
Af'?t£
PROG.'lAMMm
.&I>IOOEVEUlPSi"S
JSSW..UlON

29:l s.v ~3td. ~
~"Ct\WA~
2l:6-2:i~

APPLE IIGS
Debugger
Reference

Version 1.1.1

APDA# K2SBUG

,---'

Apple IIGS Debugger Reference

APDA Draft
August 20, 1987

Apple Technical Publications

This document does not include:

• final editorial corrections
• final art work
• an index

It APPLE COMPUTER, INC.

This manual is copyrighted by Apple or by Apple's suppliers, with all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in part, without the written consent of Apple Computer,
Inc. This exception does not allow copies to be made for others, whether or not sold, but all of the material
purchased may be sold, given, or lent to another person. Under the law, copying includes lranslating into
another language.

© Apple Computer, Inc., 1987
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, and Macintosh are registered irademarks of Apple Computer, Inc.

Apple nGSis a trademark of Apple Computer, Inc.

Simultaneously published in the United States and Canada.

Apple lles Debugger Table o/Contents

Contents

1 Chapter 1. Overview
2 Getting Started
2 What You Need
2 Debugger Restrictions
2 Loading the Debugger
3 Loading Your Program
3 Debugger Display Screens
4 Selecting Displays
5 The Master Display
7 Test-Program Display
7 Memory Display
8 Direct Page Display
8 Help Screen
9 Running Your Program
9 Single-Step and Trace Modes
12 Real-Time Mode
12 The Command Filter
13 Memory Protection
14 Breakpoints
15 Printing
15 Using Monitor Routines

17 Chapter 2. Using the Debugger
17 Debugging Segmented Programs
18 Watching a Running .Disassembly
19 Using Breakpoints
20 Using Memory-Protection Ranges
21 Debugging Multilanguage Programs

23 Chapter 3. Command Reference
23 Register Subdisplay
23 Debugger Registers
24 65816 Registers
27 Altering the Contents of Registers
28 Stack Subdisplay
29 Disassembly Subdisplay
32 RAM Subdisplay
34 Breakpoint Subdisplay
36 Memory-Protection Subdisplay
39 Command Line
39 Altering the Contents of Memory
41 Hexadecimal-Decimal Conversion
41 Configuring the Master Display
43 Saving a Display Configuration
44 Command-Line Commands

47 Chapter 4. Desk Accessories
47 LoaderDurnper
47 Dump Memory Segment Table

APDADrqft i 8120187

Table ojContellls Apple lIGS Debugger

49 Dump Pathname Table
50 Dump Jump Table
51 Dump Loader Globals
52 Dump ProDOS Packets
53 Dump File Buffer Variables
54 Dump Load Segment Infonnation
54 Dump Address
55 Memory Mangler
55 LIST
56 LmeNumoor
56 Handle
56 Location
56 Attributes
57 UserUD
57 Lengili
57 Previous Handle
57 Next Handle
57 MON
58 PRINT
58 QUIT
58 Memory Manager Commands

59 Appendix: Command Summary
59 Keystroke Modifier
60 SeJectffig a Display
60 Editing the Master Display
61 Display Configuration
61 Disassembly Subdisplay
61 RAM Subdisplay
62 Breakpomts Subdisp1ay
62 Memory-Protection Subdisplay
63 Command-Lme Commands
63 Command-Editing Commands
64 Setting Registers and Memory Values
64 Breakpomts
64 Hexadecimal-Decimal Conversion
65 Savmg Display Configurations
65 Prmting
65 Loading and Runnmg Your Program
65 Other Command-Line Commands
66 Trace and Smgle-Step Mode Commands

APDA Draft ii 8120187

Apple JIGS Debugger

List of Figures

Chapter 1. Overview
4 1.1. Master Display
8 1.2. Sample Memory Display

Chapter 2. Using the Debugger

Chapter 3. Command Reference
29 3.1. Disassembly Subdisplay
33 3.2. RAM Subdisplay

Chapter 4. Desk Accessories
48 4.1. Memory Segment Table Output
49 4.2. Pathname Table Output
51 4.3. Jump Table Output
52 4.4. Loader Globals Output
53 4.5. ProOOS Packets Output
54 4.6. File Buffer Variables Output
54 4.7. Load Segment Information Output
55 4.8. Dump Address Output
57 4.9. Memory-Block Attributes

List of Tables

Chapter 1. Overview
5 1.1. Selecting Debugger Displays

Chapter 2. Using the Debugger

Chapter 3. Command Reference
30 3.1. Disassembly Operand Formats

Chapter 4. Desk Accessories

APDADraft iii

Table o/Contents

8120187

Table a/Contents Apple lIes Debugger

APDA Draft jy 8120187

Apple /lGS Debugger Chapter 1: Overview

Chapter 1

Overview

The Apple nGS Debugger is designed to aid you in rmding bugs in your programs by
allowing you to control execution of any load file. The debugger includes the following
features:

• You can step through your code one instruction at a time (in single-step mode).

• You can step continuously through your code under control of the debugger (in trace
mode) .

• You can execute your code, or any portion of your code, at full speed when timing is
critical (in real-time mode).

• You can insen breakpoints in your code at which the debugger automatically
suspends execution.

• You can set a breakpoint so that execution is suspended only after the breakpoint
location has been passed through a given number of times.

• You can enter the Monitor, execute Monitor commands, and then return to the
debugger.

• You can display the debugger's Master Display, which shows the contents of
Apple IIGS registers, the breakpoints and memory-protection ranges you have set,
portions of the stack and memory, and a disassembly of your program's code.

• You can display 368 contiguous bytes of the direct page.

• You can display any 368 contiguous bytes of RAM in any single memory bank.

• You can display your program's normal screen in any Apple IIGS display mode.

• You can call up on-line help screens for belp with any of the debugger's functions.

This manual describes each of the Apple nGS Debugger's displays and commands. First
you are told how to stan the debugger and load your program for testing. Next, the
debugger's displays are described briefly, followed by an explanation of how to use the
debugger. Finally, a reference section describes each of the debugger' s displays and
commands.

Following the description of the debugger, two desk accessories that are included on your
debugger disk are described: Loader Dumper and Memory Mangler. Loader Dumper lets
you see where in memory the System Loader has loaded each segment of your program
and gives you infonnation about the various tables and variables that the loader uses.
Memory Mangler lets you execute a variety of Apple IIGS Memory Manager routines and
provides lists of the memory blocks that are in use, purged, and disposed by the Memory
Manager.

Once you are familiar with the operaton of the debugger, you can use the summary of
debugger commands in the appendix for quick-reference purposes.

APDADraft 1 8120187

Chapter 1: Overview Apple IlGS Debugger

Getting Started
This section tells you how to load the debugger and how to load the program to be tested.
It also describes the restrictions on the use of the debugger.

What You Need

The Apple IIGS Debugger is located on its own program disk. The program to be tested
can be located on the same disk (if it's small enough to fit) or on another disk. Since the
debugger is memory-resident, once it is loaded you can remove the debugger disk and load
your program from another disk.

Debugger Restrictions

The Apple IIGS Debugger requires approximately 17900 ($4600) bytes of memory (not
including the memory requirements of the program you are testing). Because the debugger
is loaded into memory by the Apple IIGS System Loader and Memory Manager, you have
no control over where in memory the debugger is loaded. If your program is relocatable, it
will be loaded by the System Loader and Memory Manager so that conflicts between the
debugger and your program are extremely unlikely. If you write absolute code, however,
you will not be able to use it with the debugger if any of the following conditions occur:

• The application writes to the area of memory in which the debugger is loaded.

• The application write-protects the area of memory in which the debugger is loaded.
For example, if the debugger is in the language card, the application must not write­
disable the language cani

• The application "banks out" the area of memory in which the debugger is loaded. For
example, if the debugger is in the $DOOO space of the language card, the application
cannot change language-card banks.

• The application assigns its direct page or stack into the debugger's code space.

• The application uses the same stack space as the debugger.

Important: In single-step and trace modes, if the application writes or steps to a
location between 20 bytes before the beginning of the debugger's stack and 8 bytes
after the end of the debugger's stack, the debugger stops executing the program and
prints s= on the command line. To continue operation, you must change the value
of the S register so that it is outside the debugger's stack range. In real-time mode,
a stack conflict can cause the debugger to crash.

Loading the Debugger

To load the debugger from APW, type the full pathoame of the debugger, ending in the
debugger's filename, DEBUG, and press Return. If you are using a hard disk, you can
place the debugger in the utility subdirectory of APW, replacing the Exec file named
DEBUG that is present in that directory. Then to load the debugger, you can simply type
DEBUG and press Return.

APDADraft 2 8120187

Apple Iles Debugger Chapter 1: Overview

Loading Your Program

When you load the debugger, the debugger's copyright and version number are displayed
on the conunand-input line at the bottom of the screen (the command-input line is shown in
Figure 1.1). Type the following command:

LOAD pathname

Here pathname represents the full or partial pathname of the program you wish to debug.

If any ProDOS 16 errors are generated during program load, the ProDOS 16 error number
is written to the conunand line. After a successful load, the following registers are set as
indicated:

KJPC The program bank register (K) and program counter (PC) are set to the
starting address of the fIrst segment of the program.

A The accumulator is set to the User ID of the program loaded. The User ID
is assigned by the User ID Manager, as described in the Apple Iles
Toolbox Reference manual.

X, Y The X and Y index registers are set to O.

P The processor status register is set to O.

D The direct-page register is set to the bottom of the direct-page/stack space of
the program.

S The stack register is set to the top of the direct-page/stack space.

In addition, ProOOS 16 prefIx 1 is set to the prefIx of the ftle you loaded.

Note: When you load your program, be sure to make a note of the settings of the
K/PC register and other registers (in the Register subdisplay at the top of the
screen) before you do anything else. After you have used the debugger to run your .
program, or have reset any registers with debugger conunands, you must know the
starting location of your program in memory and starting register values in order to
run your program again.

Debugger Display Screens
When you load and start the Apple llGS Debugger, a display similar to the one shown in
Figure 1.1 appears on the screen. This display, referred to as the Master Display, contains
a command-input line, plus several subdisplays that contain the following types of
information:

• the contents of the 658l6's registers (the Register subdisplay)

• the contents of the stack (the Stack subdisplay)

• a disassembly of your program's object code (the Disassembly subdisplay)

• the contents of a portion of memory (RAM) that you specify (the RAM subdisplay)

APDADraft 3 8120187

Chaprer 1: OveIView Apple llGS Debugger

• the breakpoints you have set (the Breakpoint subdisplay)

• the memory ranges you have protected (the Memory-Protection subdisplay)

In addition, you have the option of switching to a display of the contents of the direct page,
to a display of the contents of any region of memory you choose, to on-line help, or to any
of the display screens normally used by your program.

The commands you can use to select a display are described in the next section. Each of
the displays and subdisplays is described briefly in the sections that follow and in detail in
the reference section at the end of this chapter.

L P zc
30 00110000

1000-03-01 12/1000: AO 15 18 LOA 1815
12/1103-00-00 12/1003: 90 50 10 STA 1050,X
00/0000-00-00 12/1006: 9F 20 30 05 STA 053020

40 '. 00/0000-00-00 A9 77 66 LOA 46677

e
0

AO , 00/0000-00-00 82 20 10 BRL 2030 (+1020)
AO 00/0000-00-00 80 20 BRA 1032 (+20)
AO , 00/0000-00-00 F4 12 34 PEA 3412
AO , 00/0000-00-00 62 FC FF PER 1012 (-0004)
AO , 00/0000-00-00 1018: 87 45 STA [45)
AO ,

12/101A: 62 00 FO PER 0010
AO E1/0000.000F 12/1010: A9 23 LOA 123
AD 01/0900.1FFF 12/101F: A2 45 67 LOX 16745
AD 01/6000. 12/1022: 4F 50 4E 02 EOR 024E50
AO

, 01/0000.0633 12/1026: OC 89 23 JHL (2389)
AO , 00/0000.0000 12/1029: 1C BE F2 JSL (F2BE,X)
AD 00/0000.0000 12/102C: 73 40 AOC (40,S) ,Y
AO 00/0000.0000 1)110'>"-(1 J6 Clo1P (06),Y

AD , 00/0000.0000- 12/1030: OA
AD , 00/0000.0000- 00 23

Command Line Memory Protection

Figure 1.1. Master Display

Selecting Displays

ASL
BRK 23

When you start the Apple IIGS Debugger, the Master Display appears on the screen. Use
the commands in Table 1.1 to call other displays.

APDADraft 4 8120187

"._-

Apple lIeS Debugger Chapter I,' Overview

Table 1.1. Selecting Debugger Displays

Display

Help screen
Memory

Direct-Page

Application

Monitor

Master Display

How to Select

From any display, type a question mark (?) and press Return.

From the Master Display, type the starting address of the memory
block you wish to display, followed by a colon (:), and press
Return.

From the Master Display, type D and press Return.

To see the display generated by your application, type OFF on the
Master Display command line and press Return, and then start your
application as described in the section "Running Your Program"
later in this chapter.

To change the display mode, press one of the following keys (these
keypress commands work while in single step or trace modes
only-see the section "Single Step and Trace Modes" in this chapter
for more information on these keypress commands):

I
2
4
S
T
F
M
L
H
D
B
C
S

text page I
text page 2
4O-column screen
SO-column screen
text mode
full-screen graphics
mixed text and graphics
low-resolution graphics
Hi-Res graphics
Double Hi-Res graphics
black-and-white (for Double-Hi-Res graphics)*
color (for Double-Hi-Res graphics)*
Super Hi-Res graphics

*These commands worIc only on a color RGB monitor.

To call the Monitor, type MON on the Master Display command line
and press Return.

In Direct-Page or Memory Display, press Esc. If your application is
being displayed, type ON and press Return.

From the Monitor, press Control-Y and press Return to return to the
Master Display.

Note: If the command filter is in effect, you must hold down one or more
keystroke-modifier keys in oreler to pass commands on to the debugger while your
program is running. See the section "The Command Filter" later in this chapter for
more information on this function.

The Master Display

The Master Display includes information on many aspects of the debugging process .
. When you start the Apple nGS Debugger, a display similar to the one in Figure 1.1

appears. The exact contents of this display depend on the actual contents of memory and
on the way in which you have configured the debugger.

APDADrafr 5 8120187

Chapter 1: Overview Apple IIGS Debugger

In this section, the use of each subdisplay is briefly described. For explanations of all the
commands that can be used with a particular subdisplay, see the section about that
subdisplay in Chapter 3, "Command Reference."

The Register su bdisplay shows the contents of several 65816 hardware registers. the M
and Q pseudoregisters, and some flags and addresses used by the debugger. If you are
uncertain about the significance of any of these registers and flags, consult the appropriate
section in Chapter 3.

