PPPPP
RRRRRRRRRRRR
OOOOOO

GS/0S
Reference,
Volume 1
Beta Draft

APDA# K25023

L

®. Apple.l GS/OS. Reference

Includes System Loader

Volume 1:
Applications and GS/OS

APDA Draft

August 31, 1988

© Copyright Apple Computer, Inc. 1988

GS/OS Reference Draft 3 (APDA)

& Apple Computer, Inc.

This manual is copyrighted by Apple or by Apple’s
suppliers, with all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in
part, without the written consent of Apple Computer,
Inc. This exception does not allow copies to be made
for others, whether or not sold, but all of the material
purchased may be sold, given, or {ent to another
person. Under the law, copying includes translating
into another language.

© Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014

(408) 956-1010

Apple, the Apple logo, AppleTalk, Apple IIGS,
DuaDisk, ProDOS, Macintosh, and [IGS are registered
trademarks of Apple Computer, Inc.

APDA, Finder, ProFile, and UniDisk are wrademarks of
Apple Computer, Inc.

Simultaneously published in the United States and
Canada,

2/21/88

8/31/88

~rmma,

GS/OS Reference (Volume 1) Draft 3 (APDA)

Contents

Figures and Tables xiv

Preface / 1
About this bock / 2

How to use this book / 2
What it contains / 3
Other materials you'll need / 5
Visual cues / 5
Terminology / 5
Language notation / 6

Roadmap to the Apple IIGS technical manuals / 6
Introductory Apple 11GS manuals / 7
Apple IIGS machine-reference manuals / 9
Apple IIGS Toolbox manuals / 10
Apple IIGS operating-system manuals / 10
All-Apple manuals / 11
The APW manuals / 11
The MPW LGS manuals / 12
The debugger manual / 12

Introduction What is GS/08? / 13
The components of GS/OS / 14
GS/O0S Feawres / 16

File-system independence / 16
Enhanced device support / 16

Speed enhancements / 17
Eliminated ProDOS restrictions / 17

ProDOS 16 compatibility / 17

Contents

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Where to find call descriptions / 17
GS/OS system requirements / 19
Background to the development of GS/OS / 20

Part1 The Application Level / 23

1 GS/0S Abstract File System / 25
A high-level interface / 26
Classes of GS/OS files / 28
Directory files / 28
Standard files / 29
Extended files / 30
Filenames / 30
Pathnames / 31
Full pathnames / 31
Prefixes and partial pathnames / 32
Prefix designators / 32
Predefined prefix designators / 33

File information / 34
File access / 35
File types and auxiliary types / 35
EOF and mark / 37
Creation and modification date and time / 39
Character devices as files / 39
Groups of GS/0S calls / 40
File access calls / 41
Volume and pathname calls / 42
System information calls / 43
Device calls / 43

iv GS/OS Reference

GS/OS Reference (Volume 1) Draft 3 (APDA)

2 GS/0S and Its Environment / 45

Apple TGS memory / 46
Entry points and fixed locations / 47

Managing application memory / 48
Obtaining application memory / 49
Accessing data in a movable memory block / 49
Allocating stack and direct page / 51
Automatic allocation of stack and direct page / 52
Definition during program development / 52
Allocation at load time / 52
GS/0S default stack and direct page / 53
System startup considerations / 54
Quitting and launching applications / 54
Specifying whether an application can be restarted from memory / 54
Specifying the next application to launch / 55
Specifying a GS/OS application to launch / 55
Specifying a ProDOS 8 application to launch / 55
Specifying whether control should retum to your application ./ 56
Quitting without specifying the next application to launch / 56
Taunching another application and not returning / 56
Launching another application and returning / 57
Machine state at application launch / 57
Machine state at GS/OS application launch / 57
Machine state at ProDOS 8 application launch / 59
Pathname prefixes at GS/OS application launch / 59
Pathname prefixes at ProDOS 8 application launch / 61

Contents

8/31/88

GS/OS Reference (Volume 1) Drafl 3 (APDA)

vi

3

GS/0S Reference

Making GS/0S Calls / 63
GS/0S call methods / 64
Calling in a high-level language / 64
Calling in assembly language / 64
Making a GS/0S call using macros / 65
Making an inline GS/OS call / 66
Making a stack call / 66
Including the appropriate files / 67
GS/OS parameter blocks / 67
Types of parameters / 67
Parameter block format / 68
GS/OS string format / 68
GS/0S input string structures / 69
GS/0S result buffer / 69
Setting up 2 parameter block in memory / 70
Conditions upon return from a GS/OS call / 71

Checking for errors / 72

Accessing GS/0S Files / 73

The simplest access method / 74

Creating a file / 74

Opening a file / 75

Working on open files / 76
Reading from and writing to files / 76
Setting and reading the EOF and Mark / 77
Enabling or disabling newline mode / 77
Examining directory entries / 77
Flushing open files / 77
Closing files / 77

