAT IO_ TRONC) ;

To construct of lag, first select one of the following access modes:

o 0 RDONLY Open for reading only.
o 0 WRONLY Open for writing only.
o 0 RDWR Open for reading and writing.

Then optionally add one . or more of these modifiers:

o 0_ APPEND The file pointer is set to the end-of-file before each write.
o 0 CREAT If the me does not exist, it is created.
o 0_ TRUNC If the file exists, its length is truncated to 0; the mode and owner are

unchanged.

The following sening is valid only if O_CREAT is also specified:

Function open fails if the file exists.

When a file is written to a device, normally cenain characters are translated to match
the needs of the device or the expectations of ProDOS for a normal text file (such as lr

anslating \n to CR rather than m. The following flag suppresses such translation.

The file is read or written verbatim, suppressing the device driver's
conversions.

Upon successful completion, a nonnegative integer (the file descriptor) is returned.
The file pointer used to mark the current position within the file is set to the beginning
of the file .

The named file is opened unless one or more of the following are true:

o 0 CREAT is not set and the named file does not exist. [ENOENT\
o More than about 30 file descriptors are currently open. The actual limit varies

according to run-time conditions. [ENF I LE\
o 0 CREAT and 0 EXCL are set and the named file exists. [EEXI ST\

open 41

Return value

See also

42 open

Upon successful completion, a nonnegative integer (the file descriplor) is reLUrncJ.
Otherwise, a value of -1 is rerurned and errno is set to indicate the error.

close.creat, lseek, rea~write

Synopsis

Description

printf-print formatted output

#include <STD IO .H>

tnt printf (t o rmat [, arg J •..)
char *format;

int fpr intf (stre am, format (, arg J • ••)

FI LE "s tream;

c har *f o rmat;
i nt spri ntf(str, format [, a r g 1 •••)

char *str, *format;

Function p:dnt fplaces formatted output on the standard output stream stdout.
Function fprintf places formatted output on the named output stream st ream.
Function spr intf places formatted output, followed by the null character (\ 0), into
the character array pointed to by str; it's your responsibility to ensure that enough
room is available. Each function returns the number of characters transmitted (not
including the \ 0 in the case of spr intf), Or a negative value if an output errOr was
encountered.

Each of these functions converts, formats, and prints its arg parameters under
control of the format parameter. The format parameter is a character string that
contains two types of objects: plain characters, which are simply copied to the output
stream, and conversion spedfications, each of which results in fetching zero or more
arg parameters. The behavior pf the function is undefined if there are insufficient
arg parameters for the format. If the format is exhausted while arg parameters
remain, the extra arg parameters are ignored.

Each conversion specification is introduced by the character %. After %, the
following appear in sequence:

1. Zero or more lIag characters, which modify the meaning of the conversion
specification.

2. An optional decimal digit string specifying a minimum field width. If the converted
value has fewer charaders than the field width, it will be padded to the field width
on the left (default) or right (if the left-adjustment flag has been given} see the
discussion of the flag specification, below.

3 . A precision that gives the minimum number of digits to appear for the d, 0 , u,
x, or X conversions; the number of digits to appear after the decimal point for
the e, E, and f conversions; the maximum number of significant digits for the
g and G conversionSj or the maximum number of characters to be printed from a
string in the s conversion. The format of the precision is a period (.) followed by a
decimal digit string; a null digit string is treated as zero.

printf 43

44 prlntf

4. An optional 1 specifying that a following d, 0, u, x, or X conversion
character applies to an arg parameter of type long.

5. A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk C*) instead of a digit string.
In this case, an integer arg parameter supplies the field width or precision. The
arg parameter that is actually converted is not fetched until the conversion letter is
seen; therefore, the arg parameters specifYing field width or precision must appear
immediately before the arg parameter (if any) to be converted.

These are the flag characters and their meanings:

+

blank

The result of the conversion will be left j~stified within the field.

The result of a signed conversion always begins with a sign C + or -).

If the first character of a signed conversion is not a sign, a space will
be prefixed to the result. This implies that if the blank and +
flags both appear, the blank flag will be ignored.

The value is to be converted to an alternate form. For c, d, S,

and u conversions, the flag has no effect. For 0 conversion, it
increases the precision to force the ftest digit of the result to be a
zero. For x (X) conversion, a nonzero result will have Ox (OX)
prefIXed to it Por e, E, f, g, and G conversions, the result will
always contain a decimal point, even if no digits follow the point.
(Normally, a decimal point appears in the result of these
conversions only if a digit follows it) Por g and G conversions,
trailing zeros in the fractional part will not be removed from the
result (as they normally are).

The conversion characters and their meanings are these:

d,o,u,x,X The integer arg parameter is converted to signed decimal Cd),
unsigned octal Co), unsigned decimal (u), or unsigned
hexadecimal notation Cx and x), respectively; the letters abcdef
are used for x conversion and the letters ABCDEF for X
conversi.on.

The precision specifies the minimum number of digits to appear; if
the value being converted can be represented in fewer digits, it will
be expanded with leading zeros. The default precision is I. The
result of converting a zero value with a precision of zero is a null
string.

f

e,E

g,G

c

5

%

The float, double, compo Or extended arg parameter is
converted to decimal notation in the form "[-Jddd. ddd", where
the number of digits after the decimal point is equal to the precision
specification. If the precision is missing, it is assumed to be 6; if the
precision is explicitly 0, no decimal point appears. Infinities are
printed in the form "l-JINF", and NaNs are printed in the form
"[-lNAN(ddd)", where ddd is a code indicating why the result is not
a number.

The float, double, camp, or extended arg parameter is
convened in the form "[-Jd. ddde±dd', where there is one digit
before the decimal point and the number of digits after it is equal to
the precision. When the precision is missing, it is assumed to be 6;
if the precision is 0, no decimal point appears. The E format code
produoes a number with E instead of e introducing the
exponent. The exponent always contains at least two digits.
Infinities are printed as INF and NaNs are printed in the form
"l-lNAN(ddd)", where ddd is a code indicating why the result is not
a number.

The float , double, camp, or extended arg parameter is
printed in style f or e (or in style f or E in the case of a G

format code), with the precision specifying the number of
significant digits. The style used depends on the value converted,
style e is used only if the exponent resulting from the conversion
is less than -4 Or greater than the precision . Trailing zerOS are
removed from the result. A decimal point appears only if it is
followed by a digit.

The character arg parameter is printed.

The arg parameter is taken to be a string (character pointer) and
characters from the string are printed until a null character (\ 0) is
encountered or the number of characters indicated by the precision
specification is reached. If the preCision is missing, it is taken to be
infinite, with the result that all characters up to the first null
character are printed. If the string pointer a rg parameter has the
value zero, the result is undefined; a zerO arg parameter yields
undefined results.

Print a %; no parameter is convened.

In no case does a nonexistent or small field width cause truncation of a fie ld. If the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by printf and fprintf are
printed as if putc had been called.

prinlf 45

Examples To print a date and time in the form ·Sunday, July 3, 10:02", where weekday and
month are pointers to null~term.inated strings, use this:

printf("%s, %s %d, %.2d:%,2d", weekdt3Y , month, day, ho ur , min) ;

To print pi to five decimal places, use this:

print f ("pi %.5f", pi C») ;

Nole CaWng sprintf causes other Standard I/ O functions to be loaded, even though
spr inti doesn't perform any I/O.

See also dec2str. ecvt, num2dec, putc, scanf, stdio

46 plintf

Synopsis

Description

putc-put character or word on a stream

linclude <STDla . H>

i nt pute (c, s tre am)

c ha r c;

FILE *stre am;
i nt p utchar (c)

char c ;

tnt fputc(c, stream)
c ha r c;
FILE *s tre am;

i nt putW(w, stream)

i nt W;
FILE ·stream;

Macro pute writes the character e to the output stream at the current position of
the file pointer. Macro putehar (el is equivalent to

pute (c, s td ou t)

Function fpute behaves like macro pute. Function fpute runs more slowly
than macro put e but takes less space per invocation.

Function putw writes an int (that is, two bytes) to the output stream at the current
position of the file pointer. This function neither assumes nor causes spedal
alignment in the file.

For information about buffering of output files, see the stdio page.

Return values When pute, putehar, fpute, or putw succeeds, it returns the value they have
written. When One of these fails, it returns the constant EOF. nus occurs if the file
stream is not open for writing or if the output me cannot be grown. When putw
succeeds, it returns 0; when it fails, it returns a nonzero value.

Note Because it is implemented as a macro, pute treats a stream parameter with side
effects incorrectly. In particular,

p ute (e , *f++)

produces unexpected results. Instead, use

fpu t e (e, *f++)

See also fclose, ferror, fopen, frea~getc.printf.puts, setbuf, stdio

putc 47

Synopsis

Description

Return value

Note

See also

48 puts

puts-write a string to a stream

iinclude <STDIO. H>

lnt put s (s t r)
c har * st r ;

int f p ut s (s t r , stream)

c har * s t r;
FILE *st re am ;

Function puts writes the null-terminated string pointed to by str, followed by a
newline character, to the standard output stream std out .

Function fputs writes the null-terminated string pointed to by s t r to the named
output stream s t ream.

Neither function writes the terminating null characte r.

Both routines return me number of characters written, or return EOF if there is a
write error.

Function puts appends a newline character, while fputs does not.

ferro r, fopen, fre ad,pr i ntf,putc , s tdio

Synopsis

Description

Note

qsort-quicker sort

void qsort (base, nelem, elsize, compar)

char "base;
unsigned int nelem, elsize;
1nt (*compar) () ;

Function qsort is an implementation of the quicker-sort algorithm. It sorts a table
of data in place.

Parameter base points [0 the element at the base of the table. Parameter ne lem is
the number of elements in the table. Parameter elsize is the size of an element in
the table; it can be specified as sizeof (*base) .

Parameter compar is a pointer to a comparison function that you supply. Function
qsort calls your comparison function with pointers to two elements being
compared. Here is a sample declaration for your comparison function:

int myCompare (eleml, e1em2)
c har *eleml. "'elem2;

Your comparison function supplies the result of the comparison to qsort by
returrting one of the following integer values:

Result

<0
o

>0

Meaning

The first parameter is less than the second parameter.
The first parameter is equal La the second parameter.
The first parameter is greater than the second parameter.

Parameter base, the pointer to the base of the table, should be of the pointer-to
element type and cast to (char *).

qsort 49

Synopsis

Description

See also

50 rand

rand-a simple random-number generator

int rand ()

v o id srand (seed)
unsign e d seed;

Function rand uses a multiplicative congruential random-number generator with
period 232 that returns successive pseudorandom numbers in the range from 0 to
215_l.

Function srand can be called at any time to reset the random-number generator to

a specific seed. The generator is initially seeded with a value of 1. Identical seeds
produce identical sequences of pseudorandom numbers.

Random, randomx in the Apple Numerics Manual

Synopsis

Description

Return value

See also

read-read from file

int read(fildes, but. nby-r. e)
int t ildes;
char *bu t;
unsigned nbyte;

File descriptor fildes is obtained from a call to open, creat, dup, or
fcntl.

Function read transfers up to nbyte bytes from the file associated with fildes
into the buffer pointed to by buf.

On devices capable of seeking, read startS reading at the current position of the file
pointer assOciated with fildes . Upon return from read, the file pointer is
incremented by the number of bytes actually read.

Nonseeking devices always read from the current position. The value of a file pointer
associated with such a me is undefined.

Upon successful completion, read returns the number of bytes actually read and
placed in the buffer; this number may be less than nbyte if the number of bytes left
in the file is less than nbyte bytes. A value of 0 is returned when the end-of-file has
been reached, or -1 if a read errOr occurred.

Function read fails if fildes is not a valid file descriptor open for reading.
[EBADF)

File descriptor 0 is opened by the AFW Shell as the standard input.