The Stack subdisplay shows the contents of 19 bytes of your program's stack. The default
location for the stack pointer is the bottom line in the Stack subdisplay, but you can set it to
any line you choose with the SET command, as described in the section "Configuring the
Master Display" in Chapter 3.

The Disassembly subdisplay shows a disassembly of the machine code in memory using
standard APW Assembler mnemonics and address-mode syntax. Disassembly-operand
formats are shown in Table 3.1. When you start the debugger, this subdisplay is blank.
You can assemble a single instruction and display it at the bottom of this subdisplay, or you
can disassemble any 19 contiguous lines of code and list them in this field. When you
enter trace or single-step modes, a running disassembly of your program is shown in the
Disassembly subdisplay, with the current instruction highlighted. You can use the SET
command to change the line that is used for the current instruction.

The RAM subdisplay shows the contents of any 19 memory locations you select. You can
display each section as either a single hexadecimal byte with the equivalent ASCII character
(or MouseText character if the high bit is set), as a 2-byte value, or as a 3-byte value.

The Breakpoints subdisplay shows from 0 to 17 breakpoint locations you have set. A
breakpoint is ·a point in your code at which you want the debugger to suspend execution so
you can examine the contents of memory and the registers. Each breakpoint includes a
trigger value--that is, the number of times you want the code at that location to be executed
before execution is interrupted, and the number of times the program has actually passed
through this breakpoint so far. You can increase or decrease the number of lines in the
Breakpoint subdisplay by simultaneously adjusting the number of lines in the Memory
Protection subdisplay.

The Memory Protection subdisplay shows memory-address ranges that you have set either
to be executed in real time (code-trace ranges, indicated by a T) or to be the only ranges
within which code can be executed at all (code-window ranges, indicated by a w). You can
increase or decrease the number of lines in the Memory Protection subdisplay by
simultaneously adjusting the number of lines in the Breakpoint subdisplay.

The command-input line (or command line)is used for executing most debugger
commands. The only commands not executed from this line are single-keystroke
commands used to control code trace, cursor movement commands used to enter data into
the Master Display, and the Esc key, used to return to the Master Display from other
displays. See the section "Command-Line Commands" in Chapter 3 for a list of the
commands available from the Master Display.

APDADraft 6 8120187

'-

Apple lles Debugger Chapter 1: Overview

Test-Program Display

To tum off the debugger's Master Display and show the normal screen display of your
program, type OFF on the command line and press Return. Although the Apple nos
Debugger uses only the 8<H:olUlIUl text mode, it remembers the last display mode your
program was in and switches to that mode when you turn off the Master Display. To
change to a different display mode, turn off the Master Display, enter trace or single-step
mode, and use one of the display-mode commands listed in the section "Single-Step and
Trace Modes" later in this chapter. To return to the Master Display, type ON and press
Return.

Note: If the command filter is in effect, you must hold down one or more
keystroke-modifier keys in order to pass commands on to the debugger. See the
section 'The Command Filter" later in this chapter for more information on this
function.

Memory Display

You can select a display of the contents of any 368 contiguous bytes of RAM in any single
memory bank. To get a Memory Display, type the starting address of the memory block,
followed by a colon (:), into the command line in the Master Display and press Return. For
example, to obtain a display of the contents of the 368 bytes starting at address 1100 in
bank 12, type the following (the slash (I) is optional):

12/1100:

A sample Memory display is shown in Figure 1.2. Each line begins with the memory
address of the fITSt byte shown on that line, followed by the contents of 16 memory
locations. The memory contents are shown first as hexadecimal values and then as their
equivalent ASCn characters. The character set is displayed as follows:

ASCII Value

$00-$ IF
$20--$7F
$80-$9F
$AO-$FF

APDADraft

Displayed As

. (period)
normal video
• (inverse-video period)
inverse video

7 8120187

Chapter i: Overview Apple iiGS Debugger

12/1100: 01 02 03 04 05 06 07 09 09 OA OB OC 00 OE OF 10
12/1110: 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 1E 1F 20
12/1120: 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F 30 !"#$ %&' ()*+,-./O
12/1130: 31 32 33 34 35 36 37 38 39 3A 3B 3C 30 3E 3F 40 123456789:; <=> ?@
12/1140: 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F 50 ABCOEFGHIJKLMNOP
12 / 1150: 51 52 53 54 55 56 57 58 59 SA 5B 5C 50 5E SF 60 QRSTUVWXYZ[\] ' _ '
12/1160: 61 62 63 64 65 66 67 68 69 6A 6B 6C 60 6E 6F 70
12/1170: 71 72 73 74 75 76 77 78 79 7A 7B 7C 70 7E 7F 80
12 / 1180: 81 82 83 84 85 86 87 88 89 8A 8B 8C 80 8E 8F 90
12/1190: 91 92 93 94 95 96 97 98 99 9A 9B 9C 90 9E 9F AO
12/11AO: A1 A2 A3 A4 AS A6 A7 A8 A9 AA AB AC AD AE AF BO
12/11BO: B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BO BE BF CO
12/11CO: C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF 00
12/1100: 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF EO
12/11EO: E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC EO EE EF FO
12/11FO: F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FO FE FF 00

•
•

" ,

• - •

1-.

, ,

• •

0

> , ~j
::::',:;)

\

", op

~

12/1200: 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF 10
12/1210: 11 12 13 14 15 16 17 19 19 1A 1B 1C 10 1E 1F 20
12/1220: 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F 30 !"#$ %&' ()*+,-./O
12/1230: 31 32 33 34 35 36 37 38 39 3A 3B 3C 30 3E 3F 40 123456789:;<=>?@
12/1240: 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F 50 ABCOEFGHIJKLMNOP
12/1250: 51 52 53 54 55 56 57 58 59 SA 5B 5C 50 5E SF 60 QRSTUVWXYZ[\]' .
12/1260: 61 62 63 64 65 66 67 68 69 6A 6B 6C 60 6E 6F 70 abcde£ghijk1mnop
:12 / 1270:

Figure 1.2. Sample Memory Display

To change the contents of memory, use the commands described in the section "Altering
the Contents of Memory" in Chapter 3. To return to the Master Display, press Esc.

Direct-Page Display

You can select the Apple nGS Debugger's Direct-Page Display by typing D on the
cOlDIDand line and pressing Return. This display shows 368 bytes of the direct page
starting with the address in the D register. The Direct-Page Display is identical in
appearance and function to the Memory Display that you would obtain for a block of
memory starting at the address in the D register.

Help Screen

To display a help screen showing the commands available at any time, enter a question
mark (7). To return from the help screen to the display from which you called it, press any
key except Esc. To return to the Master Display, press Esc.

APDADraft 8 8120187

Apple !lGS Debugger Chapter 1,' Overview

Running Your Program
You can step through your program one instruction at a time or continuously, with the
Apple IIOS Debugger intercepting and interpreting each instruction. Executing your
program in this fashion gives you maximum control over the process, allowing you to stop
at any point and examine the contents of the registers or your program's display. For
timing-critical programs and sections of programs, you can also execute the code at full
speed. TIlis section explains how to do the following:

• step through your program one instruction at a time (single-step mode)

• step continuously through your program (trace mode)

• execute your program at full speed (real-time mode)

• set and use breakpoints

• set and use memory-protection ranges

Important: In single-step and trace modes, if the application writes or steps to a
location between 20 bytes before the beginning of the debugger's stack and 8 bytes
after the end of the debugger's stack, the debugger stops executing the program and
prints s= on the command line. To continue operation, you must change the value
of the S register so that it is outside the debugger's stack range. In real-time mode,
a stack conflict can cause the debugger to crash.

Single-Step and Trace Modes

-__ In single-step mode, you can step through your program one instruction at a time. As each
instruction is executed, the instruction is highlighted in the Disassembly subdisplay of the
Master Display. In trace mode, the Apple IIGS Debugger automatically steps through each
instruction in succession; other than being free-running, trace mode is identical to single­
step mode. Use the following commands from the command line to initiate single-step and
trace modes (the command line is still active if you turn the Master Display off to see your
program's display):

APDADraft 9 8120187

Chapter 1: Overview Apple llGS Debugger

Command

S

addressS

T

addressT

Action

Enter single-step mode at the current instruction. The current
instruction is the next instruction to be executed as indicated by the
KJPC register. The KJPC register is updated by the debugger each
time an instruction is executed in single-step or trace modes, each time
a new program is loaded, and each time you execute a K= , PC=, or
K/PC= command. The current instruction appears at the highlighted
line of the Disassembly subdisplay; press the Space bar to execute it,
or press Return to enter trace mode.

Enter single-step mode at address address. The KJPC register is set to
address and the instruction at address appears at the highlighted line
of the Disassembly subdisplay; press the Space bar to execute it, or
press Return to enter trace mode.

Enter trace mode at the current instruction (as indicated by the K/PC
register and the highlighted line of the disassembly subdisplay). The
debugger begins executing code immediately, and continues to execute
instructions until you press Esc to stop it or until it reaches a
breakpoint or a BRK instruction.

Enter trace mode at address address. The KlPC register is set to
address and the debugger begins executing code immediately. The
debugger continues to execute instructions until you press Esc to stop
it, or until it reaches a breakpoint or a BRK instruction.

Note: When you load your program, be sure to make a note of the values of all the
fields in the Register subdisplay before you do anything else. After you have used
the debugger to nut your program, or have reset any registers with a debugger
command. you must lrnow the starting location and register settings for your
program in order to nut it

Once you are in either single-step or trace mode, you can use any of the following keypress
commands. The commands that change display modes are intended for use with your
program's display. Do not use them when the debugger's Master Display is on the screen.

APDADraft 10 8120187

'-

Apple IIGS Debugger Chapter 1: Overview

Command

Esc

Space bar

Return

R

J

X

Q

I

2

4

8

T

F

M

L

H

D

S

B

C

~

--+

C

?

Action

Tenninate trace or single-step mode and return to the command-line,

Single-step one instruction,

Start continuous tracing.

Trace until the next RTS, RTI , or RTL. This command allows you to
trace through one subroutine at a time.

Begin to execute code in real time at the current instruction.

If the current instruction (the next to be executed) is a JSL, execute in
real time until the matching RTL or until an RTI that returns to the
following instruction. If the next instruction is not a JSL, this
command is ignored.

Skip the next instruction. You can use this command to skip over a
BRK instruction, for example.

Toggle the sound on or off. If the sound is on, the speaker beeps
each time an instruction is executed.

Change the display to text page I . Use this command when in 40-
column text mode or mixed text and graphics mode.

Change the display to text page 2. Use this command when in 40-
column text mode or mixed text and graphics mode.

Change the display to a 4O-column screen. Use this command when
in text mode.

Change the display to a 8O-column screen. Use this command when
in text mode.

Change the display to text mode.

Change the display to full-screen graphics mode.

Change the display to mixed text and graphics mode.

Change the display to low-resolution graphics mode.

Change the display to high-resolution graphics mode.

Change the display to double-high-resolution graphics mode.

Change the display to super-high-resolution graphics mode. This is
the normal Apple nos display mode.

Change the display to black-and-white double-high-resolution
graphics mode.

Change the display to color double-high-resolution graphics mode.

Change to the slow trace rate.

Change to the fast trace rate.

Pause the trace until the Apple key is released.

Display a help screen.

Note: If the conunand filter is in effect, you must hold down one or more

APDADraji 11 8120187

Chapter i: Overview Apple lIeS Debugger

keystroke-modifier keys in order to pass commands on to the debugger. See the
section "The Command Filter" later in this chapter for more information on this
function.

Real-Time Mode

In real-time mode, the debugger passes control of the computer to the code that you
specify. The code runs at full speed, just as it would if you were running it without the
debugger.

Before you tty running your program in real-time mode, read through the rest of the
"Running Your Program" section. As described in the following sections, you can still
exercise considerable control over the execution of your program, even if it is running in
real-time mode. You can pass keystrokes on to the debugger rather than to your program
by specifying a command filter (see the section 'The Command Filter"); you can specify
memory ranges outside of which no code is executed (see the section "Memory
Protection"); and you can cause execution to stop automatically at any breakpoints you
specify (see the section "Breakpoints"). You can run your entire program in real-time
mode, or you can specify that the code in certain memory ranges is to be run in real-time
mode while the rest of the program is run in trace or single-step mode.

Use the following commands from the command line to initiate real-time mode:

Command

addressx

addressJ

Action

JSL directly to code at address address. If you omit address, the
current K/PC address is used. (Note that if you omit address, you
must use an uppercase X for this command.) This command assumes
your routine ends in an RTL: the code is executed in real-time mode
and when the RTL is executed control returns to the debugger. The
debugger automatically turns off the Master Display before executing
this command.

JML directly to code at address address. If you omit address, then
the current K/PC address is used. This command executes an
unconditional jump to address and the code at that address is executed
in real-time mode. Control does not return to the debugger unless you
have set a real breakpoint or a nonbreakpoint BRK is executed (while
breakpoints are set to DBRK). See the section "Breakpoints" in this
chapter for information on the use of breakpoints. The debugger
automatically turns off the Master Display before executing this
command.

The Command Filter

The Apple IIGS Debugger normally intercepts all keystrokes and passes them to the
debugger's command interpreter. If the program you are debugging requires input from
the keyboard, you can set the debugger to pass all keystokes on to the application unless
one or more keystroke-modifier keys are also pressed. To select the key or keys to be used
as the keystroke modifier, use the KE Y command as described in the section "Register
Subdisplay" in Chapter 3.

APDADraft 12 8120187

-'"

Apple IIGS Debugger Chapter 1: Overview

Keystroke modifiers prevent debugger commands from interfering with your program.
For example, suppose your program has menu options that are activated by key presses,
and that Q causes the program to quit You can set the keystroke modifier so that
commands are passed to the debugger only when you hold down the Option key. Then to
toggle sound on or off without causing your test program to quit, you would press
Option-Q.

Remember that when you have set a keystroke modifier, you must use that key or key
combination in order to send any command to the debugger while in trace or single-step
mode. For example, to quit trace mode when Option is set as the keystroke modifier, press
Option-Esc; to single-step one instruction, press Option-Space bar.

Memory Protection

The Apple DGS Debugger allows you to specify address ranges within which code is
executed at full speed (code-trace ranges) and to specify ranges outside which no code is
executed (code-window ranges). Instructions for setting these ranges are given in the
section "Memory-Protection Subdisplay" in Chapter 3.

All code outside a code-trace range (indicated by a T on the Memory-Protection subdisplay)
is executed in single-step or trace mode. When your code executes a JSL to this memory­
protection address range, the code inside this range is executed in real time. When the
matching RTL is encountered, execution returns to single-step or trace mode.