Setting and getting file levels / 78

Working on closed files / 78
Clearing backup status / 79
Deleting files / 79

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Setting or getting file characteristics / 79
Changing the creation and modification date and time / 80
Copying files / 81

Copying single files / 81
Copying multiple files / 81

5 Working with Volumes and Pathnames / 83
Working with volumes / 83
Getting volume information / 84
Building a list of mounted volumes / 84
Getting the name of the boot volume / 84
Formatting a volume / 85
Working with pathnames / 85
Setting and getting prefixes / 86
Changing the pathto a file / 86
Expanding a pathname / 86
Building your own pathnames / 86
Introducing devices / 87
Device names / 87
Block devices / 87
Character devices / 88
Direct access to devices / 88
Device drivers / 88

6 Working with System Information / 91
Setting and getting system preferences / 92
Checking FST information / 92
Finding out the version of the operating system / 92
Getting the name of the current application / 93

Contents vii

GS/0S Reference (Volume 1)

viil

Draft 3 (APDA)

7 GS/0S Call Reference / 95

GS/OS Reference

The parameter block diagram and description / 96

$201D
$2031

$2004
$200B
$2014

$2001

$202E
$2002
$202C
$202F
$202D
$2030
$201E
$2025

$200E
$2015

$2024

$2028
$2020
$201C
$2019
$2006
$202B
$201B
$2017
$2027
$200A
$200F

BeginSession / 97
BindInt / 98
ChangePath / 99
ClearBackup / 101
Close / 102
Create / 103
DControl / 108
Destroy / 110
Dinfo / 112
DRead / 116
DStatus / 118
DWrite / 120
EndSession / 122
EraseDisk / 123
ExpandPath / 125
Flush / 127
Format / 129
GetBootVol / 131
GetDevNumber / 132
GetDirEntry / 134
GetEQF / 139
GefFilelnfo / 140
GetFSTInfo / 144
Getlevel / 147
GetMark / 148
GetName / 149
GetPrefix / 150
GetSysPrefs / 151

8/31/88

GS/0S Reference (Volume 1)

$202A
$2011

$200D
$2010
$2003

$2029
$2012
$201F
$2018
$2005
$201A
$2016
$2009
$200C
$2032
$2008
$2013

Part I The File System Level / 187

Draft 3 (APDA)

GetVersion / 152
Newline / 153

Null / 155

Open / 156
OSShutdown 161
Quit / 163

Read / 165
SessionStatus / 168
SetEOF / 169
SetFilelnfo / 171
Setlevel / 175
SetMark / 176
SetPrefix / 178
SetSysPrefs / 180
UnbindInt / 182
Volume / 183
Write / 185

8 File System Translators / 189
The FST Concept / 190
Calls handled by FSTs / 192

Programming for multiple file systems / 193.
Don't assume file characteristics / 193

Use GetDirEntry / 194

Keep rebuilding your device list / 194

Handle errors properdy / 194

FSTs and file-access optimization / 195

Present and future FSTs / 195
Disk initialization and FSTs / 196

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

9 The ProDOS FST / 199
The ProDOS file system / 200
GS/0S and the ProDOS FST / 200

Calls to the ProDOS FST / 201
GetDirEntry (5201C) / 201
GetFileInfo ($2006) / 202
SetFileInfo ($2005) / 202

10 The High Sierra FST / 203
CD-ROM and the High Sierra/ISO 9660 formats / 204
Limitations of the High Sierra FST / 205
Apple extensions to ISO 9660 / 207

High Sierra FST calls / 208
GetFilelnfo ($2006) / 209
Volume ($2008) / 210
Open (52010) / 210
Read ($2012) / 211
GetDirEntry ($201C) / 212

$2033 FSTSpecific / 214
What a map table is / 215
MapEnable (FSTSpecific subcall) / 216
GetMapSize (FSTSpecific subcall) / 217
GetMapTable (FSTSpecific subcall) / 217
SetMapTable (FSTSpecific subcall) / 218

11 The Character FST / 221
Character devices as files / 222

Character FST calls / 222
Open ($2010) / 223
Read ($2012) / 223
Write (52013) / 224
Close ($2014) / 224
Flush ($2015) / 225

X G5/0S Reference

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Appendixes / 227

Appendix A GS/0S ProDOS 16 Calls / 229
$0031 ALLOC_INTERRUPT / 230
$0004 CHANGE_PATH / 231
$000B CLEAR_BACKUP_BIT / 233
$0014 CLOSE / 234
$0001 CREATE / 235
$0032 DEALLOC_INTERRUPT / 239
$0002 DESTROY / 240
$002C D_INFO / 242
$0025 ERASE_DISK / 243
$000E EXPAND_PATH / 245
$0015 FLUSH / 247
$0024 FORMAT / 248
$0028 GET_BOOT_VOL / 250
$0020 GET_DEV_NUM / 251
$001C GET_DIR_ENTRY / 252
$0019 GET_EOF / 256
$0006 GET_FILE_INFO / 257
$0021 GET_LAST_DEV / 260
$001B GET_LEVEL / 262
$0017 GET_MARK / 263
$0027 GET_NAME / 264
$000A GET_PREFIX / 265
$002A GET_VERSION / 266
$0011 NEWLINE / 267
$0010 OPEN / 269
$0029 QUIT / 271
$0012 READ / 273