Upon successful completion, a nonnegative integer is returned indicating the number
of bytes actually read. Otherwise, -1 is rerurned and errno is set to indicate the
error .

creat, open

read 51

Synopsis

Description

52 scant

scanf-convert formatted input

i i nclude <STOIO.H>

lnt scan f (f o rmat [, po inter] ...)
c har ·format;

lnt f scanf (strea m, fo rmat [, p o inter
FILE · s tre am;
char *f o rmat;

. . . I

l nt s scanf (s t r, f o rmat (, po int er J '")
c har · s tr, -fo rmat;

Function scanf reads characters from tile standard input stream s tdin . Functio n
fscanf reads characters from the named input stream stream. Function s s can f
reads characters from the character string s tr. Each function converts the input
according to a control string (format) and stores the results according to a set of
pointer parameters that indicate where the converted output should be stored.

Parameter format, the control string, contains specifications that control the
interpretation of input sequences. The form at consists of characters to be matched in
the input stream and/or conversion specifications that start with the character %. The
control string may contain

o White-space characters (spaces and tabs) that cause input to be read up to the next
non-white-space character, except as described below.

o A character (any except %) that must match the next character of the input stream.
To match a % character in the input stream, use %%.

o Conversion specifications beginning with the character % and followed by an
optional assignment suppression character *. an optional numeric maximum
field width, an optional 1, m, n, or h indicating the size of the receiving
parameter, and a conversion code.

An input field is defined relative to its conversion specification. The input field ends
when the first character inappropriate for conversion is encountered or when the
specified field width is exhausted. After conversion, the input pointer points to the
inappropriate character.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding parameter, which is a pointer
to a basic C type such as int or float.

Assignment can be suppressed by preceding a format character with the character *
Assignment suppression means an input field is skipped; the field is read and
converted but not assigned. Therefore, pointer should be omitted when
assignment of the corresponding input field is suppressed.

The format character dictates the interpretation of ule input field. The following
format characters are legal in a conversion specification, after %:

%

d

u

o

x

e, f,9

s

c

A single % is expected in the input at this point. No assignment is
done.

A decimal integer is expected. The corresponding parameter
should be an integer pointer.

An unsigned decimal integer is expected. The corresponding
parameter should be an unsigned integer pointer.

An octal integer is expected. The corresponding parameter should
be an integer pointer.

A hexadecimal integer is expected. The corresponding parameter
should be an integer pointer.

The conversion characters d, u, 0, and x may be preceded by
1 or h to indicate that a pointer to long or short, rather than
int, is in the parameter list. The h is ignored in this
implementation because int and short are both 16 bits.

A floating-point number is expected. The next field is converted
accordingly and stored through the corresponding parameter,
wruch should be a pointer to afloat, double, comp, or
extended, depending on the size specification. The input format
for floating-point numbers is an optionally signed string of digits,
possibly containing a decimal point, followed by an optional
exponent field consisting of E or e followed by an optionally
signed integer. In addition, infinity is represented by the string
"INF', and NaNs are represented by the string "NAN', optionally
followed by parentheses that may contain a string of digits (the NaN
code). Case is ignored in the infinity and NaN strings.

The conversion characters e, f, and g may be preceded by 1,
m, or n to indicate that a pointer to double, comp, or
extended, rather than float, is in the parameter list.

A character string is expected. The corresponding parameter
should bea character pointer to an array of characters large enough
to accept the string; a terminating null character (\ 0) is added
automatically. The input field is terminated by a white-space
character (space or tab), or when the number of characters
specified by the maximum field width has been read.

A character is expected; the corresponding parameter should be a
character pointer. The normal skip over white space is suppressed
in this case; use %ls to read the next non-white-space character.
If a field width is given, the corresponding parameter should refer
to a character array; the indicated number of characters js read.

scant 53

Examples

54 scanl

1\

1

The left bracket introduces a scanset format The input field is the
maximal sequence of input characters consisting entirely of
characters in the scanset. When reading the input field, string data
and the normal skip over leading white space are suppressed. The
corresponding pointer parameter must point to a character array
large enough to hold the input field and the terminating null
charaner (\ 0), which will be added automatically. The left brackct
is followed by a set of characters (the scanset) and a termin.ling
right bracket.

When it appears as the first character in the scanset, the circumflex
serves as a complement operator and redefines the scanset as the
set of all characters not contained in the remainder of the scanSCl
string.

The right bracket ends the scanset. To be included as an element of
the scanset, the right bracket must appear as the first character
(possibly preceded by a circumflex) of the scanset. Otherwise, it
will be interpreted syntactically as the closing bracket.

A range of characters may be represented by the conslIUctjlTSl-lasl;
thus the scanset [0123456789J may be expressed [0-9J. To
use this convention, first must be less than or equal to last in
the ASCII collating sequence. Otherwise, the minus (-) will stand
for itself in the scanset. The minus will also stand for itself whenever
it is the first or the last charaner in the scanset.

Conversion terminates at the end of file, at the end of the control string, or when an
input character doesn't match the control string. In the last case, the unmatched
character is left unread in the input stream.

Here are some ways the scanf function can be used:

E:xample1

The call

int i;
float Xi

char name [SO);

scanf ("%d\ f t -s", &1, &X, name);

with input

25 5 4 . 32 E-1 reed

will assign the value 25 to i and the value 5.432 to X; name will contain 'reed\O".

E:xample2

The call

Return value

Note

Warning

See also

int i;
extended x;
char name (50);

scanf("\2d%nf*d %[0-9]", &i, 'x, name);

with input

567B9 0123 56072

will assign 56 to i and 7WY.0 to x, skip 0123, and place the string "56 \0 " in name.
The next call to getchar will return "a" .

Example 3

The call

int i:
scanf ("answerl==%d", &i);

with input

answerl~51 answer2==45

will assign the value 51 to i because "answerl" is matched explicitly in the input
stream. The input pointer will be left at the space before "answer2".

Functions scanf, fscanf, and sscanf return the number of successfully
matched and assigned input items. This number can be zero when an early mismatch
between an input character and the control string occurs. If the input ends before the
first mismatch or conversion, EOF is returned.

These functions return EOF on end of input and a short count for missing or illegal
data items.

Trailing white space is left unread unless matched in the control string.

The success of literal matches and suppressed assignments is not direcUy
determina ble.

The pointer parameters in these functions must be addresses: for example, & i.
Be sure not to pass i rather than its address.

atof, getc, printf, stdio, strtol

dec2num, str2dec in the Apple Numerics Manual

scan! 55

Synopsis

Description

56 setbuf

setbuf-assign buffering to a stream

tinel ude <STDIO. H>

void setbuf (st ream, but)
FILE *stream;
char *but;

int setvbuf(stream, buf, type, size)
FILE *st ream;
char "'buf;
i nt type:
int s ize ;

A buffer is normally allocated by the Standard C Library at the time of the first gete
or pute on a fIle. If you prefer to provide your own buffer, you can call setbuf or
set vbuf after a stream has been associated with an open fIle but before it is read or
written. Functions setbuf and setvbuf let you provide your own buffering for a fIle
sU"eam. Function setvbuf is a more flexible extension of setbuf.

Function setbuf causes the character array pointed to by buf to be used instead of
an automatically allocated buffer. BUFSI Z, a constant defined in the <StdIO.h>
header fIle, lets you specify the size of the buf array as

char but [BUFSI Z];

If buf is NULL, input/output is unbuffered.

Function setvbuf lets you specify two parameters in addition to those required by
setbuf: size and type. Parameter size specifies the size in bytes of the array to be
used; the standard VO functions work most efficiently when size is a multiple of
BUFSIZ. If buffer pointer buf is NULL, a buffer of size bytes is allocated from the
sys(em. If size is not. zero, size is assigned to the FILE variable's size paramcler; if
buf is not NULL, buf is assigned to the FILE variable's bulTer-pointer parameter.
The value of type determines how stream is buffered by setvbuf, as follows:

Value of type

_IOFBF

IOLBF

ORSCrlptlon

Causes input/output to be file buffered.

Causes output to he line buffered. The buffer is flushed when a
newline character is written or when the buffer is full.

Causes input/output to be unbuffered. Parameters buf and size are
ignored.

The following function calls are equivalent when buf is not NULL:

setbuf (stream, but);
setvbuf (st r~am, buf, lOFBF, BOFSIZ);

Diagnostics

Note

See also

The following function calls are equivalent when buf is NULL,

se tbuf (st ream, NOLL;

setvbuf{ s tream, NULL , IONBF, BOFSIZ);

Function setvbuf returns nonzero if an invalid value is given for type.

The buffer must have a lifetime at least as great as the open stream. Be sure to close the
stream before the buffer is deallocated. If you allocate buffer space as an automatic
variable in a code block, be sure to close the stream in the same block.

If buf is NULL and the system Cannot allocate size bytes, a smaller buffer will be
allocated.

fopen,getc,malloc, putc, stdio

setbuf 57

Synopsis

Description

setjmp-nonlocal transfer of control

i i nclude <SETJHP. H>

l nt set j mp (env)
jmp _but env;

v o id l o ng j mp (env. v a l)
j mp_buf e nv;
ln t va l ;

These functions let you escape from an error or interrupt encountered in a low-level
subroutine of your program.

Function set jmp saves its stack. environment in env for later use by longjrnp. It
returns the value 0.

Function longjrnp restores the environment saved by the last call of setjrnp with the
corresponding env environment. After a call to longjrnp, the program continues as
if the preceding call to set jrnp had returned the value val.

Function longjrnp cannot cause set jrnp to return the value 0. If l ongjrnp is invoked
with a second parameter of 0, set jrnp returns 1. Data values will be those in effect at
the time longjrnp was called, except for register variables (see "Warning").

Warning If longjrnp is called without a previous call to . etjrnp or if the function that
contained the set jrnp has already returned, results are unpredictable.

See also signal

58 setjmp

Synopsis

Description

Diagnostics

See also

sinh-hyperbolic functions

t i nclude <MATH. H>

exte nded s inh (xl
ext e nded Xi

ext ended c osh (x)

extended x;
e xtended tanh (xl

extende d X i

Functions sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine,
and tangent of their parameter.

Functions sinh, cosh, and tanh honor the floating-point exception flags-invalid
operation, underflow, overflow, divide by zero, and inexact-as prescribed by
SANE.

Apple Numerics Manual

sIrI1 59

Synopsis

Description

60 stdio

stdio-standard buffered input/output package

tinclude <STDIO.H>
t include <S TRING. H>

FILE Ws tdin , *stdout. *stderr;

The Standard I/O Package constitutes an efficient use r-level 1/0 buffering scheme.
The inline macros getc and putc handle cha(,acters quickly. Macros get char and
putehar, and the higher-level routines fget c, fgets, fprintf, fput e, fput s,
fread, fscanf, fwrite. gets, getw, printf, puts, putw, and s canf all use
get e and pute. Calls to these macros and functions can be freely intermixed.

The constants and the following functions are implemented as macros, gete,
getchar, putc, put char, feof, ferror, clearerr,andfileno.
Redeclaration of these names should be avoided.

Any program that uses the Standard 1/0 Package must include the <StdIO. h> header
file of macro definitions. The functions, macros, and constants used in the Standard
I/O package are declared in the header file and need no further declaration.

A stream is a file with associated buffering and is declared to be a pointer to a FILE
variable. Functions fopen, freopen, and fdopen return this pointer. The
information in the FILE variable includes

o the file access-read or write

o the me descriptor as returned by open, ereat, dup, orfentl

o the buffer size and location

o the buffer style (unbuffered, line-buffered, or me-buffered)

Standard I/O buffering

Output streams, with the exception of the standard error stream stderr, are by
default me buffered if the output refers to a me. File stderr is by default line
buffered. When an output stream is unbuffered, it is queued for writing on the
destination me or window as soon as written; when it is file buffered, many characters
are saved up and wrinen as a block; when it is line buffered, each line of output is
queued for writing as soon as the line is completed (that is, as soon as a newline
character is written). Function setvbuf may be used to change the stream's buffering
strategy.