Use code-trace ranges to specify subroutines that must be executed at full speed, such as
disk I/O routines. Note that interpreted breakpoints do not function inside code-trace
ranges; you must insert real breakpoints to stop execution within a code-trace range. When
you start the debugger, a code-trace range is automatically set for the range El/()()()()
through El/OOOF so that Apple DGS tool calls are run at full speed.

If one or more code-window address ranges (indicated by w's on the Memory-Protection
subdisplay) are specified, then code is executed only if it is inside one of the code-window
ranges. Any time the program counter (K/PC) equals an address not in any of the code­
window address ranges, execution stops. (If you don't specify any code-window address
ranges, code can be executed at any address.)

When one or more code-window address ranges are set, execution is in trace or single-step
mode unless a JSL is made to a code-trace address range that is completely contained in a
code-window address range. Once such a JSL is made, execution is in real time until the
matching RTL is encountered.

You can use code-window ranges to protect code outside the normal code for your program
from being executed. Thus, for example, if a bug in your code is causing the system to
crash by executing code in the wrong location in memory, you can restrict execution to
protect that area of memory by making sure it lies outside any code-window ranges. Then,
when your program jumps to that area of memory, execution stops and you can attempt to
find the location and nature of the bug.

APDADraft 13 8120187

Chapter 1: Overview Apple IIGS Debugger

Breakpoints

A breakpoint is an instruction at which execution is suspended. The Apple IIGS Debugger
allows you to set up to 17 memory addresses as breakpoints. Breakpoints can be either
real or interpreted. A real breakpoint is a BRK instruction that the debugger has insened in
the code. An interpreted breakpoint is a memory address at which the debugger suspends
execution in trace mode. When interpreted breakpoints are set, the debugger compares the
address of the instruction about to be executed (that is, the program counter) to the
breakpoint addresses before executing each instruction.

Instructions for setting breakpoints are given in the section "Breakpoint Subdisplay" in
Chapter 3. In order for breakpoints to work when the debugger is running in real-time
mode, you must insert real breakpoints into the code. To set real breakpoints, set the
breakpoint addresses as described in the section on the Breakpoint subdisplay, press Esc to
return to the command line, and then type IN and press Return. The letter i is displayed
under BRK in the upper left comer of the Master Display to indicate that real breakpoints are
in. To remove real breakpoints, type OUT on the command line and press Return. The
letter 0 is displayed under BRK in the upper left comer of the Master Display to indicate that
real breakpoints are out. Real breakpoints must be removed before you can set, change, or
delete breakpoints.

For each breakpoint, you must set a trigger value. The trigger value specifies the number
of times that the instruction at the breakpoint address must be encountered before the
debugger suspends execution. For example, if you set the trigger value for a breakpoint to
2, the debugger executes that instruction the first time it is encountered but suspends
execution, rather than executing the instruction, the second time it is arrived at. To disable
a breakpoint without removing the breakpoint address, set the trigger value to 0;
breakpoints with trigger values of 0 are ignored by the debugger.

In trace mode, execution stops when the trigger value is reached for both real and
interpreted breakpoints. In real-time mode, execution stops when the trigger value is
reached for real breakpoints only. In single-step mode, the computer beeps when the
trigger value is reached.

In trace and single-step modes, execution stops any time a BRK instruction is encountered
that is 1IOt set as a breakpoint. In real-time mode, you can select whether a nonbreakpoint
BRK causes a return to the debugger or an exit to the Monitor. To have nonbreakpoint BRK
instructions return you to the debugger, type DBRK on the command line and press Return.
A d appears nextto the i or 0 in the upperleft comer of the Master Display. To have
nonbreakpoint BRK instructions cause an exit to the Monitor, type UBRK on the command
line and press Return. A u appears in the upper left comer of the Master Display. The
default mode is DBRK: you are returned to the debugger when a nonbreakpoint BRK is
encountered during real-time execution.

When a breakpoint is triggered, execution stops and you can check the contents of the
registers and memory locations shown in the Master Display or Memory Display. To
resume execution in trace mode, type T on the command line and press Return. When an
interpreted breakpoint is triggered in single-step mode, the computer beeps. Continue
pressing the Space bar to continue stepping through the code. When a BRK instruction that
you did not set as a breakpoint is encountered in trace or single-step modes, execution
stops, the computer beeps, and the Register subdisplay contains information about the state

APDADraft 14 8120187

Apple IIGS Debugger Chapter 1: Overview

of the machine when the break occwred. Use the ON command to see the Master Display,
if necessary.

To clear all breakpoints (when real breakpoints are out), type CLR on the command line and
press Return.

Printing
You can print any debugger text screen, including help screens and your program's
display, by typing P on the command line and pressing Return. You cannot use the P
command to print graphics screens.

To set the slot to which the debugger assumes the printer is connected, use the SET
command as described in the section "Configuring the Master Display" in Chapter 3.

Although the debugger is launched by the Apple IIGS Programmer's Workshop, it is not an
APW utility program. Therefore, the printer initialization string and other printer variables
you set in APW are not active when you are in the debugger. If you use the Apple IIGS
computer's built-in printer port, you can use the Control Panel to set printer communication
options.

Using Monitor Routines
The Apple IIGS Monitor consists of a set of ROM-based routines that you can use to

'- perfonn many functions not otherwise available from the debugger. The Monitor provides
the following features:

• You can examine the contents of any locations in memory, including ROM routines.

• You can change the contents of any locations in RAM.

• You can copy a block of data from one location in memory into another and verify
that the contents of the two blocks of memory are identical.

• You can clear a range of memory.

• You can search for one or more bytes within a I1IIIge of memory addresses.

• You can examine and change the contents of Apple IIGS registers.

• You can convert hexadecimal numbers to decimal and vice versa.

• You can perfonn hexadecimal addition and subtraction.

• You can run a machine-language program that is in memory.

• You can enter machine-language programs directly from the keyboard, using standard
65816 mnemonics (this Monitor routine is called the Mini-Assembler).

• You can disassemble a I1IIIge of addresses.

• You can start Applesoft BASIC.

• You can change the screen display.

• You can change the cursor symbol.

• You can redirect input and output links.

APDADraft 15 8120187

Chapter 1: Overview Apple llGS Debugger

• You can call Apple IIGS tool sets.

• You can set and display the system clock time and date.

To enter the Apple IIGS Monitor, type MON on the debugger's command line and press
Return. To return from the Monitor to the debugger, press Control-Y and then press
Return. The Apple llGS Monitor is described in detail in the Apple llGS Firmware
Reference manual.

APDADraft 16 8120187

Apple IIeS Debugger Chapter 2: Using the Debugger

Chapter 2

Using the Debugger

The Apple IIGS Debugger allows you to load your program into memory and to run
through it under the debugger's control. As the program executes, you can examine the
contents of the 65816's registers, of your program's direct page and stack, and of any
locations in memory in which you are interested You can interact with the program as
required, returning to the debugger's display at breakpoints that you set or when the
program crashes.

The Apple IIGS Debugger can display an assembly-language disassembly of your
program's machine code. It cannot execute your source code or recreate your source code
from machine code. Therefore, the debugger is easiest to use with assembly-language
programs. However, even if your program was written in a higher level language and you
have no knowledge of assembly language, you can use the debugger to detennine in which
load segment the problem lies. You can also gain a better understanding of the operation of
your program by examining the contents of the stack, direct page, memory, and registers.

We do not have the space here to examine in detail all of the abilities of the Apple IIGS
Debugger, but we will give you some hints that should help get you started debugging your
program.

Debugging Segmented Programs
In order to use the Apple IIGS Debugger to debug a segmented program, you must know
wbere in memory each segment has been loaded. In the case of dynamic segments, you
must know not only where the segment has been loaded, but whether it has been loaded.
This infonnation is available through a deslc accessory provided with the Apple IIGS
Debugger called Loader Dumper.

To load your program using the debugger and to determine where in memory each segment
is loaded, use the following procedure:

1. From the APW command line, type DEBUG and press Return to call the debugger.
The debugger Master Display will appear on the screen.

2. Type LOAD pathname, where pathname is the pathname of the program you want to
debug, and press Return. Your program is now loaded into memory.

3. Press Apple-Contol-Esc to get the Desk Accessories menu.

4. Select Loader Dumper from the Desk Accessories menu. The Loader Dumper
main menu will appear on the screen.

5. Select Dump Pathname Table from the Loader Dumper main menu. The
pathname table provides a cross-reference of pathnames and User IDs.

APDADraft 17 8120187

Chapter 2: Using the Debugger Apple TICS Debugger

6. Scroll through the pathnarne table (by pressing Return for each pathname) until you
find the pathnarne of the program you are testing. Make a note of the User ID ofthe
program.

7. Press Esc to get back to the Loader Dumper main menu.

8. Select Get UserID Information from the main menu.

9. Type in the User ID of your program in response to the prompt that appears on the
screen.

10. A listing of all the load segments in your program appears on the screen. Write
down the memory locations of all the segments.

11. Press Esc to return to the main menu, press Esc again to quit Loader Dumper, and
then select Qu i t from the Desk Accessories menu to return to tlte debugger.

You now have several possible courses of action open to you. If you do not have any idea
in which load segment your program is crashing, you can start by running the program
until it crashes and then examining the debugger display to determine the location of the
problem instruction. If you know in which segment the problem lies, you can go
immediately to that segment, or you can set a breakpoint at the beginning of that segment
and run the program until it stops automatically at that breakpoint.

Watching a Running Disassembly
If your program does not require any input from the keyboard, you can watch a
disassembly on the debugger screen as the program executes to fmd the exact location at
which it goes astray. This techniquewill probably be useful only for short programs or
programs that crash almost immediately upon execution, because the program will execute
very slowly while the debugger display is on the screen.

To run your program under control of the Apple nOS Debugger, with a running
disassembly appearing on the screen, use the following procedure:

1. If you have not already done so, load your program as described above. Write
down the information in the Register subdisplay of the debugger so that you can
return the IDlIChine to its initial state each time you run your program.

2. Type s and press Return. The debugger is now in single-step mode, starting with
the first instruction of your program. Each time you press the Space bar, the
instruction highlighted in the Disassembly subdisplay is executed. To return to the
debugger's command line, press Esc. WalCh the contents of the registers and the
stack as you execute commands. If any specific memory locations are critical to the
execution of the program, you can display those locations in the RAM subdisplay of
the Master Display.

To execute commands automatically in quick succession (that is, to enter trace
mode), press Return. To start trace mode from the debugger's command line, type
T and press Return. Your program will begin executing under debugger control,
one instruction at a time in rapid succession. The speaker beeps each time an
instruction is executed You can turn off the speaker by pressing Q. You can stop
execution at any time by pressing Esc.

3. When your program executes a BRK instruction, the disassembly stops scrolling.
The last execution executed (the BRK instruction) is highlighted. The last several

APDADraft 18 8120187

Apple lIes Debugger Chapter 2: Using the Debugger

instructions executed appear above the current instruction. A BRK instruction is
actually a null (a zero byte). Since a BRK instruction is not a nonnal part of a
program, the fact that your program executed one means that some previous
instruction (contrary to your intent when you wrote the program) sent the program
off to the wrong place in memory. With luck, the instruction that sent your program
off into Never Never land will still be on the screen.

If the errant instruction is no longer on the screen, set a code-window range as
described in the section "Using Memory-Protection Ranges"later in this chapter and
run the program again.

Important: Remember to restore all the fields in the debugger's Register
subdisplay to their original values before attempting to rerun the program. If you
do not, the program will probably not run correctly through no fault of its own.

Using Breakpoints
If you have to interact with your program in order for it to run, if you have some idea of
which segment contains the bug, or if you just want to execute the program more quick:iy,
you can set one or more breakpoints before running the program. A breakpoint is a
location at which the debugger suspends execution of the program, giving you the
opportunity to examine the disassembly and the state of the machine at that location.

To set breakpoints and run the program under debugger control, use the following
procedure:

I. If you have not already done so, load your program as described above. Write
down the information in the Register subdisplay of the debugger so that you can
return the machine to its initial state each time you run your program.

2. As described above, use the Loader Dumper routine to determine the starting
locations of the load segments of your program.

3. Back in the debugger, type BP and press Return in order to specify breakpoints.
Following the instructions in the section "Breakpoint Subdisplay" in Chapter 3, set
breakpoints at the beginning of each load segment (if you do not know in which
segment the bug lies) or at the beginning of any segment that you want to examine
more closely.

4. If you must interact with the program in order for it to run, set a keystroke modifier
that will not interfere with your program (The keystroke modifier is a key that you
must press simultaneously with any key that you want the debugger to interpret as a
debugger command. For example, if you set the Option key as the keystroke
modifier, you must press Option-Esc to terminate trace mode. If you do not press
the keystroke-modifier key, the debugger ignores the keypress and your program is
free to act on it)

5. Type OFF and press Return. The debugger display will be cleared so you can see
the normal display of your program. Trace mode also runs more quick:iy with the
debugger's display turned off.

6. Type T and press Return. Your program will begin executing under debugger
control, one instruction at a time in rapid succession. The speaker beeps each time
an instruction is executed. You can turn off the speaker by pressing Q (remember
also to press the keystroke-modifier key that you have set, if any). Interact with

APDADraft 19 8120187

Chapter 2: Using the Debugger Apple IIGS Debugger

your program as you normally do (it will run more slowly than normal). You can
stop execution at any time by pressing Esc (remember the keystroke modifier!).

7. When the debugger comes to a breakpoint, the debugger's Master Display appears
on the screen. The number shown under K/PC in the Register subdisplay indicates
the location of the instruction at which the program stopped. To see a disassembly
of the program starting at the breakpoint location, type the K/PC address followed
by an L (for example, Ol0240L) and press Return.

8. If you are narrowing in on the bug, you might want to use single-step mode with the
debugger's Master Display on the screen. To step through the segment one
instruction at a time, type s and press Return. Now each time you press the Space
bar (remember the keystoke modifier), one instruction is executed You can watch
the contents of the stack and the machine's registers as each instruction executes.
You can also display the contents of up to 19 memory locations, which you can
watch as the program executes.

9. To return to executing the program automatically, press Esc to exit single-step mode,
and then type OFF and T as before. Each time the debugger gets to a breakpoint, it
will return you to the Master Display.

If at any time during execution of the program a dynamic segment is loaded, you can pause
execution of your program and go back to Loader Dumper to find out where in memory it
has been placed.

Breakpoints can be used for other purposes than finding a particular segment. Suppose,
for example, that your program seems to run alright for awhile, then crashes after having
lulled you into a false expectation of success. In this case, it is possible that some routine
is failing, not the first time it is run, but only after going through several iterations. To
handle such a situation without stopping the program every time the routine is executed,
you can include a trigger value for a breakpoint. The debugger counts the number of times
it encounters the breakpoint and suspends execution only when the trigger value is reached.