Contents X

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0022 READ_BLOCK / 275
$0018 SET_EOF / 276

$0005 / SET_FILE_INFO / 277
$001A SET_LEVEL / 280
$0016 SET_MARK / 281
$0009 SET_PREFIX / 282
$0008 VOLUME / 284

$0013 WRITE / 286

$0023 WRITE_BLOCK / 288

Appendix B ProDOS 16 Calls and FSTs / 289
The ProDOS FST / 290

The High Sierra FST / 290
GET_FILE_INFO ($06) / 291
VOLUME ($08) / 292
GET_DIR_ENTRY ($1C) / 292

The Character FST / 293
OPEN ($10) / 293
READ ($12) / 294
WRITE ($13) / 294
CLOSE (§14) / 294
FLUSH ($15) / 295

ProDOS 16 device calls / 295

Appendix C The GS/0S Exerciser / 297
Starting the Exerciser / 298
Call options / 299
Making GS/0S calls / 299
Other commands / 301

xi GS/OSReference

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Appendix D GS/0S System Disks and Startup / 3035
Application system disks / 306
System startup from ProDOS volumes / 307

System startup from non-ProDOS volumes / 308
Startup (boot file routine} / 309
ReadlInFile (boot file routine) / 310
GetBootName (boot file routine) / 311
GetFSTName (boot file routine) / 311
Sample boot file startup routine / 312

Appendix E Apple Extensions to ISO 9660 / 317
What the Apple extensions do / 318
The protocol identifier / 318

The Directory Record SystemUse Field / 320
SystemUselD / 322

Filename transformations / 324
ProDOS / 324
Macintosh HFS / 325

ISO 9660 associated files / 326
Appendix F GS/0S Error Codes and Constants / 327

Glossary / 331

Contents xiii

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Figures and Tables

Preface / 1
Figure P-1. Roadmap to Apple 1IGS technical manuals / 8
Table P-1 Apple IIGS technical manuals / 9

Introduction What is GS/08? / 13
Figure I-1 Interface levels in GS/OS / 14

Figure -2 Where to find call descriptions in this book. / 19
Part I The Application Level / 23

Chapter 1 GS/0OS Abstract File System / 25
Figure 1-1 Application level in GS/0S / 26
Figure 1-2 Example of a hierarchical file structure / 27
Figure 1-3 Directory file format / 29
Figure 14 Prefixes and partial pathnames / 32
Figure 1-5 Automatic movement of EOF and mark / 38
Table 1-1 Examples of prefix use / 34
Table 1-2 GS/OS file types and auxiliary types / 36
Table 1-3 GS/OS call groups / 41

. Chapter 2 GS/0S and Its Environment / 45
Figure 2-1 Apple IIGS memory map / 46
Figure 2-2 Pointers and handles / 51
Table 2-1 GS/OS vector space / 48

xiv G5/0S Reference

GY/0S Reference (Volume 1)

Table 2-2
Table 2-3
Table 24
Table 2-5

Draft 3 (APDA)

Machine state at GS/OS application launch / 57

Machine state at GS/OS application launch / 59

Prefix values when GS/OS application launched at boot time / 60
Prefix values—GS/OS application launched after GS/OS

application quits / 60

Table 2-6

Prefix values—GS/OS application launched after ProDOS 8

application quits / 60

Table 2-7

Chapter 3
Figure 3-1
Figure 3-2
Figure 3-3
Table 3-1
Table 3-2

Chapter 4
Table 4-1

Part II
Chapter 8
Figure 8-1

Table 8-1

Chapter 10
Table 10-1

Prefix and pathname values at ProDQS 8 application launch / 61

Making GS/0S Calls / 63

GS/OS and Pascal strings / 69

GS/0S input string structure / 69

GS/OS result buffer / 70

Registers on exit from GS/0S / 71

Status and control bits on exit from GS/OS / 72

Accessing GS/0S Files / 73
Date and time format / 80

The File System Level / 187
File System Translators / 189
The file system level in G§/OS / 191

GS/0S calls handled by FSTs / 192

The High Sierra FST / 203
High Sierra FST calls / 208

Figures and Tables xv

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Appendixes / 227

Appendix B ProDOS 16 Calls and FSTs / 289
Table B-1 High Sierra FST ProDOS 16 calls / 291

Appendix C The GS/0S Exerciser / 297
Figure C-1 Exerciser main screen / 298
Figure C-2 Parameter-setup screen / 300
Figure C-3 Device-list screen / 302
Figure C4 Modify-memory screen / 303
Table C-1 ASCII table / 304