Normally, there are three open streams with constant pointers declared in the
<STDID. H> header me and associated with the standard open mes:

FILE variable Fildes DescrIption Buffar style

stdin
stdout
stderr

o
1

2

Buffer Initialization

standard input file
standard output file
standard error file

line buffered
file buffered
line buffered

The FILE variable returned by fopen, freopen, or fdopen has an initial buffer size
of 0 and a NULL buffer pointer. The buffer size is set and the buffer allocated by a call
LO setbuf, setvbuf, or the fics(I/O operation on the stream, whichever comes
first. Buffer initialization is done using the following algorithm:

1. If _IONBF (no buffering) was set by a call to setvbuf, initialization steps 2 and 3
are skipped. The buffer size remains 0 and the buffer pointer remains NULL.

2. Checks the access-mode word for _ IOLBF (line buffering). This bit is usually set
only in the predefined file stderr, but a call to setvbuf can set it for any file. If
line buffering is se~ the buffer size is set to LBUFSIZ (100). If line buffering is not
set, ioctl is called with an FIOBUFSIZE request and the buffer size is set to the
returned value or to BUFSIZ (1024) if no value is returned.

3. If the buffer pointer is NULL, a request is made for a buffer whose size was
determined in step 2; the buffer pointer is set to point to the newly allocated
buffer. If the requested size cannot be allocated, attempts are made to allocate
BUFSIZ or LBUFSIZ if these are smaller than the requested size. If all requests
fall, the buffer pointer remains NULL and the _ IONBF (no buffering) bit is set.

4. Function ioctl is called with an FIOINTERACTlVE request; if it returns true,
the _IOSYNC bit is set in the access-mode word. This is done for all FILE
variables, regardless of their buffering style and size. (The _ IOSYNC bit is
described in the following section.)

The set vbuf function lets you specify values for buffer size, buffer pOinter, and
access mode word other than the default values of 0, NULL, and 0, respectively. The
setvbuf function must be called before the first VO operation occurs, so that the
buffer initialization procedure described above receives the values you specify instead
of the default values.

Buffered I/O

On each write request, the bytes are transferred to the buffer and an internal counter is
set to account for the number of bytes in the buffer. If _ IOLBF is set and a newline
character is encountered while transferring bytes to the buffer, the buffer is flushed
(written immediately) and the transfer continues at the beginning of the buffer. This
continues until the write-request count is satisfied or a write en:or OCOlCS.

sldlo 61

Note

Diagnostics

See Also

62 sldio

On each read request, the _IOSYNC bit in the access-mode word is checked. If
_IOSYNC is on, all current FILE variables that have _IOSYNC on and are open for
writing are flushed. In other words, a read from an interactive FILE variable flushes
all interactive output files before reading. This ensures that any prompts, 110 in a
window, or other visual feedback is displayed before the read is initiated. Then if the
internal counter is 0, an entire buffer is read into memory if possible. (For the
console device, less than a buffer's worth is likely to be read.) The bytes required to
satisfy the read request are transferred, going back to the device for more if necessary,
and an internal pointer is advanced if any bytes remain unread.

When the Standard I/O Package is used, Standard I/O cleanup is performed just
before termination of the application. Any normal return including a call to exit
causes Standard I/O cleanup, which consists of a call to fclose for every open FILE
stream,

Do not use a file descriptor (0, I, or 2) where a FILE variable (stdin, stdout, or
stderr) is required.

File <StdIO. h> includes defirtitions other than those described above, but their use
is not recommended.

Invalid stream pointers cause serious errors, possibly including program
termination. Individual function descriptions describe the possible error conditions.

An integer constant EOF (-1) is returned upon end of me or error by most integer
functions that deal with streams. See the descriptions of the individual functions for
details.

open, close, lseek, read,write, felase , ferror, fopen, fread, fseek.
getc,gets,printf,putc,puts, scanf, setbuf,ungetc

Synopsis

Description

string-string operations

iinclude <S TRI NG .H>

char *strcat (des tStr, srcStr)

char *destStr , ·srcStr;
char '*str ncat (destSt r , sr cStr, n)

char *dest St r , *srcStr;
int n;

int strcmp(st r l , str21

c har "'str l , *str2:
int strncmp (st r l , st r2, n)

char *s trl, *str2;
i n t n ;

c har * s tr c py (destStr, srcStr)

char *destSt r , * srcStr;

c har *strncpy(destStr , srcSt r , n)
char -dest Str, *srcStr;
i nt n:

i nt strlen (str)

char "str;
char ·st rchr (sL r, c)

char *str , C;

char *str rchr (str , c)
c har *str, c;

c h ar *st rpbrk (srcSt r , findChars)
char srcStr , "' f indChar s ;

i nt strspn(s r cStr, spanCh ars)
char * s r cSt r , *spanCharsi

int strcspn(srcStr, sl< i pC hars)
char *s rcSt r, *skipChars ;

c har ·strtok (de s tStr, tokenStr)

cha r *destStr, *t o:ke nstr ;

The string parameters (s rcStr, destStr, and so forth) and s point to arrays or
characters terminated by a null character. The functions st rcat, strncat,
strcpy, and strncpy all alter des tStr. These functions do not check for overflow
of the array pointed to by destStr.

Function st rca t appends a copy of s lIing s rcStr to the end of slIing destStr.
Function st rncat appends ,at most n characters. Ea ch function returns a pointer LO

the null-terminated result.

string 63

Warning

Function strcmp performs a comparison of ilS parameters according to the ASClI
collating sequence and returns an integer less than, equal to, or greater than 0 when
strl is less than, equal to, or greater than str2, respectively. Function strncmp
makes the same comparison but looks at a maximum of n characters.

Function strcpy copies string srcStr to string destStr, stopping after the null
character has been copied. Function strncpy copies exactly n characters,
truncating srcStr or adding null characters to destStr if necessary. The result is
not terminated with a null if the length of srcStr is n or more. Each function returns
destStr.

Function strlen returns the number of characters in str, not including the
terminating null character.

Functions strchr and strrchr both return a pointer to the first and last
occurrence, respectively, of characler c in string strj they return NULL if c docs nm
occur in the string. The null character terminating a string is considered to be part o f
the string. In previous versions of the Standard C Library, st rchr was known as
index and strrchr vr.lS known as rindex.

Function strpbrl< returns a pOinter to the first occurrence in string srcStr of any
character from string findChars, or NULL if no character from findChars exislS in
srcStr.

Function strspn returns the length of the initial segment of string srcStr that
consists entirely of characters from string spanChars.

Function at rcspn returns the length of the initial segment of string srcStr that
consists entirely of characters not from string sl<ipChars.

Function strtol< considers the string destStr as a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string
tol<enStr. The first call (with pointer deatStr specified) returns a pointer to the
first character of the first token and writes a null character into destStr immediately
following the returned token. The function keeps track of its position in the string
between calls. Subsequent calls for the same string must be made with NULL as the first
parameter. The separator string tol<enStr may be different from call to call. When
no token remains in destStr, NULL is returned.

Overlapping moves yield unexpected results.

Functions strcmp and strncmp use signed arithmetic when comparing their
parameters. The sign of the result will be incorrect for characters with values greater
than Ox7F in the Apple IIGS extended character set.

See also Blocl<Move, EqualString, memory

64 string

Synopsis

Description

Note

See Also

strtol-convert a string to a long

iinc lude <ST DLIB.H >

l ong strtol (str, pt r , base)
c har ·sCI:" ;

char ··ptr;
int base;

Function strtol returns a long containing the value represented by the character
string str. The string is scanned up to the first character inconsistent with the base
(decimal, hexadecimal, or octal). Leading white-space characters are ignored.

If the value of ptr is not NULL, a pointer to the character terminating the scan is
returned in *ptr. If no integer can be formed, *ptr is set to str and 0 is returned.

If base is 0, the base is determined from the string. If the first character after an
optional leading sign is not 0, decimal conversion is done; if the 0 is followed by x or
X. hexadecimal conversion is done; otherwise octal conversion is done.

The function call atol (str) is equivalent to

strto l (str, (char) NULL, 1 0)

The function call atoi (str) is equivalent to

(int) strtol (str, (char **)NULL, 10)

Overflow conditions are ignored.

Apple base conventions ($ for hexadecimal, % for binary) are not supported.

atof, atoi , scanf

. strtol 65

Synopsis

Description

Diagnostics

Note

See also

66 trig

trig-trigonometric functions
tinclude <MAT H. H>

extended sin (xl
exte nded Xi

extended c o s (x)
ext ended Xi

ext e nded tan (x)
e xtended Xi

extended a s in (x)
ext ended x;

ext e nded aco s (x)

extended x;
extende d atan (x)

extended x;
extended atan 2 (y, xl

extended y, x;

Functions sin, cos, and tan return, respectively. the sine, cosine, and tangent of
their argument, which is in radians.

Function asin returns lhe arcsine of x, in lhe range -Tt/2 to lr/2.

Function aeDS returns the arccosine of X, in the range 0 to ft.

Function atan returns lhe arctangent of x, in lhe range -n12 to n12.
Function atan2 rerurns lhe arctangent ofy/x, in lhe range -n to It, using lhe signs of
bolh arguments to determine lhe quadrant of lhe rerum value.

For special cases, lhese functions return a NaN or infInity as appropriate.

These functions honor the floating-point exception flags-invalid operation,
underflow, overflow, divide by zero, and inexact-as prescribed by SANE.

Functions sin, cos, and tan have periods based on the nearest extended-precision
representation of mathematicaln. Henoe these functions diverge from their
mathematical counterparts as their argument gets farther from zero.

Apple Numerics Manual

-,

Synopsis

Description

Diagnostics

Note

See also

ungetc-push a character back into the input stream

iincl ude <STDIO . H>

int ungetc (e, stream)
char c;
FILE *streami

Function ungetc inserts the character c (wltich was returned by the last read call) ioto
the buffer associated with an input stream. The stream must be file buffered or line
buffered; it cannot be unbuffered. The inserted character, e, will be returned by the
next gete call on that stream. Function ungete returns e and leaves the file stream
unchanged.

Only one character of pushback is allowed, provided sometlting has been read from
the stream and the stream is not unbuffered.

If e equals EOF, ungete does nothing to the buffer and returns EOF.

Function fseek undoes the effect of ungetc.

For ungetc to perform correctly, a read must have been performed before the call to
the ungetc function. Function ungetc returns EOF if it can't insert the character.

Function ungetc does not work on unbuffered streams.

fseek,getc , setbuf, stdio

ungetc 67

Synopsis

Descrlplion

Diognoslics

See also

68 unlirl<

unlink-delete a named file

int unlink (fileName)

c har *f!leName;

Function unlink deletes the named file. The function fails if the named file is open.

A call to unl ink is equivalent to

faccess(fileName. F_DELETE)

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

faccess

Synopsis

Description

Return value

See also

write-write on a file

i nt rite(f ll des , but. nbyte)

int tilde s;

char *buf;
u nsigned nbyt e;

File descriptor f ildes is obtained from an open, ereat, dup, or f entl call.

Function write attempts to write nbyte bytes from the buffer pointed to by bUf to
the file associated with the fildes. Internal limitations may cause write to write
fewer bytes than requested; the number of bytes actually wcinen is indicated by the
return value. Several calls to write may therefore be necessary to write out the
contents of buf.

On devices capable of seeking, the actual writing of data proceeds from the position
in the file indicated by the file pointer. Upon return from write, the file pointer is
incremented by the number of bytes actually written.

On nonseeking devices, writing starts at the current position. TIle value of a file
pointer assodated wirh such a device is undefined.

If the 0_ APPEND file status flag set in open is on, the file pointer is set to the end of file
before each write.

The file pointer remains unchanged and write fails if fildes is not a valid file
descriptor open for writing. [EBADF]

Ifyau tIy to write more bytes than mere is room for on the device, write writes as
many bytes as possible. For example, if nbyte is 512 and there is room for 20 bytes
more on the device, wr i te writes 20 bytes and returru; a value of 20. TIle nex[attempt
to write a nonzero number of bytes will return an error. IENOSPC]

File descriptor 1 is standard output; file descriptor 2 is standard error.