If you must execute a routine a full speed in order for it to work correctly, you can insert
real breakpoints into the code. When you do so, the debugger actually inserts BRK
instructions into memory at the breakpoint locations. Trigger values work for real
breakpoints that you have set; the debugger will still suspend execution any time it
encounters a BRK instruction that you did not set as a breakpoint.

Using Memory-Protection Ranges
It may be that certain portions of your code must be executed at the full speed of the 65816
microprocessor. To cause this to happen automatically every time you trace through the
program, you can set any areas of memory you choose as code-trace ranges. When the
program executes a jump to a location within a code-trace range, the debugger relinquishes
control to your program and the code is executed at full speed. The portion of memory
used to run tool calls is automatically set as a code-trace range when you load the debugger.

You can also set one or more portions of memory (the limits of your code as revealed by
Loader Dumper, perhaps) as code-window ranges. If the program attempts to execute code
outside the code-window ranges you have set, execution stops. You might want to set a
code-window range, for example, if your program is executing a jump to execution at some

APDADraft 20 8120187

Apple IIGS Debugger Chapter 2: Using the Debugger

incorrect memory location and trashing memory before it stops, so that you have to reboot
the machine every tittle you try to run the program with the debugger.

If your program loads a dynamic segment during execution and you want to pause as soon
as control is transferred to the dynamic segment, you can set code window ranges to
include all the static segments at the start of the program. Then when the dynamic segment
is loaded and control is transferred to it, the program will be outside any code window
range and execution will stop.

Important: Once you have set any code window range, no code will be executed
that is not in a code window range. Therefore, if you set a code window range
equal to the memory location of one of your program segments, you must set code
window ranges for all other segments that you want to run. Remember also to set
the portion of memory used to run tool calls (E I/OOOO-E llOOOF) to a code window
range if your program makes any tool calls.

Debugging Multilanguage Programs
One of the advantages of using the APW development environment is that it allows you to
link together routines written in different programming languages. This facility can lead to
unique problems, however, especially when information is passed between routines written
in different languages.

To use the Apple IIGS Debugger to debug parameter-passing problems, use the following
procedure:

I. Set breakpoints at the beginning of the calling segment and at the beginning of the
called segment.

2. Run the program in trace or real-time mode until the first breakpoint is reached.
Search this segment to find the JSL that calls the other segment. If you do not need
to interact with the program, the easiest way to do this is to run in trace mode with
the Master Display on the screen until the second breakpoint is reached. Then both
the JSL and the fIrst instruction of the called segment will be on the screen. If you
cannot do that, try listing a disassembly (using the addressL command) until you see
the appropriate JSL.

3. Set a breakpoint just before the JSL that calls the second segment. You can remove
the other two breakpoints now if you wish.

4 . Run the program until the JSL breakpoint is reached. Parameters are normally
passed either on the stack or in the A, X, and Y registers. The actual information
passed may be a pointer to the data rather than the data itself. By examining the
contents of the registers, the stack, and memory, determine where the parameter is
that is being passed and that it has the value you expect.

5 . Execute the JS L. The return address should have been added to the stack.

6. Step through the segment in single step-mode. Is the called routine reading the
parameter passed to it? If more than one parameter was passed, are the parameters
being read in the correct order? Is an integer being handled as floating point, or is an
ASCII string being handled as a number? Is a number being truncated or rounded
inappropriately? By a careful study of the action of the called routine, you should be
able to determine the source of the problem.

APDADraft 21 8/20/87

Chapter 2: Using the Debugger AppLe lies Debugger

7. If all parameters are being passed correctly. perhaps the problem occurs when the
results are passed back to the calling routine. To fmd the RTL. return to the JSL and
start single-step mode. Then press the R key; the debugger will enter trace mode and
automatically stop when the next RTL is reached. You might have to do this several
times until you reach the right R TL. Study the stack and registers as before to
determine whether the results are being passed correctly back to the calling routine.

APDADraft 22 8/20/87

Apple llGS Debugger Chapter 3: Command Reference

Chapter 3

Command Reference

In this chapter, each of the subdisplays of the Master Display is described in detail. This
chapter includes commands for customizing the Master Display and for setting memory
addresses, memory-protection ranges, and breakpoints. It describes the use of the
Disassembly subdisplay, as well as of all the commands that you can enter on the
command-input line.

Register Subdisplay

The Register subdisplay, along the top of the Master Display, shows the contents of the
Apple lIas Debugger's registers and the 65816's registers.

Debugger Registers

The Apple lIas Debugger's registers are displayed toward the left end of the Register
subdisplay as follows:

Key: keystroke modifier. This hexadecimal number indicates the key or key combination
that you can use as a command filter to prevent debugger commands from interfering with
your test program when your program is running in trace or single-step modes. To select
the key or keys to be used as the keystroke modifier, use the following command:

KEY=keynum Each bit of the binary number represented by the hexadecimal number
keynum specifies one of the keys to be used as a keystroke modifier;
set that bit to 1 to make that key part of the keystroke modifier. The
bits are assigned as follows:

APDADraft 23 8120187

Chapter 3: Command Reference Apple IIGS Debugger

Bit: 7 6 5 4 3 2 1 0

Key: A 0 K R a. C S

Hex Value: 8J ..:[) 2) 10 Q3 04 02 01

The abbreviations in this diagram refer to the following keys:

Abbreviation Key

Shift

Control

Caps Lock

repeat: hold the key down until it repeats

S

C
CL

R

K any key on an external keypad (not the keypad on
the Apple lIas keyboard)

o
A

Option

~

For example, to set both the Shift and Caps Lock keys as keystroke modifiers, use the
following command:

KEY=05

The KEY value in the register subdisplay changes to 05 to indicate the key combination that
is set as the keystroke modifier (01 for the Shift key plus 04 for the Caps Lock key).
Now, when you want to send a command to the debugger while in trace or single-step
modes, press both the Shift and Caps Lock keys while pressing the key that invokes the
command. For example, to switch to the slow trace rate, press the following key
combination:

Shift-Caps Lock+-.

BlUt: breakpoint flags. The first flag reads i (for in) if you have used the debugger to set
real breakpoints in the program. If you have transparent breakpoints set, this flag reads 0

(for out). The second flag reads d (for debugger) if BRK instructions (other than those that
you have inserted with the debugger) return you to the debugger. If such BRKS cause an
exit to the Monitor, this flag reads u (for user).

DebugD: debugger's direct page. This value indicates the starting location of the
debugger's lK byte direct-page/stack segment in bank $00. For example, if the
Debugger's direct page begins at 0011000, then DebugD reads 1000.

65816 Registers

The 65816's registers are displayed as follows:

K/PC: program bank register (K) and program counter (PC). The program bank register
serves as the upper 8 bits of the 24-bit address of the next instruction to be executed; the
program counter holds the lower 16 bits of the address of the next instruction. There is no
carry from the high bit of the PC into the low bit of the K register when the PC is

APDADroft 24 8/20/87

---.

Apple IIGS Debugger Chapter 3: Command Reference

incremented. When you specify an address in a debugger command and do not specify the
bank number. the current value of the K register is used.

B: data-bank register. This value provides the upper 8 bits of the address in addressing
modes that generate only the lower 16 bits.

D: direct-page register. This value determines the location of the direct page in bank $00.
For example. if the direct page begins at 00/1234. then Dreads 1234.

s: stack pointer. This register indicates the next available location on the stack. If the
emulation-mode flag e == 1. S must be between $0100 and $OIFF.

A: accumulator: This register stores flrst one operand and then the result for most
arithmetic and logical operations. This register is 2 bytes wide if the emulation-mode flag
e == 0 and the memory/accumlator-mode flag m == 0; otherwise. it is considered to be 1 byte
wide (though the high byte can still be accessed through an XBA instruction).

x: X register. This register is used to provide index values for address calculations. and it
holds operands for some arithmetic and logical operations. This register is 2 bytes wide if
e == 0 and the index-register-mode flag x == 0; otherwise. it is considered to be 1 byte wide
(the high byte is forced to 0).

Y: Y register. This register is used to provide index values for address calculations. and it
holds operands for some arithmetic and logical operations. This register is 2 bytes wide if
e == 0 and x == 0; otherwise. it is considered to be 1 byte wide (the high byte is forced to 0).

M: machine-state register. This pseudoregister.located at $C068 (in any of banks $00.
$01. $EO. or $El). can be used to set a variety of Mega II-chip soft switches. The M
register is described in detail in the Apple IIGS Hardware Reference manual. The bits that
comprise this hexadecimal number indicate the status of the following machine states:

Bit Name

o SlotCxROM

1 ROMBANK

Meaning

If this bit is 1. internal ROM at $CxOO is active; if O. external ROM
(that is. ROM on the circuit board at $CxOO) is active.

This bit is reserved; it must equal O.

Warning: Setting ROMBANK to 1 will almost certainly cause the system to
crash.

2 BANK2

3 RDROM

4 RAMWRT

5 RAMRD

6 PAGE2

APDADraft

If this bit is O. bank I language-card RAM (at $0000 through
$DFFF) is selected; if 1. bank. 2 is selected. Switching banks with
this bit does not write-enable language-card RAM. Use the L flag to
both write-enable RAM and switch language-card banks.

If this bit is 1. language-card ROM is read-enabled; if O. language­
card RAM is read-enabled.

If this bit is O. main-memory RAM is write-enabled; if 1. auxiliary­
memory RAM is write-enabled.
If this bit is O. 'main-memory RAM is read-enabled; if 1. auxiliary­
memory RAM is read-enabled.

If this bit is O. text page 1 is selected; if 1. text page 2 is selected.

25 8120187

Chapter 3: Command Reference Apple IIGS Debugger

7 ALlZP If this bit is 0, bank-switched memory, stack, and zero page are in
main memory; if 1, they are in auxiliary memory.

Q: "quagmire" register. This pseudoregister is composed of the lower 7 bits of the
shadow register at $C035, and the high bit of the configuration register at $C036. The bits
of this hexadecimal number set the following states:

o text page 1 1 = shadowing off

I Hi-Res graphics page 1 I = shadowing off

2 Hi-Res graphics page 2 1 = shadowing off

3. Super Hi-Res graphics 1 = shadowing off

4. auxiliary-memory Hi-Res graphics 1 = shadowing off

5. reserved must be 0

6. IOLC (I/O and language card) 1 = shadowing off

7 . high-speed operation 1 = high speed on

Shadowing is described in the Technical Introduction to the Apple JIGS manual and the
Apple JIGS Hardware Reference manual.

L: language-card bank register. This flag emulates the Monitor value=L command. Set L
= 0 to write-enable language-card RAM and select bank I. Set L = 1 to write-enable
language-card RAM and select bank 2. Changing L automatically changes bit 2 of the M
register.

P: processor status register. This register contains status flags and mode-select bits. The
individual bits are shown at the right end of the Register subdisplay, as follows:

APDADraft 26 8120187

Apple lles Debugger

r1ag Name

n negative-result flag

v overflow flag

m

1

x

b

d

i

z

c

e

index-register-mode
select (65816 native
mode; e=O)

break flag (6502
emulation mode; e = 1)

decimal-mode
select

IRQ-disabled flag

zero-result flag

carry flag

emulation-mode flag

Chapter 3: CoT1ll7lilllli Reference

Meaning

If n = I, the result was negative.

If v = I, an overflow occurred.

In 65816 native mode (e = 0), this bit is the
memory/accumulator-mode select. If m = 0,
memory and accumulator references are 16 bits; if m
= I, tbey are 8 bits. In 6502 emulation mode (e =
0, this bit has no significance and the label changes
from m to 1.

See flag IlL

If x = 0, the X and Y registers are 16 bits; if x = I,
then 8 bits. In 6502 emulation mode (e = 1), this bit
changes to b.

If b = I, the interrupt was a break. In native mode
(e = 0), this bit changes to x.

If d = 0, binary mode is selected; if d =1, decimal
mode is selected.

If i = I, interrupt requests (IRQ) are disabled.

If z = I, the result was zero.

If c = I, a carry occurred.

If e = I, 6502 emulation mode is selected.

Altering the Contents of Registers

To alter the contents of the registers displayed in the Master Display, type one of tbe
following commands on the command line and press Return (note that tbese commands are
case sensitive):

APDADraft 27 8120187

Chapter 3: CommandRejerence Apple IIGS Debugger

Command Action

e Toggle the e flag: if this flag is set to I, change it to 0; if it's set to 0,
change it to 1.

x Toggle the x flag: if this flag is set to I, change it to 0; if it's set to 0,
change it to 1. This command works only if e = O.

rn Toggle the m flag: if this flag is set to I, change it to 0; if it's set to 0,
change it to 1. This command works only if e = O.

register=value Set the register specified by register to the value specified by value.
The values for all registers are given as hexadecimal numbers, except
for the processor status bits, which can be either I or O. Register
names are case sensitive. For example, to set the X index register to
$12EO, use the following command:

X=12EO

Note: The lengths of the X, Y, and A registers depend on the settings of the e, x,
and m processor bits, as discussed in the register descriptions in the preceding
section, "65816 Registers."

Stack Subdisplay

The Stack subdisplay, along the left side of the Master Display, shows the contents of a
portion of the 65816's stack. This subdisplay shows the addresses and contents of the
memory locations just before and just afta" the location pointed to by the stack pointer. The
current location of the stack pointer is shown in the Register subdisplay (see the earlier
section, "Register Subdisplay'') and is highlighted in the Stack subdisplay. You can
change the position of the current stack location within this subdisplay by using the SET
conunand. See the section "Configuring the Master Display" later in this chapter for a
discussion of the SET command.

See the section "RAM Subdisplay" later in this chapter for a discussion of commands you
can use to change values in memory.

APDADraj't 28 8120187

"-

Apple IIGS Debugger Chapter 3: CommandReference

Disassembly Subdisplay

ITA IOSO,I:
, IF 20 3D OJ .TA onolo
= AI ,., 51 LDA fU11

.1lIo IUlO (.1OlOI

.D lon IUOI
'1oA J4l1
na lOU '·0004)
nil. lUI
Ul 0010
LOa. tal
LOll: U'JU

, 4r)0 f.I 02 loa OUEIO
, ~ It 22 ,JIlL (2l1',

JIL (rlll,J:)
&DC ,.O.'I,Y
au (On.Y
.n

The Disassembly subdisplay, along the right side of the Master Display, shows a
disassembly of your program's object code using standard APW 65816 assembly
mnemonics and address-mode syntax. As shown in Figure 3.1, each line of this
subdisplay is composed of three parts: the address, the bytes stored starting at that
address, and the disassembled version of those bytes.