Appendix D GS/0S System Disks and Startup / 305
Table D-1 Directories and files on 2 GS/OS system disk / 306

Appendix E Apple Extensions to ISO 9660 / 317
Table E-1 Defined values for SystemUseID / 322
Table E-2 Contents of SystemUse field for each value of SystemUseID / 322
Table E-3 ProDOS-to-ISO 9660 filename transformations / 325

Appendix F GS/0S Error Codes and Constants / 327
Table F-1 GS/OS errors / 328

xvi GS/OS Reference

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Preface

The GS/OS Reference describes a powerful operating system developed
specifically for the Apple® TIGs® computer. GS/OS™ is characterized by fast
execution, easy configurability, multiple file-system access, file access to
character devices, direct device-access, device-independence, compatibility
with the large GS/OS memory space, and compatibility with standard-Apple I
(ProDOS® 8-based) and early Apple 11GS® (ProDOS 16-based) applications,

_ In two volumes, the G¥OS Reference describes how GS/0S gives applications

access to the the full range of Apple IIGS features, and shows how to create
device drivers to work with GS/OS.

Preface 1

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

About this book

The GS/0S Reference is a manual for software developers, advanced programmers, and others who
wish to understand the technical aspects of this operating system. In particular, this manual will be
useful to you if you want to write

o any program that creates or accesses files

* a program that catalogs disks or manipulates files

e astand-alone program that automatically runs when the computer starts up
e 2 program that loads and runs other programs

* any program using segmented, dynamic code

* an interrupt handler

* adevice driver

The GY/OS Reference consists of two volumes plus one disk: the GS/OS Exerciser, a program included
on a disk accompanying Volume 1.

The functions and calls in this manual are in assembly-language format. If you are programming in
assembly language, you can use the same format to access operating system features. If you are
programming in a higher-level language (or if your assembler includes a GS/0S macro library), you will
use library interface routines specific to your language. Those library routines are not described here;
consult your language manual.

The software described in this book is part of the Apple IIGs System Disk, versions 4.0 and later. Apple
IIGS system disks are available from Apple dealers and from APDA (Apple Programmer’s and
Developer's Association).

Note: System disks earlier than version 4.0 use ProDOS 16 as the operating system. ProDOS 16
is described in the Apple IIgS ProDOS 16 Reference.

How to use this book

This book is primarily a reference tool, although parts of each volume are explanatory.

2 GS/0S Reference

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Volume 1 describes the application interface, the high-level parts of GS/OS that your application calls
in order to access files or to modify the operating environment.

* The introduction to Volume 1 describes GS/OS in general.

» Part I of Volume 1 describes how applications interact with GS/OS, and documents all application-
level GS/OS calls.

o Part I of Volume 1 documents the file system translators (FSTs), the software modules that allow
your program to access files from many different file systems. For each FST, Part II lists the
application calls it supports and documents any differences in call handling from the standard
descriptions in Part [.

Volume 2 describes the device interface, the low-level parts of G§/0S that interact with device
drivers to control hardware such as disk drives, communication ports, and the console.

» Part I of Volume 2 documents how your program can use GS/0S calls to access a wide variety of
devices, both block and character devices, and describes the principal device drivers that are
supplied with GS/OS.

* Part I of Volume 2 documents how device drivers interface with G5/OS, and shows you how to write
a GS/0S device driver,

The principal descriptions of all application-level GS/OS calls (other than device calls) are in Part I of
Volume 1. Call descriptions elsewhere in the.book consist mainly of differences from the standard
descriptions. The principal descriptions of application-level device calls are in Part I of Volume 2.
Driver calls (low-level device calls used by device drivers) are described in Part II of Volume 2.

If you are writing a typical application, the information in Volume 1 is probably all you will need. If
you need to access devices directly, or if you are writing a device driver, interrupt handler, message
handler, shell, or 2 large, segmented application, you will need Volume 2 also.

This manual does not explain 65C816 assembly language. Refer to the Apple 1IGS Programmer’s
Workshop Assembler Reference or the MPW IIGS Assembler Reference for information on Apple IIGS

assembly language programming.

This manual does not give a detailed description of ProDOS 8, the operating system for standard-
Apple I computers (Apple T Plus, Apple Ile, Apple IIc). For detailed information on ProDOS 8, see
the ProDOS 8 Technical Reference Manual.

What it contains

GS/OS is described in two volumes. Here is a brief list of the contents of each chapter and appendix
in Volume 1

Preface 3

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Volume 1. The Operating System: What your applications can do with GS/0S.

Introduction. What is GS/08? An overview of GS/OS.
Part L. The Application Level: The uppermost level of GS/OS.

Chapter 1. Applications and GS/0S: A brief overview.

Chapter 2. GS/0S and Its Environment: How GS/OS affects your program.

Chapter 3. Making GS/OS Calls: The basics of making calls.