Upon successful completion, the number of bytes actually wciUen is returned.
Omerwise, -1 is returned and errno is set to indicate me error.

creat,lseek,open

wnte 69

70 write

Chapter 6

Chapter 6
Shell Calls

APWC

The Apple IIGS Progammer's Workshop Shell acts as an interface and extension to
ProDOS 16. The shell provides several functions not provided by ProDOS 16; these
functions are called exactly like ProDOS 16 functions. Every time a program running
under the APW Shell issues a ProDOS 16-like call, the shell intercepts the call. If the call
is a shell call, the shell interprets it and acts on it; if it is a ProDOS 16 call, the shell passes
it on to ProDOS 16. This chapter describes all of the shell's ProDOS 16-like calls, here
referred to as shell calls.

The shell calls that are provided are listed in Table 6-l.

Table 6-1. Shell Calls

Call Name Call

GET LINE INFO ($0101)

SET LINE INFO ($0102)

GET LANG ($0103)

SET LANG (SO 104)

ERROR ($0105)

SET VAR ($0106)

VERSI ON (SOI07)

READ INDEXED ($0108)

INIT WI LDCARD ($0109) -

NEXT WI LDCARD ($010A)

GET VAR ($0 JOB)

EXECUTE (SOlOD)

DIRECTION ($OIOF)

REDIRECT ($0110)

STOP ($0113)

APDADrqfi

Use
Number

Passes parameters from the shell to a program

Passes parameters from a program to the shell

Reads the current language number

Sets the current language number

Prints error message for a Apple llGS tool call

Sets the value of a shell variable

Returns the version number of the APW Shell

Reads variable table

Provides a filename that includes a wildcard character
to the shell

Causes the shell to find the next filename that
matches the wildcard filename

Reads the value of a shell variable

Sends a command or list of commands to the shell
corrunand interpreter

Tells whether I/O redirection has occurred

Sets device and file for I/O redirection

Detects a request for an early termination of the
program

Page 6-1 9 March 1987

APWC

How to make a shell call

To make a shell call, do the following:

• Include the statements

*include <TYPES.H>
iinclude <SHELL.H>

Chapter 6

in your source text. Your object fIle will be automatically linked with the library file
CLIB.

• Set values in the shell data structures and call the shell routines from your program,
following the information given below.

How a program makes a shell call

A C program makes a shell call by calling a function in the file ORCA.C. Most of these
calls are simple C function calls: parameters are passed in the normal way.

Two of these, GET LINE INFO and SET LINE INFO, are called differently. Values
and results are passed via a parameter block. To get liiformation from the shell, your
program declares and initializes this parameter block, then calls GET LINE INFO, then
reads results from the block. To send information to the shell, your program-writes values
into the block, then calls SET LINE INFO to send the information. These calls are
explained in detail in the section "GET_LINE_ INFO and SET_LINE _INFO," below.

With the exception of EXECUTE, all calls expect Pascal-style strings.

Call descriptions

This section lists each of the shell calls, describes its use, and describes the contents of its
parameter block. The possible errors returned by a call are listed at the end of each call
description. The calls are listed in alphabetical order. Table 6-1 lists all of the calls in order
of their call numbers.

DIRECTION (OxOlOF)

DIRECTION (device, direct)
int device, *directi

A program can use this function to find out whether command-line I/O redirection has
occurred. This function can be used by a program to determine whether to send form feeds
to standard output, for example.

The device parameter indicates which type of input or output you are inquiring about,
as follows:

APDADraji Page 6-2 9 March 1987

---"

Chapter 6

OxOOOO
OxOOOI
OxOOO2

Standard input
Standard output
Error output

APWC

The direct parameter indicates the type ofredirection that has occurred. as follows:

OxOOOO
OxOOO!
OxOO02

Console
Printer
Diskftle

Possible Errors

OxS3 Parameter out of range

ERROR (OxOlOS)

int error ()

When a Apple llGS tool call returns an error, your program can use this function to print
out the name of the tool and the appropriate error message. This function makes it
unnecessary for your program to store a complete table of error messages for tool calls.
The error number is returned in _ t oo lErr.

Possible Errors

None

EXECUTE (OxOlOD)

EXECUTE (flag , co~.)

int flag;
char *comm;

This function sends a command or list of commands to the APW shell.

The f lag parameter is used to execute an Exec ftle with an EXECUTE command; if no new
variable table is defined, then variables defmed by the list of commands modify the current
variable table. If you set the most significant bit of this flag to ! (binary). then a new
variable table is not defined when the commands are executed. If this flag is set to OxOOOO.
a new variable table is defined for the list of commands being executed; the current variable
table is not modified. Exec files. variables, and the EXECUTE command are described in
the section "Exec Files" in Chapter 4 of the APW Reference.

The corrun parameter is the address of the buffer in which you place the commands. If
you include more than one conmland. separate the commands with semicolons (;) or
carriage return characters (OxOD). The command string is a C string: it has no length byte
and is terminated with a null character (OxOO). Any output is sent to standard output.

If the shell variable {Exit} is not null and any command returns a non-zero error code,
then any remaining commands are ignored. Error codes and shell variables are described in
the section "Exec Files" in Chapter 3 of the APW Reference.

APDADraji Page 6-3 9 March 1987

APWC Chapter 6

Possible Errors

Any error returned from the last command or program executed by the list of commands
executed.

GET LANG (OxOl03)

This function reads the current language number. The current language number is set by
the APW Editor when it opens an existing ftle, or by the user with an APW shell
command. Language numbers are described in the section "Command Types and the
Command Table" in Chapter 4 of the APW Reference, and are listed in Appendix A of the
APW Reference.

Possible Errors

None

GET_LINE_INFO(pb)
GetLinfoPB 'pb;

SET_LINE_INFO(pb)
GetLinfoPB 'pb;

The GET LINE INFO function is used by an assembler, compiler, linker, or editor to
read the parameiers that are passed to it. When you make this call, you declare the
parameter block GetLinfoPB; when the APW Shell returns control to your program,
you can then read the parameter block to obtain the information you need.

Use the GET LINE INFO call to read parameters passed to your assembler, compiler,
linker, or eduor. -

The SET _ L INE_ INFO function is used by an assembler, compiler, linker, or editorlo
pass parameters to the APW Shell before returning control to the shell. It can also be used
by a shell program under which you are running APW to pass parameters to the APW
Shell.

Use the SET_LINE _INFO call when your program is finished before returning control to
the shell.

Both of these calls use the following parameter block:

GetLlnfoPB ,. get ' set Line Info parameter blo ck .,
typedef struct { ,. unsigned char id i .,

char *sfile; ,. address of source file name *' char *dfilei ,. address of output file name .,
char *parms; ,. address of parameter list .,
char *istring; ,. address of language-specific input string *'

APDADraft Page 64 9 March 1987

Chapter 6 APW C

c har mer r i / * max i mum erro r l eve l al l owed * /
cha r me rrf; / * ma ximum e rr o r l e vel fou nd * /
c ha r l op s ; / * ope ration s fl ag * /
c har kfl a g; /* KEEP fl a g * /
uns igne d l ong mflagSi / * s e t o f lette r s s e l e c t ed with I_I * /
unsigned l ong pflag s; /* set o f l e tters s e lec ted with ' + ' * /

GetLlnfoPB;

To call GET LINE INFO, first declare the parameter block GetLInfoPB. The
GET LINE -INFO - call passes to the shell the pointer, pb, to your parameter block.
The shell then writes its results into your parameter block: you can read them from there.

To call SET LINE INFO, first declare the parameter block GetLlnfoPB, then write
your values mto that block. The GET_LINE_I NFO call passes to the shell the pointer,
pb, to your parameter block. The shell then reads your values from the parameter block.

The sf i le (source file) field is the address of a buffer containing the filename of the
source file; that is, the next file that a compiler or assembler is to process. The filename can
be any valid ProDOS 16 filename, and can be a partial or full pathname.

The df i l e (destination file) field is the address of a buffer containing the filename of the
output file (if any); that is, the file that the compiler or assembler writes to. The filename
can be any valid ProDOS 16 filename, and can be a partial or full pathname.

The parms field is the address of a buffer containing the list of names from the NAMES=
parameter list in the APW Shell command that called the assembler or compiler. The
compiler can remove or modify these names as it processes them, so this list can be
different from the one received through the Get LInfo call..

The i s t r ing field is a placeholder for the address of a buffer containing the string of
commands passed to the compiler. This command string is not reused by the shell, so it is
not necessary to pass it back to the shell with the SET _LINE_I NFO call.

The me r r field is the maximum error level allowed. If the maximum error level found by
the assembler, compiler, or linker is greater than me r r, then the shell does not call the next
program in the processing sequence. For example, if you use the ASML command to
assemble and link a program, but the assembler finds an error level of 8 when merr equals
2, then the linker is not called when the assembly is complete.

The me rr f field is the maximum error level found. If merr f is greater than me r r, then
no further processing is done by the shell. If the high bit of me r r f is set, then me r r f is
considered to be negative; a negative value of merr f indicates a fatal error (normally, all
fatal errors are flagged as mer r f=OxFF). In this case, processing terminates irnmediately
and control is passed by the shell to the APW Editor. See also the discussion of the o r g
field.

The l ops field comprises the operation flags. This field is used to keep track of the
operations that have been performed, and remain to be performed, by the system,. The
format of this byte is as follows:

APDADraji

Bit: 17
Value: 0

Page 6-5 9 March 1987

APWC

where C = Compile
L=Link
E = Execute

Chapter 6

When a bit is set (1), the indicated operation is to be done. When a compiler finishes its
operation and returns control to the shell, it clears bit 0 unless a file with another language
is appended to the source. When a linker returns control to the shell, it clears bit I. When
you execute the APW Linker by compiling a LinkEd flle, the linker clears bits 0 and I.

The kf lag field is the keep flag. This flag indicates what should be done with the output
of a compiler, assembler, or linker, as follows:

Kflaq
Value

OxOO

OxOl

Meaning

Do not save output.

Save to an object file with the root fllename pointed to by dfile. For
example, if the output filename pointed to by dfile is PROG, then the first
segment to be executed should be put in PROG or PROG. ROOT and the
remaining segments should be put in PROG. A. For linkers, save to a load
file with the name pointed to by dfile (for example, PROG). A compiler
or assembler will never set kf lag to OxOI, but a shell program calling
APW might use this value.

Ox02 The . ROOT flle has already been created. In this case, the fust file created
by the next compiler or assembler should end in the . A extension.

Ox03 A t least one alphabetic suffix has been used. In this case, the compiler or
assembler must search the directory for the highest alphabetic suffix that has
been used, and then use the next one. For example, if PROG . ROOT,
PROG. A, and PROG. B already exist, the compiler should put its output in
PROG.C.

When the compiler or assembler passes control back to the shell, it should reset kf lag to
indicate which object files it has written; for example, if it found only one segment and
created a . ROOT file but no . A file, then kf lag should be OX02 in the SET LINE INFO
call. See the section "Compilers and Assemblers" in Chapter 8 of the APW Reference for
more information on object-file naming conventions.

The mf lags (minus flags) field passes the flags with a minus sign. This field passes
command-line-option flags such as -Lor -c. The fust 26 bits of these four bytes
represent the letters A-Z, arranged with A as the most significant bit of the most significant
byte; the bytes are ordered least significant byte first. The bit map is as follows:

11000000 11111111 11111111 11111111
YZ QRSTUVWX IJKLMNOP ABCDEFGH

For each flag set with a minus sign in the command, the corresponding bit in this field is
set to 1. See the discussions of the ALINK and ASML commands in Chapter 4 of theAPW
Reference for descriptions of these option flags.

APDADrqft Page 6-6 9 March 1987

' -_ .