12/1000: AD 15 18 LDA 1815
12/1003: 9D 50 10 STA 1050,X
12/1006: 9F 20 30 05 STA 053020
12/100A: A9 77 66 LDA 16677
12/100D: 82 20 10 BRL 2030 (+1020)
12/1010: 80 20 BRA 1032 (+20)
12/1012: F4 12 34 PEA 3412
12/1015: 62 FC FF PER 1012 (-0004)
12/1018: 87 45 STA [45]
12/101A: 62 00 FO PER 001D
12/101D: A9 23 LDA t23
12/101F: A2 45 67 LDX 16745
12/1022: 4F 50 4E 02 EOR 024E50
12/1026: DC 89 23 JML (2389)
12/1029: 7C BE F2 JSL (F2BE, X)

12/1031: 00 23 BRK 23

Figure 3.1. Disassembly Subdisplay

For example, look at the first line of the Disassembly subdisplay in Figure 3.1. The first
part of the line, the address, is composed of the high-order byte ($12) that specifies the
memory bank, followed by the 2-byte ($1000) location within that bank of the first byte in
the instruction. The next 1 to 4 bytes (AD 15 18 in this example) show the contents of
memory starting at that location, corresponding to the instruction that the Apple IIOS
Debugger interpreted to stan at that location. The last part of the line (LDA 1815) shows
the 65816 opcode and operand. Operand address formats, summarized in Table 3.1, are
the same as those used by the Apple IIos Monitor Mini-Assembler and described in the
Apple IIGS Firmware Reference manual. All numbers are hexadecimal.

APDADraft 29 8120187

Chapter 3: Command Reference

Table 3.1. Disassembly Operand Formats

Addressing Mode

Absolute
Absolute indexed with X
Absolute indexed with Y
Absolute indexed indirect
Absolute indexed long
Absolute indirect
Absolute long
Accumulator
Block move
Direct page
Direct page indexed with X
Direct page indexed with Y
Direct page indexed indirect with X
Direct page indirect
Direct page indirect indexed with Y
Direct page indirect indexed long
Direct page indirect long
Immediate
Implied
Program counter relative
Program counter relative long
Stack
Stack: relative
Stack relative indirect indexed with Y

Example Operand

1234
1234,X
1234,Y
(1234,X)
081234,X
(1234)
081234

5678
12
12,X
12, Y
(12, X)
(12)
(12) , Y
[12) , Y
[12)
H2 or 111234

1000 {+l2)
1000 {-1234}

10,S
(10,S),Y

Apple lIGS Debugger

You can change the position of the clUTent instruction within the subdisplay by using the
SET command. See the section "Configuring the Master Display" later in this chapter for a
discussion of the SET command.

Note: The Apple IIGS Debugger disassembler interprets all bytes in memory as
65816 instructions; it cannot distinguish between code and data. Strings of data
therefore appear as nonsense instructions in the Disassembly subdisplay.

When you start the debugger, the Disassembly subdisplay is blank. The debugger enters
values into this subdisplay in response to any of the following command-line commands.
Whenever you enter an address, you can include the slash after the bank or not, as you
wish. If you do not include a bank number, the current value of the K register is used for
the bank.

APDADraft 30 8120187

Apple lIeS Debugger

Command

addressL

L

addressT

addressS

ASM

Chapter 3: Command Reference

Action

The contents of memory staning at address are disassembled,
and the next 19 lines of that disassembly are displayed.

The next 19 lines of the disassembly are displayed, starting at
the current K/PC address. If you have executed no previous
disassembly commands, the disassembly starts at the staning
address of the first segment of your program.

Enter trace mode at address address. If you omit address, the
current K/PC address is used. As the Apple IIos Debugger
traces the code, it disassembles it and lists the results in the
Disassembly subdisplay. The currently executing instruction is
highlighted. Trace mode is described in the section "Single-Step
and Trace Modes" in Chapter l.

Enter single-step mode at address address. If omit address, the
current K/PC address is used. As the Apple lIas Debugger
steps through the code, it disassembles it and lists the results in
the Disassembly subdisplay. The currently executing instruction
is highlighted. Single-step mode is described in the section
"Running Your Program" in this chapter.

Clear the Disassembly subdisplay to prepare for entering a
sequence of instructions using the address:instruction
command.

address:instruction This command causes the debugger to assemble the instruction
instruction and place the opcode and operand in memory at
address~ Simultaneously, the instruction is placed on the last
line of the Disassembly subdisplay. Use the ASM command
before using this command.

Space bar instruction

See the section" Altering the Contents of Memory" in this
chapter for more information on this command and a discussion
of other commands to change values in memory.

Once you have used the address:instruction command, pressing
the Space bar causes the next available address to be printed on
the command line. Type in the next instruction to be assembled
and press Return.

The Disassembly subdisplay shows the instructions following the current instruction in
memory. If the current instruction jumps to or calls another routine, however, the address
called or jumped to appears as the current instruction after the call or jump is executed. For
example, assume the Disassembly subdisplay is as follows:

12 / 10 2E:C1 06

1
12/1037:AD

APDADraft

18

CMP (06), Y

LDA (1815)

31 8120187

Chapter 3: Command Reference Apple IIGS Debugger

When the JML instruction is executed, the current instruction becomes the one jumped to,
and the display changes accordingly. It might look like this:

12/1030:0A ASL

77 66 LOA i6677

RAM Subdisplay

The RAM subdisplay, located to the right of the Stack subdisplay, shows the contents of
any 19 memory locations you select As illustrated in Figure 3.2, each location can show
either a single hexadecimal byte value and the equivalent ASCII character, a 2-byte value,
or a 3-byte value. The 2- and 3-byte values are displayed as addresses; that is, the low byte
(the one corresponding to the address in the left column) is displayed at the right. For
example, if you place the value lA in location 01/0100, IB in 0110101, and lC in 01/0102,
and display a 3-byte value at 0110100, then the line of the RAM subdisplay looks like this:

01/0100: 1C1B1A

APDADraft 32 8120187

Apple JIGS Debugger Chapter 3: Command Reference

00/0305: E1 'a'
01/08EO: 9DBF
01/2003: 121200
02/0BEA: 40 ,It '
01/0100: 1C1B1A
01/0100: 1A

I: 00/0101: 1B
00/0102: 1C
00/0000: AO , ,
00/0000 : AO , ,
00/0000 : AO ,
00/0000 : AO , ,
00/0000: AO , ,
00/0000: AO , ,
00/0000: AO , ,
00/0000 : AO , ,
00/0000: AO , ,
00/0000, AO , ,
00/0000, AO , ,

Figure 3.2 RAM Subdisplay

To modify the contents of the RAM subdisplay, type the following conunand on the
command line and press Return:

MEM

The first line in the subdisplay will be highlighted. You can now use any of the following
commands. (fo enter specific values into memory locations. use the commands described
in the section "Altering the Contents of Memory" later in this chapter.)

APDADraft 33 8120187

Chapter 3: Command Reference Apple lIes Debugger

Command

Return

.!.

t
address:

H

P

L

?

Esc

Action

Move to next address down.

Move to next address down.

Move to next address up.

Display the contents of memory staning at address. You can include a
slash (I) after the bank value or omit it when entering the address;
either fonn works. If you do not include the bank number, the current
value of the K register is used for the bank.

Display the contents of the cell as hexadecimal and ASCn.

Display the contents of the cell and next cell as a 2-byte address.

Display the contents of the cell and next two cells as a long (3-byte)
address.

Display a help screen. Press any key except Esc to return to the RAM
subdisplay.

Return to the command line.

Breakpoint SubdispJay

The Apple nGS Debugger allows you to set from 0 to 17 breakpoints in your program.
When you set a breakpoint, you indicate the location at which you want the program to
suspend execution, and the number of times you want the breakpoint to be encountered
before execution is interrupted. Each line of the Breakpoint subdisplay shows a breakpoint
address (bank/location in bank), the number of times through the breakpoint before it
triggers. and the number of times the program has actually passed through this breakpoint
so far. For example, the first line in the Breakpoint subdisplay in Figure 1.1 is as follows:

EO/lOOD-03-01

This line indicates that the Apple nGS Debugger is set to suspend execution of your
program the third time it encounters the instruction located at address 100D in bank EO. and
that it has already executed this instruction one time.

APDADrajt 34 8120187

--

Apple IIGS Debugger Chapter 3: Command Reference

The default Master Display configuration provides nine lines for breakpoints. You can
delete breakpoint lines, thus increasing the number of memory-protection lines, or you can
delete memory-protection lines to increase the number of breakpoint lines. (The Memory­
Protection subdisplay is directly below the Breakpoint subdisplay.)

To alter the contents of the Breakpoint subdisplay, type the following command and press
Return:

BP

You can now use any of the following single-keystroke commands:

Command

Return

J..

t

Delete

?

Esc

Action

Move to the next address down.

Move to the next address down.

Move to the next address up.

Move left to the address. Type in the starting address of the
instruction at which you want the debugger to suspend execution.
You can include a slash (j) after the bank value or omit it when
entering the address; either form works. If you do not include the
bank nwnber, the current value of the K register is used for the bank.

Move right to the trigger value. Type in a I-byte hexadecimal number
to indicate the number of times the debugger should execute this
instruction before suspending execution. If this value is 0, the
debugger ignores the breakpoint. If this value is 1, the debugger stops
each time the breakpoint is encountered. If this value is any number n
from 2 to 255, the debugger stops every nth time the breakpoint is
encountered.

Delete the currently highlighted breakpoint and increase the number of
memory-protection lines by one.

Display a help screen. Press any key except Esc to return to the
Breakpoint subdisplay.

Return to the command line.

The following breakpoint commands can be entered from the Master Display command
line. Press Return after typing each of these commands:

APDADraft 35 8120187

Chapter 3: Command Reference Apple IIGS Debugger

Command

CLR

IN

Action

Zero all breakpoints to OOtUOOO-OO-OO. This command does not
remove breakpoint lines from the screen. Use the Delete key as
described in the preceding description of the BP command to remove
breakpoint lines.

Insert real breakpoints. The BRK register changes from 0 to i, and
BRK instructions are inserted in memory at the addresses specified by
the Breakpoint subdisplay. You must insert real breakpoints in the
code in order to make the debugger suspend execution in real-time
mode. Real and interpreted breakpoints are discussed in the section
"Breakpoints" in Chapter 1.

Note: You carmot edit the Breakpoint subdisplay when real breakpoints are in.
Use the OUT command before attempting to change breakpoints or trigger values.

OUT

DBRK

UBRK

Remove real breakpoints. The BRK register changes from i to 0, and
the BRK instructions that were inserted in memory by the IN command
are replaced with interpreted breakpoints. Real and interpreted
breakpoints are discussed in the section "Breakpoints" in Chapter I.

Return to the debugger when a BRK instruction that has not been set as
a breakpoint is encountered while in real-time mode. A d appears next
to the i or 0 in the BRK register display. DBRK is the default.

Exit to the Monitor when a BRK instruction that has not been set as a
breakpoint is encountered while your program is running in real-time
mode. A u appears next to the i or 0 in the BRK register display.

Memory-Protection Subdisplay

The Apple IIGS Debugger allows you to specify address ranges that are protected during
execution in trace or single-step modes. Each address range you have protected is shown
in the Memory-Protection subdisplay, followed by a code that indicates the type of
protection set, as follows:

Code Meaning

APDADraft 36 8120187

Apple llGS Debugger Chapter 3: Command Reference

T Code-trace range. All code outside this range is executed in single-step or
trace mode. When your code executes a JSL to this memory-protection
address range, the code inside this range is executed in real time. When the
matching RTL is encountered, execution returns to single-step or trace mode.
While the code inside a code-trace address range is being executed, the line in
the Memory-Protection subdisplay specifying that range is highlighted on the
screen.

W Code-window range. If one or more code-window address ranges are
specified, code is executed only if it is inside one of the code-window ranges.
Any time the program counter (KIPC) equals an address not in any of the
code-window address ranges, execution stops. (If you don't specify any
code-window address ranges, code can be executed at any address.)
Execution is in trace or single-step mode unless a JSL is made to a code-trace
address range that is completely contained in a code-window address range,
in which case execution is in real time until the matching RTL is encountered.
While the code inside a code-window address range is being executed, the
line in the Memory-Protection subdisplay specifying that range is highlighted
on the screen.

The default Master Display configuration provides nine lines for memory-protection
ranges. When you start the Apple IIGS Debugger, the first memory-protection line is set to
El/OOOO-OOOF T; this code-trace range runs Apple IIGS tool calls in real-time mode.
You can delete breakpoint lines, thus increasing the number of memory-protection lines, or
you can delete memory-protection lines to increase the number of breakpoint lines. See the
section "Configuring the Master Display" later in this chapter for more infonnation on
customizing the Master Display.

To alter the contents of the Memory-Protection subdisplay, type the following command on
the command line and press Return:

MP

You can now use any of the following keypress commands:

APDADraft 37 8120187

Chapter 3: Command Reference Apple /lGS Debugger

Command

Return

J..

i

T

w

Delete

?

Esc

Action

Move to the next address down.

Move to the next address down.

Move to the next address up.

Move left to the starting address. Type in the starting address of the
code-trace or code-window range. You do not have to type a slash (I)
after the bank value. If you do not include the bank number, the
current value of the K register is used for the bank.

Move right to the ending address. Type in the ending address of the
code-trace or code-window range. Do not include a bank value; the
bank must be the same as that of the starting address.

Set this line as a code-trace range. You must enter either T or w for
every memory-protection range.

Set this line as a code-window range. You must enter either T or w
for every memory-protection range.

Delete the current memory-protection line and increase the number of
breakpoint lines by one.

Display a help screen. Press any key except Esc to return to the
Memory-Protection subdisplay.

Return to the command line.

For example, to enter a new code-window range--from 01/1220 to 0l/12E5--<>n the
second line of the Memory-Protection subdisplay, use the following sequence of
commands:

Command

MP Return
J..
11220
~

12E5
W
Esc

APDADraft

Meaning

Begin editing the Memory-Protection subdisplay.
Move down to the second address.
Type in the starting address.
Move right to the ending address.
Type in the ending address.
Set this line as a code-window range.
Return to the command line.

38 8120187

---.. .

Apple IIes Debugger Chapter 3: Command Reference

Command Line

Many of the Apple IIGS Debugger's functions are executed by typing a command while in
the Master Display. Commands are shown on the command line as you type them. Press
Return to execute the command.

Several editing functions are available while entering commands, as follows:

Keystroke Action

Control-E Toggle between insert and replace modes. In insert mode, new
characters are inserted between characters on the line, pushing the
remaining characters to the right to make room. In replace mode, new
characters replace the characters that the cursor is on.

Control-D

Delete

Control-F

Control-Y

Control-X

Esc

Control-Z

Return

Move the cursor one character to the left.

Move the cursor one character to the right.

Delete the character to the left of the cursor.

Delete the character to the left of the cursor.

Delete the character that the cursor is on.

Delete from the cursor position to the end of the line.

Delete the entire line.

Delete the entire line.

Restore the last command typed.