Chapter 4. Accessing GS/OS Files: Accessing block files and character files.

Chapter 5. Working with Volumes and Pathnames: Bypassing files; formatting.
Chapter 6. Working with System Information: Communicating with system software.

Chapter 7. GS/0S Call Reference: Documentation of all application-level standard GS/OS
calls.

Part II. The File System Level: The middle level of GS/OS.

Chapter 8. File System Traaslators: How the FST concept works.

Chapter 9. The ProDOS FST: Details about accessing ProDOS files

Chapter 10. The High Sierra FST: Details about accessing files on CD-ROM.
Chapter 11. The Character FST: Details about accessing character devices as files.

Appendixes

Appendix A, GS/0S ProDOS 16 Calls: Making ProDOS 16 calls under GS/OS.

Appendix B. ProDOS 16 Calls and FSTs: How each FST handles ProDOS 16 calls
Appendix C. The GS/OS Exerciser: How to practice GS/OS calls.

Appendix D. GS/0S System Disks and Startup: The major components of a system disk.
Appendix E. Apple Extensions to ISO 9660: Additions to the CD-ROM file format,
Appendix F. GS/0S Error Codes and Constants: A complete listing and description.

Here is a brief list of the general contents of Volume 2:

Volume 2. The Device Interface: How GS/OS provides access to devices,

4

The Device Level in GS/OS An overview of the lower level of GS/OS.
Part L. Using Device Drivers: How to make calls to GS/OS drivers.
Part [I. Writing a Device Driver: How to write a device driver for GS/OS.
Appendixes: Device driver sample code, description of the System Loader.

GS/0S Reference

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Other materials you'll need

In order to write Apple IIGS programs that run under GS/0S, you'll need an Apple IIGS computer and
development-environment software, Furthermore, you will need at least some of the reference
materials listed later in the Preface under, “Roadmap to the Apple IIGS Technical Manuals.” In
particular, if you intend to write desktop-style applications or desk accessories, which make use of
the Apple IIGs Toolbox, you will need the Apple JIGS Toolbox Reference.

The GS/OS Exerciser, described in Appendix C of Volume 1, can be useful for practicing GS/OS calls.

Visual cues

Certain conventions in this manual provide visual cues alerting you, for example, to the introduction
of a new term or to especially important information.

When a new term is introduced, it is printed in boldface the first time it is used. This lets you know
that the term has not been defined earlier and that there is an entry for it in the glossary.

Special messages of note are marked as follows:

Note: Text set off in this manner—with the word Note— presents extra information or points
to remember.

Important Text set off in this manner—with the word Importani—presents vital information or
instructions.

Terminology

This manual may define certain terms, such as Apple I and ProDOS, slightly differently than what you
are used to. Please note:

Apple II: A general reference to the Apple I family of computers, especially those that may use
ProDOS 8 or ProDOS 16 as an operating system. It includes the 64 KB Apple II Plus, the Apple Iic, the
Apple He, and the Apple IIGs.

standard Apple I Any Apple I computer that is not an Apple IIGS. Since previous members of the

- Apple I family share many characteristics, it is useful to distinguish them as a group from the Apple
0Gs. A standard Apple I may also be called an 8-bit Apple II, because of the 8-bit registers in its
6502 or 65C02 microprocessor.

Preface 5

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

ProDOS: A general term describing the family of operating systems developed for Apple II
computess. It includes both ProDOS 8 and ProDOS 16; it does not include DOS 3.3 or SOS. ProDOS
is also a file system developed to operate with the ProDOS operating systems.

ProDOS 8: The 8-bit ProDOS operating system, through version 1.2, originally developed for
standard Apple II computers but compatible with the Apple IIGS. In previous Apple I
documentation, ProDOS 8 is called simply ProDOS.

ProDOS 16: The first 16-bit operating system developed for the Apple IIGS computer. ProDOS 16 is
based on ProDOS 8.

GS/08S: A nativecode, 16-bit operating system developed for the Apple 1IGS computer. GS/OS
replaces ProDOS 16 as the preferred Apple IIGS operating system. GS/OS is the system described in
this manual.

Language notation

This manual uses certain conventions in common with Apple IIGS language manuals. Words and
symbols that are computer code appear in a monospace font:

CallName Cl parmblock ;Name of call

becs error “shandle error if carry set on return
error ;code to handle error return
parmblock ;parameter block

This includes assembly language labels, entry points, and file names that appear in text passages.
GS/0S call names and the names of other system software functions, however, are printed in normal
font in uppercase and lowercase letters (for example, GetEntry and LoadSegmentNum). The subclass
of GS/0S calls that are compatible with ProDOS 16 are printed in all uppercase letters and often
include underscore characters (for example, GET_ENTRY). '

Roadmap to the Apple IIs technical manuals -

The Apple IIGS personal computer has many advanced features, making it more complex than earlier
models of the Apple II computer. To describe the Apple IIGS fully, Apple has produced a suite of
technical manuals. Depending on the way you intend to use the Apple IIGS, you may need to refertoa
select few of the manuals, or you may need to refer to most of them.