Chapter 6 APWC

The pf lags (plus flags) field passes the flags with a plus sign. This field passes
corrunand-line-option flags such as +L or +C. The first 26 bits of these four bytes
represent the letters A-Z; the bit map for this field is the same as for the mf lags field . See
the discussions of the ALINK and ASML corrunands in Chapter 4 of the APW Reference for
descriptions of these option flags.

Possible Errors

None

INIT WILDCARD (OxOl09)

INIT_WILDCARD (file, flags)
char *file ;
int f l ags

This function provides to the APW Shell a filename that can include a wildcard character.
The shell can then search for fIlenames matching the ftIename you specified when it
receives a NEXT WILDCARD corrunand. This function accepts any filename, whether it
includes a wildcard or not, and expands device names (such as . Dl/), prefix numbers,
and the double-period (..) before the filename is passed on to ProD OS 16. Therefore,
you should call this function every time you want to search for a filename. Doing so will
assure that your routine supports all of the conventions for partial pathnames that the user
expects from APW.

The f i 1 e parameter is the address of a buffer containing a pathname or partial pathname
that can include a wildcard character. Examples of such pathnames are:

A=
/ APW/ MYPROGS/ ? ROOT
.D 2 /HELLO

Important: The file parameter must be all uppercase, or the file will not be found .

When you execute a NEXT_ WILDCARD call, the shell finds the next filename that matches
the filename pointed to by file. If the wildcard character you specified was a question
mark (?), then the filename is written to standard output and you are prompted for
confmnation before the file is acted on or the next filename is found. The use of wildcard
characters is described in the section "Using Wildcard Characters" in Chapter 2 of the APW
Reference.

The f lags parameter contains the prompting flags. If the most significant bit is set,
prompting is not allowed; that is a question mark (?) is treated as if it were an equal sign
(=). lfthe next-most significant bit is set and prompting is being used, only the first choice
accepted by the user (that is, the first choice for which the user types a Y in response to the
prompt) is acted on. The second flag is for use with commands that can act on only one
file, such as RENAME or ED I T.

Possible Errors

APDADraji Page 6-7 9 March 1987

APWC Chapter 6

Errors for the following ProDOS 16 and Memory Manager calls. Use the ERROR
function to get the error message. See the Apple IIes ProD OS 16 Reference
manual and the Apple lIeS Toolbox Reference manual for descriptions of these
errors.

NEXT WILDCARD (OxOlOA)

char *NEXT_WILDCARD(nextfile)
char *nextfile;

Once a filename that includes a wildcard has been suppled to the shell with an
INIT WILDCARD call, the NEXT WILDCARD call causes the shell to find the next
filename that matches the wildcard-filename. For example, if the wildcard filename
specified in INIT WILDCARD were / APW/UTILITIES/XREF.?, then the first
filename returned by the shell in response to a NEXT_WILDCARD call might be
/ APW/ UTILITIES / XREF.ASM65816.

The next file parameter is the address of the buffer to which the shell has returned the
next filename that matches a wildcard filename. The wildcard filename is the last one
specified with an INIT WILDCARD call. If there are no more matching filenames, or if
INIT _WILDCARD has not been called, then the shell returns a null string (that is, a string
with length zero). See also the description of INIT _WILDCARD.

Possible Errors

None

GET V AR (OxOlOB)

GET_VAR(varname, value)
char *varname, *value;

This function reads the string associated with a variable (that is, the value of the variable).
The value returned is the one valid for the cllITendy-executing Exec file, or for the
interactive command interpreter. Variables and Exec files are described in the section "Exec
Files" in Chapter 4 of the APW Reference. Use the SET VAR call to set the value of a
variable. -

The varname parameter is a pointer to a buffer that contains the name of the variable
whose value you wish to read. The variable name consists of a length byte and a string of
up to 255 ASCII characters.

The value parameter is a pointer to a 256-byte buffer into which the shell places the value
of the variable. The value consists of a length byte and a string of ASCII characters. The
value consists of a null string (that is, the length byte is OxOO) for an undefined variable.

Possible Errors

None

APDADraft Page 6-8 9 March 1987

Chapter 6 APWC

READ INDEXED (OxOl08)

READ_INDEXED (varname, value, index)
char *varname, *valuei
int i ndex;

You can use this function to read the contents of the variable table for the command level at
which the call is made. To read the entire contents of the variable table, you must repeat
this call, incrementing the index number by 1 each time, until the entire contents have been
returned.

The varname parameter is a pointer to a 256-byte buffer in which the shell places the
name of the next variable in the variable table. The variable name consists of a length byte
and a string of ASCII characters. A null string is returned when the index number exceeds
the number of variables in the variable table.

The value parameter is a pointer to a 256-byte buffer into which the shell places the value
of the variable. The value consists of a length byte and a string of ASCII characters. The
value consists of a null string (that is, the length byte is OxOO) for an undefined variable.

The index parameter is an index number that you provide. Start with OxOl and increment
the number by 1 with each successive READ INDEXED call until there are no more values
in the variable table.

Possible Errors

Errors for the following Memory Manager calls. See the Apple lIGS Toolbox
Reference manual for descriptions of these errors.

LOCK
UNLOCK

REDIRECT (OxOllO)

REDIRECT (device, app, file)
int device, apPi
char *filei

This function instructs the shell to redirect input or output to the printer, console, or a disk
file.

The device parameter indicates which type of input or output you wish to redirect, as
follows:

OxOOOO
OxOOOl
Ox0002

Standard input
Standard output
Error output

The app flag indicates whether redirected output should be appended to an existing file
with the same filename, or the existing file should be deleted first. If append is 0, the file
is deleted , if it is any other value, the output is appended to the file.

APDADrajr Page 6-9 9 March 1987

APWC Chapter 6

The f He parameter is the address of a 65-byte-long buffer containing the fllename of the
file to or from which output is to be redirected. The fllename can be any valid ProD OS 16
filename, a partial or full pathname, or the device names .PRINTER or .CONSOLE.

Possible Errors

Ox53 Parameter out of range

Errors for the following ProDOS 16 calls. See the Apple JIGS ProDOS 16
Reference manual and the Apple JIGS Toolbox Reference manual for descriptions
of these errors.

OPEN
CLOSE
GET3AR
WRITE
GET_EOF

SET_ VAR (OxOl06)

SET_VAR(varname, value)
char *varname, *value;

This function sets the value of a variable. If the variable has not been previously defmed,
this function defines it. Variables are described in the section "Exec Files" in Chapter 4 of
the APW Reference. Use the GET _ V AR call to read the current value of a variable and the
READ INDEXED call to read a variable table.

The varname parameter is a pointer to a buffer in which you place the name of the
variable whose value you wish to change. The name is an ASCII string.

The va 1 ue parameter is a pointer to a buffer in which you place the value to which the
variable is to be set. The value is an ASCII string.

Possible Errors

Errors for the following Memory Manager calls. See the Apple JIGS Toolbox
Reference manual for descriptions of these errors.

Lock
Unlock
Grow
New

SET LANG (OxOl04)

SET_LANG (lang)
int lang;

APDADraji Page 6-10 9 March 1987

Chapter 6 APWC

This function sets the current language number. Language numbers are described in the
section "Command Types and the Command Table" in Chapter 4 of the APW Reference,
and are listed in Appendix A of the APW Reference.

The lang parameter is the APW language number to which the current APW language
should be set. If the language specified is not installed (that is, not listed in the command
table), then the "language not available" error is returned ..

Possible Errors

Ox80 Language not available

STOP (Ox0113)

int STOP();

This function lets your application detect a request for an early termination of the program.
The S TOP flag is set when the keyboard buffer is read after the user presses cJ-. (A pple·
period).

The STOP flag is set (OxOOOI) by the shell when it finds an cJ" in the keyboard buffer.
When a APW utility reads from the keyboard as standard input, the shell reads the
keyboard buffer and passes the keys on to the utility. When standard input is not from the
keyboard, the shell still checks the keyboard buffer for cJ... whenever a STOP call is
executed. The flag is cleared (OxOOOO) when the STOP call is executed, when the utility
program is terminated, or when windows are switched so that the utility program is no
longer active.

Possible Errors

None

VERSION (OxOI07)

int VERS ION () ;

This function returns the version of the APW Shell that you are using

The VERS I ON parameter is a four-byte ASCII string specifying the version number of the
APW Shell that you are using. The initial release returns 10 followed by two space
characters (Ox3130 Ox2020), to indicate version number 1.0.

Possible Errors

None

APDADraft Page6-Il 9 March 1987

APWC Chapter 6

APDADraft Page 6-12 9 March 1987

Appendix A

Calling Conventions
APW C uses two different function-calling conventions: C calling conventions and Pascal
compatible calling conventions.

C calling conventions
This section describes the normal C calling conventions. It explains how function
parameters are passed, how function results are returned, and how registers are saved
across function calls. This information is useful when writing calls between C and
assembly language.

Parameters

Parameters to C functions are evaluated from right to left and are pushed onto the stack in
the order they are evaluated: that is, they are pushed in reverse order. Characters, integers,
and enumeration types are passed as sign-extended 16-bit values. Pointers and arrays are
passed as 32-bit addresses. Types float, double, comp, and extended are passed
as extended 80-bit values. Structures are also passed by value on the stack. Their size is
rounded up to a multiple of 16 bits (2 bytes). If rounding occurs, the unused storage has
the highest memory address. The caller removes the parameters from the stack.

Function results

On the Apple fiGS, function results are returned in registers: the low 16 bits are in the A
register, and the high 16 bits are in the X register. Results of types float , double,
comp, and extended are passed as type extended, with the address in the A and X
registers, as before. Structure results are returned in a static location, the address returned
in the A and X registers.

Register conventions

No registers are preserved across function calls. Tool calls have their own conventions for
returning error codes in the A register.

Pascal-style calling conventions
This section describes the conventions used for calling functions that use Pascal-style
caUing conventions: these functions are declared with the keyword pa s ca 1 and may

APDADraji Page A-I 9 March 1987

APWC Appendix A

have been written in any language. These conventions differ from the usual C calling
conventions defined in Chapter 4.

Parameters

Parameters to Pascal-compatible functions are evaluated· left to right: that is, in the order of
the fonnal parameter list. The function first pushes space for the result (as shown in Table
3-2), then pushes the parameters onto the stack in the order in which they are evaluated.
Characters and enumeration types whose literal values fall in the range of types char or
unsigne d char are pushed as bytes. (This requires a l6-bit word on the stack. The
value is in the high-order 8 bits; the low-order 8 bits are unused.) Short i n <: s and
enumeration types whose literal values fall in the range of types short or uns i gne d
short are passed as l6-bit values. lnts, l ong ints, arid the remaining enumeration
types are passed as 32-bit values .. Pointers and arrays are passed as 32-bit addresses.
SANE types float, double, c omp, andextended are passed as extended80-bit
values. Since this doesn't correspond to the Pascal compiler's calling conventions,
however, a compiler warning is given. Table 3-2 shows the recommended way to pass
SANE-type values to Pascal. Structures are also passed by value on the stack, and they
also yield a compiler warning. Their size is rounded up to a multiple of 16 bits (2 bytes).
If rounding occurs, the unused storage has the highest memory address. The function
being called removes the parameters from the stack.

Function results

On the Apple IIGS, as on the Macintosh, results of Pascal-compatible functions are retumed
on the stack.

Register conventions

No registers are preserved across function calls. Tool calls have their own conventions for
returning error codes in the A register.

APDADrqft 9 March 1987

Appendix B

Files Supplied with APW C

APW C is intended for use with the Apple Programmer's Workshop. The files listed
below are on the APW C release disk, which contains the C compiler, the Standard C
Library, and the Apple lIos Interface Library. These files may be used directly from the
release disk or copied to a hard disk .

...... These lists are subject to change as files are added or deleted. ** ..

The files are listed indented under their respective directories, with comments.