Execute the command that you typed on the command line. The entire
line is sent to the command interpreter; the line is not truncated at the
cursor position.

Altering the Contents of Memory

To alter the contents of a memory location, whether displayed in the RAM subdisplay or
not, type one of the following commands on the command line and press Return. You can
include a slash (I) after the bank value or omit it when entering an address; either form
works. If you do not include the bank number, the current value of the K register is used
for the bank. If you press the Space bar instead of typing an address, the next available

APDADraft 39 8120187

Chapter 3: Command Reference Apple IIGS Debugger

address is printed on the command line, followed by a colon (:). You can then type in the
value you want to enter at that address and press Return.

Command

address:value

address:" string

address: ' string

APDADraft

Action

Place the hexadecimal value value in memory starting at address.
To enter a value of more than 1 byte, separate the values with
spaces and enter the value that goes in the lowest address fIrst.
For example, to place the value $AO at Olft)4ED and the value $Al
at 01/04EE, you can use any of the following commands:

l04ED:AO Al

Ol04ED:AO Al

l/04ED : AO Al

Ol/04ED:AO Al

In addition, if the K register is already set to 01, you can use the
following command:

04ED:AO Al

Place values corresponding to string, with the high bit of each
byte set, in memory starting at address. For example, the
following command places the value $El at 01!04ED and the value
$Cl at Olft)4EE:

l04ED: "aA

To include in a string one of the characters used in commands,
precede the character with an exclamation mark (!). For example,
to put the string a"A into memory at 0104ED, placing the value
$El at Olft)4ED, the value $A2 at 01ft)4EE, and the value $Cl at
01/04EF, use the following command:

l04ED:"a!" A

Place values corresponding to string with the high bit of each byte
cleared in memory at address. For example, the following
command places the value $61 at 0 Ift)4ED and the value $41 at
01ft)4EE:

l04ED:'aA

To include in a string one of the characters used in commands,
precede the character with an exclamation mark (!) . For example,
to put the string a" A into memory at 0104ED, placing the value
$61 at Olft)4ED, the value $22 at 01ft)4EE, and the value $41 at
01/04EF, use the following command:

l04ED:'a!"A

40 8120187

----'.

Apple lIas Debugger Chaprer 3: Command Reference

address:insrrucrion Assemble insrrucrion and place the opcode and operand in memory
starting at address. Simultaneously. the instruction is placed on
the last line of the Disassembly subdisplay. For example. the
following command places the value $AO (the LDY immediate­
address opcode) at OIA)4ED and the value $AI at OIA)4EE:

l04ED:LDY #Al

Enter accumulator-mode expressions like implied-mode
expressions: for example, enter ROL rather than ROL A. Branch
instructions take the absolute address to branch to, not an offset.
If you enter a I-byte immediate-mode operand. a second byte is
nor automatically inserted: for example, if you enter LDA #FF,
the debugger places A9FF in memory, never A9FFOO.

You can combine values and strings in one command. To do so, separate values with
spaces and include trailing delimiters for strings (that is, if the string begins with a single
quotation mark (,), end it with a single quotation mark:; if it begins with a double quotation
mark ("), end it with a double quotation mark). For example, the following command
places the values $AO $A I $C I $FO $FO $EC $E5 $20 $49 $49 in memory starting at
address 01104ED:

Ol / 04ED:AO Al "Apple"' II'

Hexadecimal-Decimal Conversion

The Apple nOS Debugger can convert hexadecimal numbers to decimal and vice versa. To
convert a number, type one of the following commands on the command line and press
Return.

Command

value=

$value=

+value=

-value=

Action

Convert value from hexadecimal to decimal. This command is
identical to the $value command

Convert value from hexadecimal to decimal. This command is
identical to the value command

Convert value from decimal to hexadecimal.

Convert value from decimal to hexadecimal. A negative decimal value
is converted to a 2-byte two's complement hexadecimal equivalent; for
example, -10 = $FFF6. (Note that if you put in $FFF6. you get
65526. not -10.)

Configuring the Master Display

You can configure the Apple nOS Debugger Master Display to meet your needs by adusting
the relative position of the stack pointer in the Stack subdisplay, the position of the current
line in the Disassembly subdisplay, and the numbers of memory-protection lines and
breakpoiilt lines. You can also select the slot used to send information to the printer.

APDADrafr 41 8120187

Chapler 3: CommandReference Apple IIGS Debugger

To adjust the positions of the stack pointer and current-instruction line and to set the printer
slot, type the following command on the command line and press Return:

SET

The following prompt appears on the command line:

Use arrow & number keys to set stack/disassembly bars &
printer slot = 1

Type any number from 1 to 7 to set the slot that the debugger will use to send data to the
printer. You can also use the arrow keys to adjust the display. When you are done, press
the Esc key to put into effect the changes and to clear the command line. The actions of the
arrow keys are as follows:

Command

i

Action

Move the stack pointer up one line. All of the stack subdisplay lines
move up one line, so that the highlighted line that indicates the current
position of the stack pointer is one line higher in the display. You can
now see the contents of one additional byte on the stack below (that is,
with a lower address than) the stack pointer, and of one less byte
above the stack pointer.

Move the stack pointer down one line. All of the stack subdisplay
lines move down one line, so that the highlighted line that indicates the
current position of the stack pointer is one line lower in the display.
You can now see the contents of one additional byte on the stack
above the stack pointer, and of one less byte below the stack pointer.

Move the current instruction up one line. When you type SET and
press Return, any disassembled code on the screen is cleared and an
inverse-video bar appears at the location at which the current
instruction would appear in the display. Each time you press the Up
Arrow key, the highlighted bar moves up one line. You can now see
the disassembly of one additional instruction following the current
instruction, and of one less instruction preceding the current
instruction when you continue single-stepping or tracing code.

Move the current instruction down one line. Each time you press the
Down Arrow key, the highlighted bar moves down one line. You can
now see the disassembly of one less instruction following the current
instruction and of one additional instruction preceding the current
instruction when you continue single-stepping or tracing code.

Press Esc to put into effect the changes you made and to clear the command line.

The Breakpoint and Memory-Protection subdisplays can each occupy from one to 17 lines
in the Master Display, but the total of both displays is always 18 lines. In other words, to
increase the number of breakpoint lines, you must delete a corresponding number of
memory-protection lines, and vice versa. To enter the Memory-Protection subdisplay, type
MP on the command line and press Return. Then to delete a memory-protection line, use

APDADraft 42 8120187

Apple lIGS Debugger Chapter 3: Command Reference

the arrow keys to highlight the line you want to eliminate, and press Delete. You can delete
as many lines as you wish, except that at least one memory-protection line must remain on
the screen.

To delete a breakpoint line, type BP on the command line and press Return to enter the
Breakpoint subdisplay. Then use the arrow keys to highlight the line you want to
eliminate, and press Delete. You can delete as many lines as you wish, except that at least
one breakpoint line must remain on the screen.

Note: You cannot edit the Breakpoint subdisplay when real breakpoints are in.
(When real breakpoints are in, the character displayed below the B of BRK in the
Register subdisplay is an i; when real breakpoints are out, this character is an 0 .)
If real breakpoints are in, use the OUT command before attempting to edit or delete
breakpoints.

Saving a Display Configuration

Once you have customized the Apple llGS Debugger display to suit your needs, you can
save the configuration to disk in a display-configuration file. The following information is
saved in a display-configuration file:

Information Saved

the position of the stack pointer in the Stack subdisplay

the position of the current instruction in the Disassembly subdisplay

the slot number for the printer

memory addresses to be displayed and type of display for each
(hexadecimal, shon address, or long address)

the number of memory-protection lines

memory protection ranges and the type of range for each
(code trace or code windOW)

the number of breakpoint lines

breakpoints, including the address and trigger value

Associated
Command

SET

SET

SET

MEM

MP

MP

BP

BP

You can save as many configurations as you wish. To save and restore display
configurations, type the following commands on the command line, and press Return:

APDADraft 43 8120187

Chapter 3: Command Reference Apple /las Debugger

CSA VE pathname This command saves the current display configuration on disk: to
the file specified by pathname. Include the prefix for the file if you
want to save it to a subdirectory other than the current ProDOS 16
system subdirectory. For example. to save the current
configuration to the file CONF I G . STORE in the directory
/PROGRAMS/DEBUG/. use the following command:

CSAVE /PROGRAMS/DEBUG/CONFIG.STORE

CLOAD pathname This command restores a previously saved display configuration
from the disk: file specified by pathname. Include the prefix for the
file you want to use if the pathname is different from the current
ProDOS 16 system subdirectory.

Command-Line Commands

This section lists all of the commands available from the Master Display conunand line.
Most of these commands are described in detail elsewhere in this chapter. but they are
included here for your convenience. You can include a slash (I) after the bank value or
omit it when entering an address; either form works. If you do not include the bank
number. the current value of the K register is used for the bank. Press Return after each
command-line command.

?

address:

address:instruction

address: • string

address: .. string

address:value

register=value

value=

$value=

+value=

APDADrajt

Display a help screen.

Display 368 contiguous bytes of memory starting at address.

Assemble instruction and place the opcode and operand in
memory starting at address. Simultaneously. the instruction is
placed on the last line of the Disassembly subdisplay.

Place values corresponding to string, with the high bit of each
byte cleared, in memory at address.

Place values corresponding to string. with the high bit of each
byte set. in memory starting at address.

Place the hexadecimal value value in memory starting at
address. To enter a value of more than one byte. enter the byte
that goes in the highest address first.

Set the register specified by register to the value specified by
value. This command is case sensitive.

Convert value from hexadecimal to decimal. This command is
identical to the $value command.

Convert value from hexadecimal to decimal. This command is
identical to the value command.

Convert value from decimal to hexadecimal.

44 8120187

Apple IlGS Debugger

-value=

Space bar

ASM

CLOAD pathnome

CLR

CSA VE pathnome

D

DBRK

e

IN

addressJ

KEY=keynum

LOAD pathname

m

MON

OFF

ON

APDADraft

Chapter 3: Command Reference

Convert value from decimal to hexadecimal. A negative
decimal value is converted to a 2-byte two's complement
hexadecimal equivalent.

Write the next available address on the command line,
followed by a colon. Use this command to get the next
address after using any command starting with address:.

Clear the Disassembly subdisplay to prepare for entering a
sequence of instructions using the address:insrruction
command.

Restore a previously saved display configuration from the disk
fIle specified by pathnome.

Clear all breakpoints to OO!()()()(}-OO-OO.

Save the current display configuration on disk to the fIle
specified by pathnome.

Display the direct page.

Return to the debugger when a BRK instruction that has not
been set as a breakpoint is encountered while your program is
running in real-time mode.

Toggle the e flag: if it's set to 1, change it to 0; if it's set to 0,
change it to 1. This command is case sensitive.

Insert real breakpoints.

JML directly to code at address address. If you omit address,
the current KJPC address is used.

Each bit of the binary number represented by the hexadecimal
number keynum specifies one key to be used as a keystroke
modifier; set that bit to 1 to make that key a keystroke
modifier. The bit assignments are described in the section
"Register Subdisplay" in this chapter.

Load the program to debug.

Toggle the m flag: ifit's set to 1, change it to 0; if it's set to 0,
change it to 1. This command works only if e = O. This
command is case sensitive.

Exit from the debugger into the Monitor. Press Control-Y and
then press Return to return to the debugger.

Turn off the Master Display and show the display of your
program.

Turn off your program's display and turn on the Master
Display.

45 8120187

Chapter 3: Command Reference Apple IIGS Debugger

OUT Remove real breakpoints.

P Print the current text screen. You can use this command with
the Master Display on to print the current Master Display, or
with the Master Display off to print your program's display
(80-column text only). You can also print the Memory
Display or help screens with this command.

PREFIX n pathname Change ProD OS 16 prefix n to pathname. This command has
the same effect as the APW Shell PREFIX command; see the
sections "Standard Prefixes" and "Command Descriptions" in
Chapter 3 of the Apple IIGS Programmer's Workshop
Reference for details. If you omit n, prefix 0 is changed.

Important: When you quit the debugger, these prefix assignments are retained.
If you change prefixes 2, 4, 5, or 6, APW may not be able to find the files it needs
to function. See the section "Standard Prefixes" in Chapter 3 of the Apple IIGS
Programmer's Workshop Reference for a discussion of the prefixes used by APW.

Q

QUIT

addressS

SET

addressT

UBRK

v

x

addressx

APDADraft

Exit the debugger. This command terminates the Apple IIGS
Debugger, unlike the MON command, which allows you to
return from the Monitor to the debugger. If you called the
debugger from the APW Shell, Q returns you to the shell.

Exit the debugger. This is an alias for Q.

Enter single-step mode at address address. If you omit
address, the current setting of the K/PC register is used.

Adjust the positions of the stack pointer and current-instruction
line and set the printer slot

Enter trace mode at address address. If you omit address, the
current setting of the K/PC register is used.

Exit to the Monitor when a BRK instruction that has not been
set as a breakpoint is encountered while in real-time mode.

Display the current version number and copyright of the Apple
IIGS Debugger.

Toggle the x flag: if it's set to I, change itto 0; if it's set to 0,
change it to 1. This command works only if e = O. This
command is case sensitive.

JSL directly to code at address address. If you omit address,
the current setting of the K/PC register is used. If you omit
address, the X must be uppercase.

46 8120187

. ------

Apple JIGS Debugger Chapter 4: Desk Accessories

Chapter 4

Desk Accessories

Two desk accessories are provided wilh Ihe Apple llGS Debugger: Loader Dumper and
Memory Mangler. Bolh are described in this chapter.

Loader Dumper
Loader Dumper is a desk accessory included on your Apple llGS Programmer's Workshop
system disk. You can use Loader Dumper togelher wilh Ihe Apple llGS Debugger and Ihe
Memory Mangler desk accessory as an aid to debugging relocatable and dynamic code.
Loader Dumper lets you see where in memory Ihe System Loader has loaded each segment
of your program and gives you information about Ihe various tables and variables Ihat the
loader uses. Memory Mangler is described in Ihe section "Memory Mangler" later in Ihis
chapter. The System Loader is described in Ihe Apple JIGS ProDOS 16 Reference.

To get Ihe Desk Accessories menu, press Apple-Contol-Esc. When you select Loader
Dumper from Ihe Desk Accessories menu, Ihe following menu appears on the screen:

1. Dump Memory Segment Table

2. Dump Pathname Table

3. Dump Jump Table

4 . Dump Loader Globals

5. Dump ProDOS Packets

6. Dump File Buffer Variables

7. Get Load Segment Information

8. Dump Address

What do you want to dump ?

All of Ihese selections are described in Ihe following sections.

Dump Memory Segment Table

The memory segment table is a linked list, each entry of which describes a memory block
known to the System Loader. Each memory block corresponds to a single load segment.
Note that dynamic segments do not appear in Ihe memory segment table when !he program
is initially loaded because Ihey are not loaded into memory untillhe program needs Ihem.