6 GS/OSReference

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

The Apple 1IGs technical manuals document Apple 1IGs hardware, Apple IIGS system software, and
two development environments for writing Apple [IGS programs. Figure P-1 is a diagram showing the
relationships among the principal manuals; Table P-1 is a complete list of all manuals. Individual
descripions of the manuals follow.

Introductory Apple IIGS manuals

The introductory Apple TIGS manuals are for developers, computer enthusiasts, and other Apple IIGS
owners who need basic technical information. Their purpose is to help the technical reader
understand the features and programming techniques that make the Apple IIGS different from other
computers.

o The Technical Introduction: The Technical Introduction to the Apple 1IGS is the first book in the
suite of technical manuals about the Apple IIGS. It describes all aspects of the Apple [IGS, including
its features and general design, the program environments, the toolbox, and the development
environment.

You should read the Technical Introduction no matter what kind of programming you intend to do,
because it will help you understand the powers and limitations of the machine.

» The Programmer’s Introduction: When you start writing programs that use the Apple IIGS user
interface (with windows, menus, and the mouse), the Programmer's Introduction fo the Apple 1IGS
provides the concepts and guidelines you need. It is not a complete course in programming, only a
starting point for programmers writing applications for the Apple IIGS.

The Programmer's Introduction gives an overview of the routines in the Apple [IGS Toolbox and the
operating environment they run under. It includes a sample event-driven program that demonstrates
how a program uses the toolbox and the operating system.

Preface 7

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Figure P-1. Roadmap to Apple IIGS technical manuals

To start finding out
about the Apple I1Gs

To learn how
the Apple s works

To leam Apple IlGs B
programming

To use the toolbax Sk

To operate on files
and devices

To write Apple IlGs
programs with AFW

To write Apple IGs

programs with the s
cross-development

sysiem

8 GS/OSReference

GS/0S Reference (Yolume 1)

Table P-1 Apple 1IGS technical manuals

Draft 3 (APDA)

Title

Subject

Technical Introduction to the Apple IIGS
Apple IGS Hardware Reference

Apple IIGS Firmware Reference
Programmer’s Introduction to the Apple IGSs
Apple 11Gs Toolbox Reference, Volume 1
Apple I1GS Toolbox Reference, Volume 2
ProDOS 8 Technical Reference Manual
Apple IIGS ProDOS 16 Reference

Apple IIGS Programmer’s Workshop Reference
APW Assembler Reference
APW C Reference

MPW IIGS Tools Reference
MPW IIGS Assembler Reference
MPW IIGS C Reference

MPW IIGS Pascal Reference

Apple 1IGS Debugger Reference

What the Apple IIGS is

Machine internals—hardware

Machine internals—firmware

Concepts and a sample program

How tools work, some specifications
More toolbox specifications

Standard Apple II operating system
Apple IGS operating system and loader

Using APW
Using the APW Assembler
Using the APW C Compiler

Using the cross-development system
Using the MPW IIGS Assembler
Using the MPW IIGs C Compiler
Using the MPW IIGS Pascal Compiler

Debugger for all Apple IIGS programs

Apple IIGS machine-reference manuals

The machine itself has two reference manuals. They contain detailed specifications for people who

want to know exactly what's inside the machine.

» The hardware reference: The Apple /IGs Hardware Reference is required reading for hardware
developers and anyone else who wants to know how the machine works. Information for developers
includes the mechanical and electrical specifications of all connectors, both internal and external.
Information of general interest includes descriptions of the internal hardware and how it affects the

machine’s features.

Preface 9

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) ' 8/31/88

» The firmware reference: The Apple lIGS Firmware Reference describes the programs and subroutines
stored in the machine’s read-only memory (ROM). The Firmware Reference includes information
about interrupt routines and low-level I/O subroutines for the serial ports, the disk port, and for the
Apple Desktop Bus™ interface, which controls the keyboard and the mouse. The Firmware Reference
also describes the Monitor program, a low-level programming and debugging aid for assembly-

language programs.

Apple 1IGS Toolbox manuals

Like the Macintosh, the Apple TIGS has a built-in toolbox. The Apple IiGs Toolbox Reference, Volume 1,
introduces concepts and terminology and tells how to use some of the tools. The Apple IIGS Toolbox
Reference, Volume 2, contains information about the rest of the tools. Volume 2 also tells how to
write and install your own tool set.

If you are developing an application that uses the desktop interface, or if you want to use the Super
Hi-Res graphics display, you'll find the toolbox manual indispensable.

Apple IIGS operating-system manuals

The Apple 1IGS two preferred operating systems : GS/OS and ProDOS 8. GS/OS uses the full power of
the Apple 1IGS and can access files in multiple file systems. The GS/OS Reference describes GS/OS and
includes information about the System Loader, which works closely with GS/OS to load programs
into memory.