/APWC/
LANGUAGES/

CC
LIBRARIES/

CINCLUDE/
CTYPE.H
ERRNO.H
ERRORS .H
FCNTL.H
FILES.H
lOCTL.H
MATH.H
MEMORY.H
PRODOS.H
SANE.H
SIGNAL.H
STDIO.H
STRING.H
TEXTIOOL.H
TYPES.H
VALUES.H
VARARGS.H
SETJMP.H
CONTROL.H
DESK.H
DIALOG.H
EVENT.H
FONT.H
INTMATH.H
LINEEDIT.H
LIST.H
LOADER.H
MENV.H

APDADraft

APW C compiler

Standard C Library and Apple IIOS Toolbox include files

Memory Manager
ProDOS interface
SANE interface

Standard I/O Package
String conversion routines
Text Tools
common defines and types

Control Manager
Desk Accessory Manager
Dialog Manager
Event Manager
Font Managen
Fixed-Point Math
Line Editor
List Manager
System Loader
Menu Manager

Page B-1 9 March 1987

APWC

MIScrOOL.H
NOTESYN.H
PRINT.H
QDAUX.H
QUICKDRA W.H
SCHEDULER.H
SCRAP.H
SHELL.H
SOUND.H
TEXTTOOL.H
WINDOW.H

ERRORS
CLlB
SYS.INTERFACE
START. ROOT

APDADraft

Miscellaneous Tools

QuickDraw II
Scheduler
Scrap Handler
APW shell interface
Sound Driver
Text Tools
Window Manager
Errors file
Standard C Li brary

Page B-2

AppendixB

9 March 1987

Appendix C

Comparison with
Macintosh Programmer's Workshop

C
Apple IIGS Programmer's Workshop C is as closely related to Macintosh Programmer's
Workshop C as differences between the two machines allow. The differences between the
two languages are explained here.

Data types
The following data types are implemented differently in APW and MPW C.

Data Type Size in bits

APW MPW
i nt 16 32
uns i gned int 16 32
enum 8 or 16 8, 16 or 32

Register variables

Register variables are not supported in APW C due to the small number of registers
available on the 65816. Use of the re g i s t er declaration will cause the compiler to
generate code at least as efficient as that generated by the same program without
regi s t e r declarations.

Structured variables

Structures may be assigned, passed as parameters, and returned as function results in both
versions of C. Byte-sized elements in structures are not padded to word or long-word
boundaries. APW C allows equality comparison for structures; MPW C does not.

APDADraft PageC-l 9 March 1987

APWC AppendixC

Pascal-compatible function declarations

A function or procedure written in Pascal (or written in assembly language following
Pascal calling conventions) can be called from either MPW C or APW C. For example,
the DrawText procedure is defined in Pascal as

PROCEDURE DrawText (textBuf: Ptr;
firstByte, byteCount: INTEGER);

The ,MPW C syntax for such a declaration is

pascal void DrawText(textBuf, firstByte, byteCount)
Ptr textBuf;
short firstByte, byteCount;
ext e rn;

The APW C syntax for this declaration is

extern pascal v o id DrawText();

To make the APW C form more readable, we can list the parameters in a comment:

extern pascal void DrawText();
/ * Ptr t e xtBuf;
short firstByte, byteCount;
extern: * /

In addition, in MPW C the word extern may be followed by a constant, which is
interpreted as a 16-bit 68000 instruction that replaces the usual subroutine call (JSR)
instruction in the calling sequence. This allows direct traps to the Macintosh ROM. For
example:

pasca l vo id OpenPort(port)
GrafPtr port;
extern OxA86F;

On the Apple fiGS, an in 1 ine declaration is used for declaring tool routines. Its syntax is

[e xternl pascal [result-typelfunc-name () inline (m, n) ;

This says that the tool routine with trap number n and entry point address m can be called
by the function namefunc-name, and returns a result of type result-type.

Inline assembly-code declarations

An APW C program can contain assembly code inline. Anywhere a statement is legal, you
can insert a series of assembly-language statements with this format:

a s m {assembly-statements}

Anywhere a function definition is legal, you can have a defmitionwith this format

a s m (external·name) {assembly-statements}

APDADraft PageC-2 9 March 1987

ApperuJixC APWC

This function can be called in the same way as a C function called external-name. Here
"-- external-name is the entry point of the segment containing the assembly-language code .

•

APDADrqft PageC·3 9 March 1987

APWC AppendixC

.----....

APDA Draft PageC-4 9 March 1987

' .-

Appendix D

Library Index
The Library Index contains an index entry for all the defines, types, enumeration literals,
global variables, and functions defined in the Standard C Library.

Column I contains an alphabetical list of the index entries.

• Column 2 specifies the type of declaration (for example, "literal") for the index entry.

• Column 3 contains the library header under which documentation for the index entry
can be found. If colunm 3 contains "(C)" following the library header- for example,
"abs(C)"-look in Chapter 5, The Standard C Library. If colunm 3 contains "(S)"
following the library header-for example, "bbb(S)"-look in Chapter 6, The Shell
Interface. These chapters are organized alphabetically by library header except for the
first entry in each, which contains introductory material.

APDADrajt PageD-1 9 March 1987

Tdenti fi e r

a bs
a c os
as in
a :.. a n
a:. ('.. n2

a ::. cf
ato i
0 ': 01

30F'S I Z
c a l l c c
c",:, i l
~ free

-:: l e a r err
c ':' ose
c os
cosh
c:r eat
d up
EACCES
E.E ADF
ecv t
E: £ XIST
E: NVA L
EIO
E: SDIR
EMF I LE
ENF I LE
ENODEV
ENOE NT
ENOMEM
F.NOS PC
ENOTD IR
EN XIO
F.OF·
BPERM
EROFS
ESPIPE
_exit
exit
exp
fabs
f a ccess
f o lo s e
fcntl
f c vt
F DELET E
f dopen
F DUPFD
feof
f er ro r
ff l ush
f get c
F GETF D
F_G ET fL
f q0tS

E' GJ:' ON'l' I NF' O
r~._.Cr RI N TREC

F_GTAB I NFO
=- Il, E;
Ei l eno
F I OB UFSIZE
FI OD UPF D

fun c tion
f unct ion
function
fu n c tio n
funct io n
functio n
function
functio n
de f ine
f 'Jnct ion
fu ncti on
funct i on
macro
f unct io n
func t ion
fu nction
fu ncti o n
fu nct i on
define
define
function
de fi ne
de f i ne
def i ne
defi ne
def i ne
define
define
define
define
de fi ne
define
define
define
defi ne
d e fine
define
functi o n
func t ion
function
funct i on
function
function
function
function
define
fU nctio n
define
mac ro
macro
fu nction
f un c tion
de f ine
d e fine
func t jen
d ef ine
def i ne
define
de f ine
macro
define
define

F IOFNAME d e fine
?I0IN TER ACTIVE define

Second Beta Draft

Maon a 1 page

abs
trig
t r i g
tr ig
t r ig
at of
atoi
a t oi
s etbuf
ma l loc
fl o o r
ma l l oc
fe r ror
c l ose
tr i g
sinh
c r eat
dup
Err o r
Error
e cvt
Error
Err o r
Error
Error
Error
Err o r
Error
Error
Error
Er r or
Erro r
Err o r
stdio
Er ror
Error
Er ror
e xit
exit
exp
f l oor
fa c cess
f c lose
fcntl
ecvt
faccess
f open
fcn t l
ferror
f err o r
fclose
getc
f cnt l
fcn t l
gets
faccess
fa c ce s s
faccess
s t dio
fe r ror
i octl
ioct l
ioctl
iactl

I de nt if i e r

F IO LSEEK
F I OREFNUM
FI OSETEOF
fl o or
fm od
F_OPEN
fopen
fprintf
fpu t c
fputs
fread
f ree
F RENAME
f r eopen
frexp
fscanf
fseek
F SETFD
F_SETF L
F SFONTINFO
F SPRINTREC
F_STABINFO
ftel l
fwr i te
get c
ge tchar
get e nv
gets
g e tw
hypot
ioctl

I OF BF
I OLBF
IONBF
IOSYNC

isalnum
is alpha
isas ci i
is c nt rl
isdigit
isgr a ph
islower
i s print
ispunct
is s pace
is upper
isxdigit
ldexp
l o g
10glO
lo ngjmp
l s e e k.
ma ll oc
memccpy
me mchr
me mcmp
memcpy
me mse t
mod f
NU LL
o APPEND
o CREAT
O_EXCL
onexi t

PageD-2

defin e
def i ne
def ine
f u nctio n
fun et i o n
define
fu nct ion
funct ion
f u n ct i o n
fun c t ion
fu ncti on
func t ion
def i ne
f un et ion
funct1 0 n
funct ion
functi o n
de f in e
def i ne
def i ne
define
def i ne
functio n
funct io n
macr o
macro
fu nction
f unct ion
functio n
funct i on
functi o n
de f ine
d ef ine
d e f i ne
de f ine
macr o
macr o
macro
macro
macro
macro
ma cro
macro
macro
macro
macro
ma c ro
fUnc t ion
f u n c tion
f unction
funct ion
fun ct ion
fun ct i.on
f un ction
f un etlon
fu n et. 1. 00

fU nc t i on
f unet i o n
f unction
de f i ne
define
de f ine
define
funct ion

Man u al oag("

i o c t l
ioet l
i oct l
fl o o r
fl oor
f access
fopen
pr i nt f
p ute
put s
f r ead
ma lloe
fac cess
f open
fr exp
sca n f
f seek
f cn t l
::cnt l
: acc e ss
I dcc ess
facces s
fseek
f read
get c
g et c
getenv
get s
g e tc
hypo t
ioct l
s e tb u f
s e t buf
setbui
s t dio
c t.ype
ct ype
c t ype
e type
ctype
ctype
et ype
ctype
c t ype
ct ype
ctype
c type
frexp
eKp
exp
s e t jmp
I seek
ma tl o c
memory
memory
rn(lmO r y

memor y
memory
tr exp
stdio
o pen
open
o pen
onex i t

26 May 1986

Tdgnt i tjer =

open function
0 RDONL't de f i oe -
0 RD WR def i ne -
0 RSRC def i ne .-
0 TRU Ne define -
0 irlRONLY de fine
pet ... fu nction
p rin tf func tion
?l: t c macro
?utchar mac ro
P Ut S fun ct ion
put. w fun ct ion
qso r t fu nc tion
ra nd funotion
r e ad fu nction
r ea l loc functi o n
re wi nd fu nct io n
scanf fu nctio n
set bu f fu nc tio n
s e t jmp fu nction
set. vbu f fu nction
s ho rt t ype
S!G ALLSIGS defin e
SI G DFL de fin e
_ s ig _ d f.l funct ion
sighold fu ncti on
S TG I GN defi ne --
$ IGI NT de fin e
3 ' gna l Handler type
Si <Jn alMap type
s":' gpaus e func tion
s ig releas e f unction
slgset fu nct ion
si n func t i on
s i nh f unction
sprin tf func tion
sqrt f unc tion
s rand functi on
sscan f f u nct io n
st rcat fun c tion
s t r e h r f unct i on
st. !: cmp fun ction
s -:.rcpy funct;. i o n
s trcspn f unctio n
st r len funct io n
s~rncaL f unct io n
st rnomp fun c t i on
sL !"nepy f u ncti on
s Lrpbr.·k f u nction
s tr rchc funct ion
~ tr s pn funct ion
s t rLo k tunct i on
s t . r co l funat i on
tan tunc tio f""l.
tanh fu nct.ion
TIOFLUSH de f ine
TIOGPORT defi ne
'EOSP ORT def in e
teas e i i mac r o
to l owe r f unct i o!:

t olo' er macro
-:, c!J pp er- f unc t io n
_ touppe r macr o
ur:g e tc f u nct i on

Second Beta Draft

M..a.ilJJ..a]

open
open
open
open
open
open
exp
printf
putc
putc
put s
put c
qs o rt
rand
read
malloc
f seek
scanf
set b u t
set jrnp
setbu f
si g na l
signal
signal
s ign al
signal
signal
si9ila l
si gna]
s Lgnal
si g na l
s ignal
sig nal
tr i g
s inh
p rint f
exp
rand
s can f
str lng
st ri ng
st ring
st r ing
s t r i ng
str ing
st r i ng
st r i ng
s t ring
s t r1ng
strin9
string
st r i ng
s t rt.. o l
tr i g
sinh
i octl
i o c tl
i octl
c o nv
co ny
conv
c o n v
cony
un getc

Rage I d en t i fj g ..-

un l ink
... ·r i t e

PageD-3

f unct ion
t unct ion

::lamIa] Od q <'

iln link
write

26 May 1986

Td e nt j f ie r Manya l page Ident if jer Man u a l v age

Second Beta Draft PageD4 26 May 1986

Glossary

*: A 32-bit pointer data type.

absolute code: Program code that must be loaded at a specific address in memory and
never moved.

absolute segment: A segment that can be loaded only at one specific location in
memory. Compare with relocatable segment.

accumulator: The register in the 65C8l6 microprocessor of the Apple lIGS used for
mos t computations.

address: A number that specifies the location of a single byte of memory. Addresses
can be given as decimal or hexadecimal integers. The Apple IIGS has addresses ranging
from 0 to 16,777.215 (in decimal) or from $00 00 00 to $FF FF FF (in hexadecimal). A
complete address consists of a 4·bit bank number ($00 to $FF) followed by a 16-bit
address within that bank ($00 00 to $FF FF).