APDADraft 47 8120187

Chapter 4: Desk Accessories Apple IIGS Debugger

You can use the memory segment table to get the starting address of every segment
curren tl y in memory. One entry in the table is shown at a time; press Return to see the next
entry. Press Esc to return to the Loader Dumper main menu. To see memory segment
table information on one specific segment (instead of scrolling through the entire memory
segment table), use selection 7, Get Load Segment Information.

Before using the memory segment table to get the starting addresses of segments, you must
know the User ID and fIle number of the program in which you are interested. This
information is available from selection 2, Dump Pathname Table. If you load a
program with the Apple IIGS Debugger, the User ID is also displayed in the A register
immediately after the program is loaded.

The starting address of the segment is shown in the memory segment table in parentheses
after the Memory Handle field. For example, the starting address in memory of load
segment 1 of load file 1 for UserID $AOOI (as shown in Figure 4.1) is $1188D3.

The type of segment is shown in parentheses after the Load Segment Kind field.
Segment types are described in Chapter 7 of the Apple IIGS Programmer's Workshop .

Memory Segment Table
$E11854 (1188BF)

Next Handle = $E118B8 (11FD8B)
Prey Handle = $000000

UserID
Memory Handle
Load File Number
Load Segment Number
Load Segment Kind

= $M01
$E11840

= $0001
$0001

= $2000

(1188D3)

(Position Independent)

Press RETURN to continue

$El18B8 (11FD8B)

Next Handle - $El18EO (11FD6F)
Prey Handle - $El1854 (ll88BF)

UserID
Memory Handle
Load File Number
Load Segment Number
Load Segment Kind

$5002
= $E118A4 (020000)
= $0001
= $0001
= $0402 (Jump Table Segment)

(Reload)

Press RETURN to continue

Figure 4.1. Memory Segment Table Output

If your program has unloaded a memory block (that is, made it purgeable), you can use the
memory segment table to fmd out if it has been purged. To do so, check the address in
parentheses after the memory handle: if the address is 000000, the block has been purged.

APDADraft 48 8120187

Apple IIGS Debugger Chapter4: DeskAccessories

Dump Pathname Table

The pathname table provides a cross-reference between file numbers, file pathnames, and
User IDs. The pathname table is a linked list of individual patbname ennies. One entry in
the table is shown at a time; press Return to see the next entry. Press Esc to return to the
Loader Dumper main menu.

You can use the pathname table to get the User ID and file number of every program in
memory. You need this information to use the memory segment table to find the starting
memory address of a segment. The patbname table also gives you the starting address and
size of the direct-page/stack space requested by the loader for each program. (The loader
requests a direct-page/stack space only if you include a direct-page/stack segment in your
program; otherwise, ProD OS either assigns the direct-page/stack space as a default or your
program can request one through the Memory Manager.)

The Pathname Table display of the Loader Dumper is illustrated in Figure 4.2.

Pathname Table
$El1890 (118527)

Next Handle = $El18F4 (11F9F6)
Prev Handle = $000000

UserID
File Number
File Date
File Time

$A001
= $0001
= $ADll

$OB37
- $0000
= $0000

Direct Page/Stack Addr
Direct Page/Stack Size
File Pathname /APW/SYSTEM/SYSTEM. SETUP/TOOL. SETUP

Press RETURN to continue

$E1l8F4 (llF9F6)

Next Handle - $El1930 (11FAD9)
Prev Handle = $El1890 (118527)

UserID
File Number
File Date
File Time

= $5002
$0001

= $AD2C
$0930

= $0000
= $0000

Direct Page/Stack Addr
Direct Page/Stack Size
File Pathname = /APW/SYSTEM/DESK.ACCS/MANGLER.DA

Press RETURN to continue

Figure 4.2. Pathname Table Output

APDADraft 49 8/20/87

Chapter 4: Desk Accessories Apple lias Debugger

Dump Jump Table

All references to dynamic segments are made through the jump table. The jump table in
memory consists of the jump table directory and one or more jump table segments. The
jump table directory is a linked list, each entry of which points to a single jump table
segment encountered by the loader. The Loader Dumper displays each jump table directory
entry followed by the jump table segment to which the entry points. Each jump table
segment contains one entry for each reference to a dynamic segment in the program.

One entry in the table is shown at a time; press Return to see the next entry. Press Esc to
jump to the next directory entry. Hyou are at the last directory entry, Esc returns you to
the Loader Dumper main menu.

You can use the jump table to determine whether a dynamic segment has been loaded into
memory; if it has been loaded, you can use the memory segment table to fUld the starting
address of the segment in memory. A sample jump table display is shown in Figure 4.3.
The first entry in Figure 4.3 is for a dynamic segment that has been loaded into memory.
You can tell that the segment has been loaded because the jump table segment entry is in its
loaded state: it ends in a JML to the referenced subroutine. The operand of the JML
statement is the location in memory of the subroutine being referenced (if there is more than
one routine or entry point in the segment, there will be more than one jump table entry for
that segment). The number in parentheses after the Handle t o Segment field shows
the location in memory of the jump table segment itself.

The second entry in Figure 4.3 is for a dynamic segment that has not been loaded into
memory. The jump table segment entry ends in a JSL to the System Loader's Jump Table
Load function.

Before using the jump table to get information about dynamic segments, you must know
the User ID and me number of the program in which you are interested. This information
is available from selection 2, Dump Pathname Table.

The jump table and jump table segments are described in OIapter 16, "System Loader," of
the Apple HaS ProD OS 16 Reference.

APDADraft 50 8/20/87

'- ,

Apple IIGS Debugger Chapter4: DeskAccessories

Jump Table

$E11ACO (11FA2D)

Next Handle = $El1818 (11E2AA)
Prey Handle = $El1840 (11FA3B)

UserID
Handle to Segment

UserID
Load File Number
Load Segment Number
Load Segment Offset
Jump to Loader/Function

Press RETURN to continue

$El1818 (11E2AA)

Next Handle = $000000

~ $1007
$E11A34 (010A6B)

= $1007
= $0001
= $0002

$00000000
JML 010A85

Prey Handle = $E11ACO (11FA2D)

UserID
Handle to Segment

UserID
Load File Number
Load Segment Number
Load Segment Offset
Jump to Loader/Function

Press RETURN to continue

Figure 4.3. Jump Table Output

Dump Loader Globals

$1008
= $El18EO (010B13)

$1008
$0001

= $0002
$00000000

~ JSL llFF10

The Loader Globals display shows the values of some loader variables and some statistics
associated with the last load operation performed. This table was included primarily for
use by Apple engineers when they were debugging the System Loader. If you have trouble
using the loader, or believe you have found a bug in the loader, copy down the information
in the Last Function, Total Errors, and Error Addresses fields before
calling technical support, or include this infonnation in your bug report.

The BUSY field shows the status of the loader's busy flag: the flag is 1 if any loader
function is currently being executed. Every loader function checks the busy flag before
executing.

The fields beginning with a lowercase n (nLCONST or nRELOc-for example, see Figure
4.4) show the number of certain kinds of records, the number of segments, and the number

APDADraft 51 8120187

Chaprer 4.' Desk Accessories Apple lIGS Debugger

of bytes loaded. See Chapter 7, "File Formats," of the Apple llGS Programmer's
Workshop Reference for a description of segment records.

The tStart and tEnd fields show the settings of the clock cycle counter at the beginning
and at the end of the load for an Initial Load or Restart function call.

Press Return or Esc to return to the Loader Dumper menu.

Loader Globals

$01E700 BUSY $0000
$01E702 SEGTBL $E11854 (1188BF)
$01E706 JMPTBL $000000
$01E70A PATHTBL $E11890 (118527)
$01E70E USERIO $1001
$01E72C Last Function $0006
$01E710 Total Errors = $0000
$01E712 Error Addresses = $0000 E164 0400 0000 0000
$01E72E nLCONST $0012
$01E730 nRELOC = $0000
$01E732 nINTERSEG = $0000
$01E734 nOS $0011
$01E736 ncRELOC $1262
$01E738 ncINTERSEG = $0000
$01E73A nSegments $0001
$01E73C nBytes $0000A1CD
$01E740 tStart $56080126
$01E744 tEnd $56080133

Press RETURN to continue

Figure 4.4. Loader Globals Output

Dump ProDOS Packets

This display shows the ProDOS 16 calls. including parameter blocks. used most recently
by the loader. This information is primarily for use by Apple engineers in debugging the
loader and ProDOS 16. The ProDOS Packets display is illustrated in Figure 4.5.

ProDOS 16 calls are described in the Apple lIGS ProD OS 16 Reference.

APDADrqfr 52 8120187

Apple lIes Debugger Chapter4: DeskAccessories

ProOOS Packets

S01E7B4 PGetInfo S00000240 00E3 00B3 000000100 0002 AD43 0007 AD4 3 OC 02
S00000093

S01E7CE POpen * S0001 00000240 00009788
$01E708 PRead c S0001 00114527 00004000 0000236B
S01E7E6 PC10ae - SOOOI
$01E7E8 PGetEOF $0001 00000000
$01E7EE PGetMark * $0001 00010000
SOlE7F4 PSetMark - $0001 0000A2BC
$01E7FA PGet Prefix - $0000 000000000

Press RETURN to continue

Figure 4.5. ProD OS Packets Output

Dump File Buffer Variables

The file buffer is used by the System Loader to buffer data being loaded from disk into
memory. One of two file buffer sizes is used, depending on the amount of memory
currently available. If more than 5 banks of memory are available, the larger buffer is used;
otherwise, the smaller buffer is used. The default values for these buffers are currently
$4000 bytes and $400 bytes, respectively.

If you wish, you can change these buffer sizes by using the Monitor or the debugger to
alter the contents of memory at the addresses indicated at the left of the
Max File Buffl and Max File Buffl fields (see Figure 4.6). You can experiment
with different buffer sizes to see if it Sjieeds up the load or decreases the amount of memory
used by the loader.

The File Pt field shows the next location to be read from the file buffer. The
File EOB field shows the location of the last valid data currently in the buffer. These
fields are equal after a load is complete and any time during a load that the buffer is full,
indicating that all the data in the buffer has been read. In this case, the next read operation
on the buffer will cause the buffer to be refreshed.

The File Mark field shows the last location read from within the ProDOS file being
loaded. The Header Mark field shows the location of the beginning of the next segment
header in the file beingloaded.

You can use the File Buffer Variables display to monitor the progress of a load.

Press Return or Esc to return to the Loader Dwnper main menu.

APDADraji 53 8/20/87

Chapter4: DeskAccessories

File Buffer Variables

$01E79E File Buff
$01E7A2 File-Buff Size
$01E7A4 Max File Buff1
$01E7A6 Max-File-Buff2
$01E7A8 File Pt
$01E7AA File-EOB
$01E7AC File- Mark
$01E7BO Header Mark

= 00114527
= 4000

0400
= 4000

236B
= 236B

00010000
= 00012400

Press RETURN to continue

Figure 4.6. File Buffer Variables Output

Dump Load Segment Information

Apple lles Debugger

The Load Segment Information selection provides the same information as the Memory
Segment Table selection, except that information is ptovided on only the segment you
specify. Figure 4.7 illustrates the Load Segment Information selection; the characters
shown in boldface are the ones you type in.

Before using the Load Segment Information selection to get information about static
segments, you must know the User ID and file number of the program in which you are
interested. This ,information is available from selection 2, Dump Pathname Table.

Press Return to be prompted for the next load segment. Press Esc to return to the Loader
Dumper main menu.

Key in UserID of Load Segment - 5002
Key in File Number of Load Segment - 1
Key in Segment Number of Load Segment - 1

UserID
Memory Handle
Load File Number
Load Segment Number
Load Segment Kind

= $5002
= $E118A4
= $0001
= $0001
= $0000

Press RETURN to continue

(020000)

Key in UserID of Load Segment -

Figure 4.7. Load Segment Information Output

Dump Address

The Dump Address selection writes out 16 hexademical values stored in. memory starting at
the address you specify. Press Return to be prompted for the next startmg address. To get

APDADraft 54 8120187

'--'

Apple lIes Debugger Chapter 4: Desk Accessories .

the next 16 addresses, press Return again in response to the prompt instead of entering a
new address.

Press Esc to return to the Loader Dumper main menu.

Figure 4.8 illustrates the use of the Dump Address selection; characters you type in are
shown in boldface.

What address do you want to dump ? 020000 [press Return]
00020000:07 4D 61 6E 67 6C 65 72 4F 01 02 00 10 00 02 00
What address do you want to dump ? [press Return]
00020010:6B 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
What address do you want to dump ? [press Esc]

Figure 4.8. Dump Address Output

Memory Mangler
Memory Mangler is a desk accessory included on your Apple llGS Programmer's
Workshop system disk. Memory Mangler lets you execute a variety of Memory Manager
routines and provides lists of the memory blocks that are in use, purged, and disposed by
the Memory Manager. You can use Memory Mangler together with the Apple llGS
Debugger and the Loader Dumper desk accessory as an aid to debugging relocatable and
dynamic code. The System Loader is described in the Apple lies ProDOS 16 Reference.

To get the Desk Accessories menu, press Apple-Contol-Esc. When you select Mangler
from the Desk Accessories menu, a percent sign (%) prompt appears at the left edge of the
screen. To get a list of commands available, type COMMANDS and press Return. You can
stop the listing by pressing any key (the commands list very quickly; you'll have to be fast
to stop the listing before the first commands scroll off the screen). Press any key to resume
the listing. Most of the commands listed are Memory Manager commands; Memory
Mangler lets you execute any of the Memory Manager commands listed. In addition. you
can use any of the following commands:

• LIST

• MON

• PRINT

• QUIT

These commands are described in the following sections. followed by a general description ·
of the use of Memory Manager commands.

LIST

The LIST command has three options. as follows:

LIST U List memory handles being used. A memory handle is a pointer to the
location in memory where the address of the memory block is stored.
Each handle has several attributes associated with it (see below).

APDADraft 55 8120187

Chapter 4: Desk Accessories Apple lIGS Debugger

LIST P

LIST F

List memory handles that have been purged. When a memory handle is
purged, the handle points to $00000O (that is, that handle is no longer
assigned to a memory block), but the handle is still associated with a
specific User ID and it retains its attributes. The Memory Manager can
assign a new memory block to that handle at any time, but cannot use the
handle for any other purpose.

List memory handles that have been disposed. When a memory handle is
disposed, the handle has no attributes or User ID assigned to it; it
becomes simply a region of memory reserved for use by the Memory
Manager. The Memory Manager can assign a disposed handle to any
User ID it chooses at any time. The Memory Manager can also create
additional free memory handles when it needs them.