ProDOS 8, previously called simply ProDQS, is the standard operating system for most Apple II
computers with 8-bit CPUs. As a developer of Apple IIGS programs, you need to use ProDOS 8 only if
you are developing programs to run on 8-bit Apple Il computers as well as on the Apple IIGS. ProDOS
8 is described in the ProDOS 8 Technical Reference Manual.

Note: GS/OS is compatible with and replaces ProDQS 16, the first operating system developed
for the Apple IGS computer. ProDOS 16 is described in the Apple [/Gs ProDOS 16
Reference. ‘

10 GS/OS Reference

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

All-Apple manuals

Two manuals apply to all Apple computers: Human Interface Guidelines: The Apple Desktop Interface
and the Apple Numenics Manual. If you develop programs for any Apple computer, you should know
about these manuals.

The Human Interface Guidelines manual describes Apple’s standards for the desktop interface to any
program that runs on an Apple computer. If you are writing a commercial application for the
Apple 11GS, you should be fully familiar with the contents of this manual.

The Apple Numenics Manual is the reference for the Standard Apple Numerics Environment (SANE), a
full implementation of the IEEE Standard for Binary Floating-Point Arithmetic (IEEE Std 754-1985).
If your application requires accurate or robust arithmetic, you'll probably want it to use the SANE
routines in the Apple I1Gs.

The APW manuals

Apple provides two development environments for writing Apple [IGS programs. See Figure P-1. One
is the Apple IIGs Programmer’s Workshop (APW). APW is a native Apple IIGS development system—
it runs on the Apple IIGS and produces Apple IIGS programs. There are three principal APW manuals:

* The Programmer’s Workshop manual: The Apple IIGS Programmer’s Workshop Reference
describes the APW Shell, Editor, Linker, and utility programs; these are the parts of the workshop
that all developers need, regardless of which programming language they use. The APW reference
manual includes a sample program and describes object module format (OMF), the file format used
by all APW compiless to produce files loadable by the Apple [IGS System Loader.

» Assembler: The Apple lIGs Programmer’s Workshop Assembler Reference includes the specifications
of the 65816 language and of the Apple IIGs libraries, and describes how to use the assembler.

o Ccompiler: The Apple lIGS Programmer's Workshop C Reference includes the specifications of the
APW C implementaion and of the Apple IIGS interface libraries, and describes how to use the
compiler.

Other compilers can be used with the workshop, provided they follow the standards defined in the
Apple IIGs Programmer's Workshop Reference. Several such compilers, for languages such as Pascal, are
now available.

Note: The APW manuals are available through the Apple Programmer’s and Developer's
Association (APDA).

Preface 11

GS/OS Reference (Voiume 1) Draft 3 (APD4) 8/31/88

The MPW IIGS manuals

Macintosh Programmer's Workshop (MPW) is one of the two development environments Apple
provides for writing Apple IIGS programs. See Figure P-1. MPW is principally a sophisticated,
powerful development environment for the Macintosh computer. It includes assemblers and
compilers, linkers, and a variety of diagnostic and debugging tools. When used to write Apple [IGS
programs, MPW is a cross-development system—it runs on the Macintosh, but produces executable
programs for the Apple TIGS.

MPW is documented in several manuals, but the parts needed for cross-development—the editor and
the build tools—are described in the Macintosh Programmer’s Workshop Reference. That book is the
only Macintosh manual you need when writing programs using MPW TIGS.

Four manuals describe the cross-development system. Each programming language has its own
manual. Whichever language you program in, you also need the MPW LGS Tools Reference.

» Tools: The MPW IIGs Tools Reference describes the tools needed to create Apple 1IGS appplications
under MPW. It describes the linker, file-conversion to0ol, and several other conversion and diagnostic
programs.

e Assembler: The MPW IIGS Assembler Reference describes how to write Apple IIGS assembly-language
programs under MPW. It also documents a utility program that converts source files written for the
APW assembler to files compatible with the MPW IIGS Assembler.

» Ccompliler: The MPW IIGS C Reference describes how to write Apple [IGS programs in C under MPW.

Note: The MPW TIGS manuals are available through the Apple Programmer’s and Developer’s
Association (APDA).

The debugger manual

Neither MPW TIGS nor APW includes a debugger as part of the development environment. However,
the Apple IIGS Debugger, an independent product, is a machine-language debugger that runs on the
Apple 1IGS and can be used to debug programs produced by either MPW IIGS or APW.

The Apple TIGS Debugger is described in the Apple 1IGs Debugger Reference.

12 GS/CSReference

GS/0S Reference (Volume 1) Drafi 3 (APDA) 8/31/88

Introduction What is GS/0QS?

GS/0S is the first completely new operating system designed for the Apple IIgs
computer. It is similar in interface and call style to the ProDOS operating
systems, but it has far greater capabilities because it has many new calls, and it
has much faster execution because it is written entirely in 65816 assembly
language.