Apple key: A modifier key on the Apple IIGS keyboard, marked with an Apple icoll. It
performs the same functions as theOpen Apple key on standard Apple II machines.

A pple II: A family of computers, including the original Apple II, the Apple II Plus, the
Apple IIe, the Apple IIe. and the Apple IIGs.

AppleIIgs: A predefined constant identifying C code written for the AppleIIGS, in
particul ar, for APW C.

Apple IIGS Interface Libraries: A set of interfaces that enable you to access
toolbox routines from C.

APW: A predefined constant identifying C code written for the APW C compiler as
opposed to another C compiler.

APW Shell: The programming environment of the Apple IIGS Programmer's Workshop.
It lets you edit programs, manipulate files, and execute programs.

APW Linker: The linker supplied with APW.

application: A program (such as the APW Shell itself) that talks to ProD OS and the
Toolbox directly, and can be exited via the Qui t call.

assembler: A program that produces object files from source files written in assembly
language.

automatic variable: A dynamic local variable that comes into existence when a function
is called and disappears when it is exited.

bank: A 64K (65,536-byte) portion of the Apple lIGS internal memory. An individual
bank is specified by the value of one of the 65C816 microprocessor's bank registers.

APDADrajt Page Glossary-] 9 March 1987

APWC

buffer: An area of memory allocated for reading from or writing to a file.

catalog: See directory.

Glossary

carriage return character (\r): A control code (ASCII 13) generated by the Return
key; in APW C, equal to newline (\n).

char: An 8-bit character data type whose range is 0 to 255; the same as unsigned
char in APW C.

character: Any symbol that has a widely understood meaning and thus can convey
information. Some characters-such as letters, numbers, and punctuation--can be
displayed on the monitor screen and printed on a printer. Most characters are represented
in the computer as one-byte values.

code segment: An object segmen~that consists mainly of code. Code segments are
provided for programs that differientiate between code and data segments.

command: In the Standard C Library, a parameter that tells a function which of several
actions to perform; in the APW Shell, a word that tells APW which utility to execute.

command interpreter: A program that interprets and executes commands. Specifically,
the APW shell.

comp: A 64-bit SANE data type with signed integral values and one NaN.

compiler: A program that produces object files from source files written in a high-level
language such as C.

conditional compilation: Use of preprocessor commands (#if, #ifdef, #i fndef ,
#else, #endif) to vary the output depending on compile-time conditions.

C SANE Library: A set of routines that provide extended-precision mathematical
functions.

current language: The APW language type that is assigned to a file opened by the APW
Editor. If an existing me is opened, the current language changes to match that of the file.

current prefix: The prefix that is used by the APW Shell if a partial pathname is used.

data segment: An object segment that consists primarily of data. Data segments are
provided for programs that differentiate between code and data segments.

debugger: A shell utility that lets you step through a program and examine memory as
you go.

denormalized number: A nonzero number that is too small for normalized
representation.

desk accessory: A program that is accessed from the Apple men u and shares its
runtime environment with an application, a utility, or another desk accessory.

APDADraft Page Glossary-2 9 March 1987

' - --

Glossary APWC

diagnostic output: A file used to report errors and diagnostic infonnation. Generally
merged with standard output, but can be redirected. In APW C, synonymous with
standard error.

directory: A file that contains a list of the names and locations of other files stored On a
disk. Directories are either volume directories or subdirectories. A directory is
sometimes called a catalog ..

direct page: A page (256 bytes) of bank $00 of Apple llGS memory, any part of which
can be addressed with a short (one byte) address because its high address byte is always
$00 and its middle address byte is the value of the 65C816 processor's direct register.
Co-resident programs or routines can have their own direct pages at different locations.
The direct page corresponds to the 6502 processor's zero page. The tenn direct page is
often used infonnally to refer to the lower portion of the direct-page/stack space.

direct-page/stack space: A portion of bank $00 of Apple llGS memory reserved for a
program's direct page and stack. Initially, the 65C816 processor's direct register
contains the base address of the space, and its stack register contains the highest
address. In use, the stack grows downward from the top of the direct-page/stack space,
and the lower part of the space contains direct-page data.

direct register: A hardware register in the 65C816 processor that specifies the start of
the direct page.

dispose: To pennanently deallocate a memory block. The Memory Manager disposes of
a memory block by removing its master pointer. Any handle to that pointer will then be
invalid. Compare purge

doub~e: A 64-bit floating-point data type with IEEE double precision.

dynamic segment: A segment that can be loaded and unloaded during execution as
needed. Compare with static segment.

editor: A shell utility for editing source files.

enum: An enumerated data type of 8, 16, or 32 bits depending on the range of the
enumerated literals.

environment: In SANE, consists of rounding direction, rounding precision, exception
flags, and halt settings; in APW, consists of exported variables and other features of the
Integrated Environment.

exception: A condition in the SANE environment that can cause a program halt.'

Exec file: A file containing APW commands that are executed as if typed on the
keyboard.

exit function: A function that is registered with onexit for execution when the
program tenninates.

extended: An 80-bit floating-point data type with IEEE extended precision; used in C
for all intermediate results.

APDADraft Page Glossary-3 9 March 1987

APWC Glossary

external reference: A reference to a symbol that is defined in another segment.
External references must be to global symbols. .

fatal error: an error serious enough that the computer must hail execution.

field: A string of ASCII characters or a value that has a specific meaning to some
program. Fields may be of fixed length, or may be separated from other fields by field
delimiters. For example, each parameter in a segment header constitutes a field.

file-buffered: A buffer style in which characters sent to an output I/O function are
queued and written as a block.

file descriptor: A file reference number returned by a creat or op en call.

filename: The string of characters that identifies a particular file within a disk directory.
ProD OS 16 filenames can be up to 15 characters long, and can specify directory files,
subdirectory files, text fIles, source files, object files, load files, or any other ProODS 16
file type. Compare with path name.

file pointer: A pointer to the next byte to be read or written in a stream.

file type: An attribute in a ProDOS 16 file's directory entry that characterizes the contents
of the fIle and indicates how the file may be used. On disk, filetypes are stored as
numbers; in a directory listing, they are often displayed as three-character mnemonic codes.

FILE variable: A variable containing information about a stream, including the file
descriptor and buffer size, location, and style.

float: A 32-bit floating-point data type with IEEE single precision.

flush: Write out the contents of a buffer.

format character: A character that defines the interpretation of the input field in the
scanf call.

full pathname: The complete name by which a file is specified. A full pathname
always begins with a slash (I), because a volume directory name always begins with a
slash. See pathname.

global label: A symbolic identifier in an object segment, which the linker enters into the
relocation dictionaly and the loader replaces with an absolute address.

global symbol: A label in a code segment that is either the name of the segment or an
entry point to it. Global symbols may be referenced by other segments. Compare with
local symbol.

handle: See memory handle.

hexadecimal: The base-16 system of numbers, using the ten digits 0 through 9 and the
six letters A through F. Hexadecimal numbers can be converted easily and directly to
binary form, because each hexadecimal digit corresponds to a sequence of four bits. In C
manuals hexadecimal numbers are usually preceded by a 0 x.

APDADraft Page Glossary-4 9 March 1987

~.

Glossary APWC

high-level language: A programming language that is relatively easy for people to
understand. A single statement in a high-level language typically corresponds to several
instructions of machine language. Compare low-level language.

image: A representation of the contents of memory. A code image consists of machine
language in structions or data that may be loaded unchanged into memory.

include file: A file whose contents will be included with the source file at compile
time-it contains function declarations, macros, types, and #def ine directives used by
the compiler.

infinity: A SANE representation of mathematical ~.

int: A 16-bit integer data type whose range is -32,768 to 32,767.

interface: The compile-time and runtime linkage between your C program and toolbox
routL'1es.

Jump Table: A table contructed in memory by the System Loader from all Jump Table
segments encountered during a load. The Jump Table contains all references to dynamic
segments that may be called during execution of the program.

K: 1024 bytes

language.command: A command that changes the APW current language.

library file: A file produced by MAKELIB program from object files, generally ones
containing functions useful to a number of programs. It can be searched by the Linker for
necessary functions, but more quickly than an object file.

LinkEd: A command language that can be used to control the APW Linker.

linker: A program that combines files generated by compilers and assemblers, resolves
all symbolic references, and generates a file that can be loaded into memory and executed.

line-buffered: A buffer style in which each line of output is queued for writing as soon
as a newline character is written.

load file: A file that can be loaded into memory, one load segment at a time, by the
System Loader.

load segment: A part of a load file corresponding (in C) to one or more functions.
Object segments are assigned to load segments at compile time by means of the
over l ay command or at link time by LinkEd commands.

local symbol: A label defined only within an individual segment. Other segments
cannot access the label. Compare with global symbol.

long: A 32-bit integer data type whose range is - 2,147,483,648 to 2,147,483,647.

loop: A section of a program that is executed repeatedly until a limit or condition is met,
such as an index variable's reaching a specified ending value.

APDADraft Page Glossary-5 9 March 1987

APWC Glossary

low-level language: A programming language, such as assembly language, that is
relatively close to the form the computer's processor can execute directly. One state men till
a low-level language corresponds to a single machine- language instruction. Compare
high-level language.

mai.n: The name of the function that is the entry point for every C program.

main segment: The first segment in the initial load file of a program. It as loaded first
and never removed from memory until the program terminates.

MakeLib utility: A program that creates library files from object files .

Mark: The current position in an open file. It is the point in the file at which the next read
or write operation will occur.

memory block: see block

memory handle: The identifying number of a particular block of memory. A memory
handle is a pointer to a master pointer to the memory block.

memory image: A portion of a disk file or segment that can be read directly into
memory.

Memory Manager: A program in the Apple IIGS Toolbox that manages memory use.
The Memory Manager keeps track of how much memory is available, and allocates
memory blocks to hold program segments or data.

memory-resident: (adj) (1) Stored permanently in memory as firmware (ROM). (2)
Held continually in memory even while not in use. For example, ProDOS is a memory
resident program.

movable: A memory block attribute, indicating that the Memory Manager is free to move
the block. Opposite offued. Only position-independent program segments may be in
movable memory blocks. A block is made movable or fixed through Memory Manager
calls.

NaN: Not a Number; a SANE representation produced when an operation cannot yield a
meaningful result.

native mode: The 16-bit operating state of the 6SC816 processor.

newline character (\n): A control code that advances print position or cursor to the
left margin of next output line; in APW C, same as carriage return (\r).

normalized number: A floating-point number that can be represented with a leading
significand bit of 1.

number class: In SANE, a floating-point number can be characterized as either zero,
normalized, denorrnalized, infinity, or NaN.

numeric environment: In SANE, the rounding direction, rounding precision, halt
enables, and exception flags.

object segment: A part of an object file corresponding (in C) to a single function.