When you type any of these commands and press Return, a table of values is displayed on
the screen. Press any key to stop the listing; after stopping the listing, press any key to
resume the listing. When the listing is complete, the percent sign prompt reappears.

The columns in the memory-block listing are as follows:

Line Handle Location Attributes UserID Length
Number

Line Number

Previous
Handle

Next
Handle

This column displays sequential line numbers for the list of memory handles. These line
numbers are for your convenience only; they are not used by the Memory Manager.

Handle

The handle to the memory block. Handles are used in most Memory Manager calls that
refer to specific memory blocks.

Location

The actual address of the memory block referred to by the han<lie. You can use the Monitor
or the debugger to examine the contents of memory at this address.

Attributes

The attribulI!s of this memory block. Figure 4.9 illustrates the attributes word. Memory­
block attributes are described in Chapter 4 of of the Apple lIGS Toolbox Reference: Volwne
1. .

APDADraft 56 8120187

Apple lies Debugger

B~: I
Attribute:

Key:

FB fixed bank

FA fixed address

PA page-aligned

S special-memory usable

B bank boundary

P purge level

F fixed

L locked

Chapter 4: Desk Accessories

If 1, the block must stan in a specified bank.

If 1, the block must stan at a specified address.

If I, the block must be aligned to a page boundary.

If I, the block may not be allocated in special memory:
banks 0 and 1 and the video screens.

If I, the block may not cross a bank boundary.

o to 3: if 0, the block cannot be purged; 3 means most
purgeable.

If I, the block is nonmovable.

If I, the block is locked: temporarily nonmovable and
unpurgeable.

Figure 4.9. Memory-Block Atnibutes

UserID

The User ID of the program that owns this block of memory. You can use the Loader
Dumper desk accessory to list the pathname table, which provides a cross-reference
between file pathnames and User IDs.

Length

The length of the memory block in bytes.

Previous Handle

The handle of the memory block that precedes this block in the list.

Next Handle

The handle of the memory block that follows this block in the list.

MON
When you type MON and press Return, you enter the Monitor. You can use the Monitor to
examine the contents of memory, to change the contents of memory, to examine the
contents of hardware registers, and to perform a variety of other functions useful when
debugging programs.

To return to the Memory Mangler, press Control-Y, and then press Return.

The Monitor is described in the Apple lies Firmware Reference.

APDADraft 57 8120/87

Chapter 4: Desk Accessories Apple IIGS Debugger

PRINT

The PRINT command is identical to the LIST command, except that the data is sent to slot
(or port) 1. If you have a printer attached to that slot, the table should be printed. You can
use the U, p. and F options with the PRINT command just as with the LIST command.

QUIT

When you type QUIT and press Return, you quit the Memory Mangler and return to the
Desk Accessories menu.

Memory Manager Commands

When you type COMMANDS and press Return, a list of all the Memory Manager commands
the Memory Mangler recognizes is written on the screen. Each command includes the
parameters it takes (if any). For example. the line for the NewHandle command looks
like this:

NEWHANDLE size ownerid attributes location

You can use the Loader Dumper desk accessory to get the User IDs of programs and the
memory handIes of program segments. You can use the LIST and PRINT commands of
the Memory Mangler to get the purge level and attributes of blocks of memory. You can
use the LIST P and PRINT P commands to fmd out which blocks of memory are
purgeable, and the LIST F and PRINT F commands to fmd out which blocks of memory
are free.

Memory Manager calls are described in Chapter 4 of of the Apple IIGS Toolbox Reference:
Volume 1.

APDADrqft 58 8120187

Apple IIGS Programmer's Workshop Appendix: Command Swnmary

Appendix

Command Summary
This section lists all of the commands that you can use in the Apple IIGS Debugger.

Keystroke Modifier
If the conunand filter is in effect, you must hold down a keystroke-modifier key in order to
pass commands on to the debugger. The keystroke-modifier setting is shown in the KEY
field of the Register subdisplay. To set the keystoke modifier, use the following command:

KEY=keynum Each bit of the binary number represented by the hexadecimal
number keynum specifies one key to be used as a keystroke
modifier; set that bit to I to make that key a keystroke modifier. The
bits are assigned as follows:

Btl: 7 6 5 4 3 2 1 0

Key : A 0 K R a. C S

Hex Value: BJ 4) aJ II CB 04 Cl2 01

The abbreviations in this diagram refer to the following keys:

APDADraft

Abbreviation Key

S Shift

c
CL

R

K

o
A

Control

Caps Lock

Repeat: hold the key down until it repeats

Any key on an external keypad (not the keypad on
the Apple IIGS keyboard)

Option

a

59 8120187

Appendix: Command Summary Apple IIGS Programmer's Workshop

Selecting a Display
Display

Help Screen

Memory

Direct Page

Application

Monitor

Master Display

How to Select

From any display, type a question mark (1) and press Return.

From the Master Display, type the starting address of the memory
block you wish to display, followed by a colon (:), and press
Return.

From the Master Display, type D and press Return.

To see the display generated by your application, rype OFF on the
Master Display command line and press Return, and then stan your
application as described in the section "Running Your Program" in
this chapter.

To change the display mode, use the following commands (these
commands work while in single step or trace fTUJdes only--see the
section "Single Step and Trace Modes" in this chapter for more
information on these commands);

1
2
4
8
T
F
M
L
H
D
B
C
S

text page 1
text page 2
40-column screen
8O-column screen
text mode
full-screen graphics
mixed text and graphics
low-resolution graphics
Hi-Res graphics
D9uble Hi-Res graphics
black-and-white (for D9uble-Hi-Res graphics)
color (for D9uble-Hi-Res graphics)
Super Hi-Res graphics

To call the Monitor, type MON on the Master Display command line
and press Return.

In Direct-Page or Memory Display, press Esc. If your application is
being displayed, type ON and press Return.

From the Monitor, press Control-Y and press Return to return to the
Master Display.

Note: If the command filter is in effect, you must hold down one or more
keystroke-modifier keys in order to pass commands on to the debugger while your
program is running. See the section "The Command Filter" in this chapter for more
information on this function.

Editing the Master Display
Use the following commands to alter the cOIitents or setup of the master display.

APDADraft 60 8120187

'~-.

Apple IIcs Programmer's Workshop Appendix: Command Summary

Display Configuration

SET Set printer slot. adjust stack-pointer highlight and number of
instructions below highlight in Disassembly subdisplay.

f- Move the stack pointer up one line.

-+ Move the stack pointer down one line.

t Move the current instruction up one line.

J. Move the current instruction down one line.

Disassembly Subdisplay

addressL Disassemble the contents of memory starting at address and display
the next 19 lines of code.

L Disassemble the contents of memory starting at the current address
and display the next 19 lines of code.

address:instruction Assemble the instruction instruction and place the opcode and
operand in memory at address. Simultaneously. the instruction is
placed on the last line of the Disassembly subdisplay.

ASM

RAM sub display

Return

J.

t

address:

H

p

L

?

Esc

APDADraft

Clear the disassembly subdisplay to prepare for entering a sequence
of instructions using the address:instruction command.

Move to next address down.

Move to next address down.

Move to next address up.

Display the contents of memory starting at address.

Display the contents of the cell as hex and ASCII.

Display the contents of the cell and next cell as a 2-byte address.

Display the contents of the cell and next two cells as a long (3-byte)
address.

Display a help screen. Press any key except Esc to return to the
RAM subdisplay.

Return to the command line.

61 8120187

Appendix: Command Summary Apple llGS Programmer's Workshop

Breakpoints SubdispJay

Return

i

Delete

?

Esc

Move to the next address down.

Move to the next address down.

Move to the next address up.

Move left to the address. Type in the starting address of the
instruction at which you want the debugger to suspend execution.

Move right to the trigger value. Type in a one-byte hexadecimal
number to indicate the number of times the debugger should execute
this instruction before suspending execution.

Delete the currently highlighted breakpoint and increase the number
of memory protection lines by one.

Display a help screen. Press any key except Esc to return to the
breakpoint subdisplay.

Return to command line.

The following breakpoint commands can be entered from the master-display command line.
Press Return after typing in each command.

CLR

IN

OUT

DBRK

UBRK

Zero all breakpoints to OO/OOOO-QO.OO.

Insert real breakpoints.

Note: You cannot edit the breakpoint subdisplay when real
breakpoints are in.

Remove real breakpoints.

Return to the debugger when a BRK instruction that has not been set
as a breakpoint is encountered while in real-time mode.

Exit to the monitor when a BRK instruction that has not been set as a
breakpoint is encountered while in real-time mode.

Memory Protection SubdispJay

Return Move to the next address down.

Move to the next address down.

i Move to the next address up.

APDADraft 62 8/20/87

Apple IIGS Programmer's WorksJwp Appendix: Command Summary

T

W

Delete

?

Esc

Move left to the starting address. Type in the starting address of the
code-trace or code-window range.

Move right to the ending address. Type in the ending address of the
code-trace or code-window range. Do not include a bank value; the
bank must be the same as that of the starting address.

Set this line as a code-trace range.

Set this line as a code-window range.

Delete the current memory-protection line and increase the number
of breakpoint lines by one.

Display a help screen. Press any key except Esc to return to the
memory protection subdisplay.

Return to the command line.

Command Line Commands
These commands are used on or entered from the debugger command line. Press Return to
execute these commands.

Command-Editing Commands

These commands are used for editing commands that you are typing on the command line.

Control-E

Control-D
Delete

Control-F

Control-Y

Control-X
Esc

Control-Z

Return

APDADraft

Toggle inserT/replace mode.

Move the cursor one character to the left.

Move the cursor one character to the right

Delete the character to the left of the cursor.

Delete the character that the cursor is on.

Delete from the cursor position to the end of line.

Delete the entire line.

Restore the last command typed.

Execute the command on the line. The entire line is sent to the
command intetpreter; the line is not truncated at the cursor position.

63 8120187

Appendix: Command Summary Apple lIGS Programmer's Workshop

Setting Registers and Memory Values

e

x

m

register=value

address: value

address:" string

address: ' string

Toggle the e flag: if it's set to 1, change it to 0; if it's set to 0,
change it to I.

Toggle the x flag: ifit' s set to I, change it to 0; if it's set to 0,
change it to 1. This command works only if e={).

Toggle the m flag: if it's set to I, change it to 0; if it's set to 0,
change it to 1. This command works only if e={).

Set the register specified by register to the value specified by value.
The values for all registers are given as hexadecimal numbers,
except for the processor-status bits, which can be either 1 or O.
Register names are case sensitive.

Place the hexadecimal value value in memory starting at address.

Place values corresponding to string, with the high bit of each byte
set, in memory starling at address.

Place vallles corre~ponding to string with the high bit of each byte
cleared in memory ,t address. '

address:instruCtion Assemble instructio'1 and place the opcode and operand in memory
starting at address;

, !

Breakpoints

CL~

IN

OUT

Zero all breakpoints to OO!OOOO-()()..OO.

Insert real breakpoints.

Note: You cannpt c;dit the breakpoint subdisplay when real
breakpoinlS are ijI.

Re!pOve real breakpoints.

Hexadecimal-Decimal Conversion

value=

$value=

+value=

-value=

APDADraft

Convert value from hexadecimal to decimal. This command is
identical to the $value command.

Convert value from hexadecimal to decimal. This command is
identical to the value command.

Convert value from decimal to hexadecimal.

Convert value from decimal to hexadecimal. A negative decimal
value is converted to a two-byte twos complement hexadecimal

64 8120187

.--.

Apple llGS Programmer's Workshop Appendix: Command Summary

equivalent. For example, -10 '" $FFF6. (Note that, if you put in
$FFF6, you get 65526, not -10.)

Saving Display Configurations

CSAVE paJhname

CLOAD pathname

Printing

P

Save the current display configuration on disk to the fIle specified by
pathname.

Restore a previously saved display configuration from the disk file
specified by pathname.

Print the current text screen.

Loading and Running Your Program

LOAD paJhname

S

addressS

T

addressT

G

addressx

addressJ

Load the program to debug.

Enter single-step mode at the current instruction.

Enter single-step mode at address address.

Enter trace mode at the cmrent instruction

Enter trace mode at address address.

JSL directly to code at the current K/PC address.

JSL directly to code at address address. The debugger
automatically turns off the Master Display before executing this
command.

JML directly to code at address address. If you omit address, then
the current K/PC address is used. The debugger automatically turns
off the Master Display before executing this command.

Other Command-Line Commands

Each bit of the binary number represented by the hexadecimal
number keynum specifies one key to be used as a keystroke
modifier, set that bit to 1 to make that key a keystroke modifier. The
bits assignments are described in the section "Keystroke Modifier"
in this appendix.

PREF IX n pathname Change ProDOS 16 prefix Prefix n to pathname.

APDADrajt 65 8120187

Appendix: Comnumd Summmy Apple lies Programmer's Workshop

v

MON

Q

QUIT

Display the current version number and copyright of the Apple nGS
Debugger.

Enter the Apple nGS Monitor. From the Monitor, press Control-Y
and then press Return to return to the debugger.

Exit debugger.

Exit debugger

Trace and Single-Step Mode Commands

These are single-keystroke commands: do not press Return after these keystrokes.

Esc

Space

Retum

R

J

x

J,

Q

1

2

4

8

T

F

APDADraft

Terminate trace or single-step mode and return to the command-line.

Single-step one instruction.

Start continuous tracing.

Trace until the next RTS, RTI, or RTL.

If the current instruction (the next to be executed) is a JSL, execute
in real time until an RTL or RT I. If the next instruction is not a
JSL, the command is ignored.

If the current instruction (the next to be executed) is a JSL, execute
in real time until the matching R TL or an R T I that returns to the
following instruction. If the next instruction is not a JSL, the
command is ignored.

Skip the next instruction.

Toggle the sound on or off. If the sound is on, the speaker beeps
each time an instruction is executed.

Change the display to text page 1. Use this command when in 40-
column text mode or mixed text and graphics mode.

Change the display to text page 2. Use this command when in 40-
column text mode or mixed text and graphics mode.

Change the display to a 4O-column screen. Use this command when
in text mode.

Change the display to a 80-<:01umn screen. Use this command when
in text mode.

Change the display to text mode.

Change the display to full-screen graphics mode.

66 8120187

Apple IIes Programmer's Workslwp Appendix: Command Summary

M

L

H

D

S

B

C

APDADraft

Change the display to mixed text and graphics mode.

Change the display to low-resolution graphics mode.

Change the display to high-resolution graphics mode.

Change the display to double-high-resolution graphics mode.

Change the display to super-high-resolution graphics. This is the
normal Apple llGS display mode.

Change the display to black and white double-high-resolution
graphics.

Change the display to color double high-resolution graphics.

Change to the slow trace Tale.

Change to the fast trace Tale.

Pause the trace until the C key is released.

67 8120187