APDADraft Page Glossary-6 9 March1987

Glossary APWC

object file: The output from an assembler or compiler and the input to the linker. In
APW an oxject file contains both machine-language instructions and instructions for the
linker. Compare with load file.

object module format (01\11'): The general format used in object files, library files, and
load files.

object segment: A segment in an object file .

OMF: Object module format.

OMF file: Any file in object module format.

page: (I)A portion of Apple IIGS memory that is 256 bytes long and that begins at an
address that is an even multiple of 256. A memory block whose starting address is an even
multiple of 256 is said to be page aligned. (2) An area of main memory containing text or
graphical information being displayed on the screen.

parameter: A value passed to or from a command, function, or other routine.

Pascal-style function: A function using Pascal-style calling conventions that can be
declared in C using the pa s ca 1. specifier.

partial assembly: A procedure whereby only specific segments of a program are
assembled. If you have performed one full assembly followed by one or more partial
assemblies on a program, the linker extracts only the latest version of each object segment
to be included in the load file.

partial compile: A procedure whereby only specific segments of a program are
compiled. If you have performed one full assembly followed by one or more partial
compiles on a program, the linker extracts only the latest version of each object segment to
be included in the load file.

partial patlmame: A pa tima me that includes the filename of the desired file but
excludes the volume directory name (and possibly one or more of the subdirectories in the
path). It is the part of a pathname following a prefix- a prefix and a partial pathname
together constitute a full pathname. A partial pathname does not begin with a slash
because it has no volume directory name.

patch: To replace one or more bytes in memory or in a file with other values. The
address to which the program must jump to execute a subroutine is parched into memory at
load time when a file is relocated.

pathnarne: The full name of a file. including its volume name and directory names.

pointer: A memory address at which a particular item of information is located. For
example, the 65C816 Stack register contains a pointer to the next available location on the
stack.

position-independent: Code that is written specifically so that its execution is
unaffected by its position in memory. It can be moved without needing to be relocated.

position-independent segment: A load segment that is movable when loaded in
memory.

APDADrajt Page Glossary-7 9 March 1987

APWC Glossary

prefix: A ponion of a pathname starting with a volume name and ending with a
subdirectory name. It is the part of a full pathname that precedes a partial pathname--a
prefix and a partial path name together constitute a full pathname. A prefix always starts
with a slash (I) because a volume directory name always starts with a slash.

preprocessor: Part of the C compiler that provides file inclusion, macro substitution,
and conditional compilation.

preprocessor symbol: One of a set of constants defined to be 1, equivalent to writing
" j/define symbol 1" at the beginning of the source fIle.

ProDOS: A family of disk operating systems developed for the Apple IT family of
computers. ProD OS stands for Professional Disk Operating Syslem, and includes both
ProDOS 8 and ProDOS 16.

ProDOS 8: A disk operating system developed for standard Apple II computers. It
runs on 6502-series microprocessors. It also runs on the Apple IIGS when the 65C8l6
processor is in 6502 emulation mode.

ProD OS 16: A disk operating system developed for 65C816 native mode
operation on the Apple HOS. It is functionally similar to ProDOS 8 but more powerful.

purge: To temporarily deallocate a memory block. The Memory Manager purges a block
by setting its master pointer to O. All handles to the pointer are still valid, so the block can .
be reconstructed quickly. Compare dispose.

purgeable: A memory block attribute, indicating that the Memory Manager may purge the
block if it needs additional memory space. Purgeable blocks have different purge levels,
or priorities for purging; these levels are set by Memory Manager calls.

RAM Disk: A ponion of memory (RAM) that appears to the operating system to be a
disk volume. Files in a RAM disk can be accessed much faster than the same files on a
floppy disk or hard disk.

register variable: An automatic variable that is allocated to a register. Not used
by APW C compiler, because the 65C8l6 has only a few registers.

scanset: A set of characters allowed in a file scanned by the s c anf call.

relocate: To modify a file or segment at load time so that it will execute correctly at the
location in memory at which it is loaded. Relocation consists of patching the proper
values into address operands. The loader relocates load segments when it loads them into
memory. See also relocatable code.

relocatable code: Program code that includes no absolute addresses, and so can be
relocated at load time.

relocatable segment: A segment that can be loaded at any location in memory. A
relocatable segment can be static, dynamic, or position independent. A load segment
contains a relocation dictionary that is used to recalculate the values of location
dependent addresses and operands when the segment is loaded into memory. Compare
with absolute segment.

APDADraft Page Glossary-8 9MarchJ987

" --'

Glossary APWC

relocation dictionary: A portion of a load segment that contains relocation information
necessary to modify the memory image immediately preceding it. When the memory image
part of the segment is loaded into memory, the relocation dictionary is processed by the
loader to calculate the values of location-dependent addresses and operands. Relocation
dictionaries also contain the information necessary to transfer control to external references.

reference: The name of a segment or entry point to a segmentl; same as symbolic
reference. To refer to a symbolic reference or to use one in an expression or as an address.

resolve: To find the segment and offset in a segment at which a symbolic reference is
defined. When the linker resolves a reference it creates an entry in a relocation
dictionary that allows the loader to relocate the reference at load time.

root filename: The filename of an object me minus any filename extensions added by
the assembler or compiler. For example, a program that consists of the object files
MYPROG . ROOT, MYPROG . A, and MYPROG • B has the root filename MYPROG.

run-time library file: A load file containing program segments--each of which can be
used in any number of programs--that the system loader loads dynamically when they are
needed.

segment: A component of an OMF file, consisting of a header and a body. In object
files, each segment incorporates one or more subroutines. In load files, each segment
incorporates one or more object segments.

segment body: That pan of a segment that follows the segment header, and that
contains the program code, data, and relocation information for the segment.

segment header: The first pan of a program segment, containing such information as
the segment name and the length of the segment.

segment kind: See segment type.

segment number: A number corresponding to the relative position of the segment in a
file, staning with 1.

segment type: A classification of a segment based on its purpose, contents, and internal
structure, as defined in the object module fonnat. The segment type is specified by the
KIND field in the segment header.

shell: A program that provides an operating environment for other programs, and that is
not removed from memory when the those programs are running. For example, the APW
Shell provides a command processor interface between the user and the other components
of APW, and remains in memory when APW utility programs are running.

shell call: A request from a program to the APW Shell to perform a specific function.

shell application: A type of program, such as a compiler or shell command, that runs
under the APW Shell. Called a tool in MPW.

short: A 16-bit integer data type whose range is -32,768 to 32,767.

APDADraft Page G/ossary-9 9 March 1987

APWC Glossary

signal: A software interrupt that causes a program to be temporarily diverted from its
nonnal execution sequence.

shell load file: A load file designed to be run under a shell program; shell load files are
ProD OS 16 fIle type $B5.

65C816: The microprocessor used in the Apple IIGs.

source file: An ASCII file consisting of instructions written in a particular language,
such as C or assembly language. An assembler or compiler converts source files into
object files.

stack:. A list in which entries are added (pushed) and removed (pulled) at one end only
(the top of the stack), causing them to be removed in last-in, first-out (LIFO) order. The
term the stack usually refers to the top portion of the direct-page/stack space; the top of
this stack is pointed to by the 6SC8l6' s Stack register.

Standard C: A de facto standard based on the most widely used inlplementation, the
Berkleley VAX Portable C Compiler.

Standard C Library: A collection of routines for IJO, string manipulation, data
conversion, memory management, and Integrated Environment support.

standard error: A file used to report errors and diagnostic infonnation. Generally
merged with standard output, but can be redirected. In APW C, synonymous with
diagnostic output.

standard input: The standard input stream. Generally the keyboard but can be redirected
so that input is taken from a file or device.

standard output: The standard output stream. Generally the screen but can be redirected
so that input is sent to a file or device.

static segment: A segment that is loaded at program boot time, and is not unloaded or
moved during execution. Compare with dynamic segment.

stream: A file with associated buffering.

string: An item of infonnation consisting of a sequence of text characters (a character
string) or a sequence of bits or bytes.

struct: A record data type.

subdirectory: A directory within a directory; a file (other than the volume directory) that
contains the names and locations of other files. Every ProDOS 16 directory file is either a
volume directory or a subdirectory.

symbol: A character or string of characters that represents an address or numeric value; a
symbolic reference or a variable.

symbolic reference: A name or label that is used to refer to a location in a program,
such as the name of a subroutine. When a program is linked, all symbolic references are
resolved; when the program is loaded, actual memory addresses are patched into the
program to replace the symbolic references.

APDADroft Page Glossary-10 9 March 1987

Glossary APWC

symbol table: A table of symbolic references created by the linkerwhen it links a
',-. program. The linker uses the symbol table to keep track of which symbols have been

resolved. At the conclusion of a link, you can have the linker print out the symbol table.

tool: An Apple IIos Toolbox routine. '

System Loader: The program that relocates load segments and loads them into Apple
IIOS memory. The System Loader works closely with ProDOS 16 and the Memory
Manager.

system program: (1) A software component of a computer system that supports
application 'programs by managing system resources such as memory and I/O devices.
Also called system software. (2) Under ProDOS 8, a stand-alone and potentially self
booting application. A ProDOS 8 system program is of me type $FF; if it is self-booting,
its filename has the extension. SYSTEM.

token: The smallest unit of information processed by a compiler or assembler. In C, for
example, a function name and a left bracket (0 are tokens.

toolbox: A collection of built-in routines on the Apple IIos that programs can call to
perform many commonly-needed functions. Functions within the toolbox are grouped into
tool sets.

tool set: a related group of (usually firmware) routines, available to applications and
system software, that perform necessary functions or provide programming convenience.
The Memory Manager, the System Loader, and Quickdraw II are tool sets.

utility: In general, an application program that performs a relatively simple function or set
of functions such as copying or deleting files. A APW utility is a program that runs under
the APW Shell, and that performs a function not handled by the shell itself. MAKELm is
an example of a APW utility.

unbuffered: A buffer style that does not use a buffer for I/O; reading and writing is done
one character at a time.

unload: To remove a load segment from memory. To unload a segment, the System
Loader does not actually "unload" anything; it calls the Memory Manager to either purge
or dispose of the memory block in which the code segment resides. The loader then
modifies the Memory Segment Table to reflect the fact that the segment is no longer in
memory.

unordered: The result of a comparison with a NaN; even identical NaNs compare
unordered.

unsigned char: An 8-bit character data type whose range is 0 to 255. The same as
char in APW C.

unsigned int: A 16-bit integer data type whose range is 0 to 65,535.

umligned long: A 32-bit integer data type whose range is 0 to 4,294,967,295.

unsigned short: A 16-bit integer data type whose range is 0 to 65,535.

APDADraft Page Glossary-II 9 March 1987

APWC Glossary

void: A data type used to declare a function that does not return a value.

volume: An item that stores data; the source or destination of information. A volume has
a name and a volume directory with the same name. Volumes typically reside in devices;
a device such as a floppy disk drive may contain one of any number of volumes (disks).

volume directory: The main directory file of a volume. It contains the names and
locations of other files on the volume. any of which may themselves be directory files
(called subdirectories). The name of the volume directory is the name of the volume.
The patbname of every file on the volume starts with the volume directory name.

wildcard character: A character that may be used as shorthand to represent a sequence
of characters in a pathname. In APW. the equal sign (=) and the question mark (7) can be
used as wildcard characters.

word: A group of bits that is treated as a unit. For the Apple lIGS, a word is 16 bits (2
bytes) long.

WD65816: A predefined symbol identifying C code written to run on the Western Design
Center 65SC816 as opposed to another microprocessor.

zero page: The first page (256 bytes) of memory in a standard Apple II computer (or in
the Apple TIGS computer when running a standard Apple II program). Because the high
order byte of any address in this part of memory is zero, only a single byte is needed to
specify a zero-page address. Compare direct page.

APDADraji Page Glossary-12 9 March 1987