Even more important, GS/OS is file-system independent: by making GS/OS
calls, your application can read and write files transparently among many
different and normally incompatible file systems. GS/OS accomplishes this by
defining a generic GS/OS file interface, the abstract file system. Your
application makes calls to that interface, and then GS/OS uses file system
translators to convert the calls and data into formats consistent with individual
file systems.

This chapter gives an overview of the structure and capal-)ilities of G§/0S,
followed by a brief history of the evolution in Apple I operating systems from
DOS to GS/0S.)

Introduction: What is G§/08? 13

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

The components of GS/0S

GS/0S is more complex and integrated than previous Apple II operating systems. As Figure 1 shows,
you can think of it in terms of three levels of interface: the application level, the file system level, and
the device level. A typical GS/OS call passes through the three levels in order, from the application at
the top to the device hardware at the bottom.

Figure 1-1 Interface levels in GS/OS

Application program

Appiication
level :

File system
level

Device
level

14 GS/0S Reference

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/38

Application level: Applications interact with GS/OS mostly at the application level. The
application level processes GS/OS calls that allow an application to access files or devices, or to get
or set specific system information.

In handling a typical GS/OS call, the application level mediates between an individual application
and the file system level. The application level is described in Part I of this volume.

File system level: The file system level consists of file system translators (FSTs), which take
application calls, convert them to 2 specific file system format, and send them on to device drivers.
FSTs allow applications to use the same calls to read and write files for any number of file systems.
FSTs also allow applications to access character devices (like display screens or printers) as if they
were files.

Note that the file system level is completely internal to GS/OS. Although your applications don't
interact with the file system level directly, you may want to know how calls are translated by different
file system translators. For example, CD-ROM files are read-only, so write calls cannot be translated
meaningfully by an FST that accesses files on compact discs.

In handling a typical GS/OS call, the file system level mediates between the application level and the
device level. The file system level is described in Part II of this volume.

Device level: The device level communicates with all device drivers connected to the system. In
handling a typical GS/OS call, the device level mediates between the file system level and an
individual device driver.

The device level of GS/OS has two other types of communication . At the highest level, applications
can bypass the file system level entirely by making device calls, which are calls that directly access
devices. At the lowest level, device drivers communicate with the device level by accepting driver
calls, which are mostly low-level translations of device calls.

Device calls are described in Part I of Volume IT; if your application needs direct access to devices,
look there to find out how to do it. Driver calls are described in Part I of Volume II; if you are
writing a device driver, look there for details.

Another part of system software that is described in this manual is the Apple 1IGS System Loader.

The System Loader loads all other programs into memory and prepares them for execution. Although

not strictly part of GS/OS, the System Loader occupies the same disk file as GS/OS, and works very

‘closely with G§/0S when loading programs. The System Loader and its calls are documented in

Volume 2. For most applications, however, its functioning is totally automatic; only specialized
programs such as shells need make loader calls.

Introduction: What is GS/08? 15

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

GS/0S Features

This section describes some of the principal GS/OS features of interest to application writers.

File-system independence

Because it uses file system translators, GS/OS accesses non-ProDOS file systems as easily as it
accesses the more familiar (to Apple II applications) ProDOS files. It is possible to gain access to
any file system for which an FST has been written. Several FSTs currently exist; as Apple Computer
creates new FSTs, they can be very easily added to existing systems.

The GS/OS abstract file system supports both flat and hierarchical file systems and systems with
specific file types and access permissions. GS/OS recognizes standard files, directory files, and
extended files (two-fork files such as the Macintosh uses). Certain GS/OS calls make it easy to retrieve
and use directory information for any file system.

The abstract file system is described in Chapter 1 of this volume. FSTs are described in Part I of this
volume. ‘

Enhanced device support

All GS/OS device drivers provide a uniform interface to character and block devices. GS/OS
supports both ROM-based and RAM-based device drivers, making it easier to integrate new
peripheral devices into GS/OS.

GS/0S provides a uniform input/output model for both block and character devices. Devices such as
printers and the console are accessed in the same way as sequential files on block devices. This can
greatly simplify I/O for your application.

Unlike ProDOS 8 and ProDOS 16, GS/OS recognizes disk-switched and duplicate-volume situations,
to help your application avoid writing data to the wrong disk.

Devices are normally accessed through application-level file calls, described in Part 1 of this volume.
Device drivers are described in Part I of Volume 2.

16 GS/OS Reference

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Speed enhancements

GS/0S transfers data much faster than ProDOS 8 or ProDOS 16 because it uses disk caching, allows
multiple-block reads and writes, eliminates the duplicate levels of buffering used by ProDOS 16, and
because it is written entirely in 65816 native-mode assembly language.

Disk caching is described in Volume 2,

Eliminated ProDOS restrictions

GS/0S allows any number of open files (rather than only 8) up to the amount of available RAM, any
number of devices on line (rather than only 14), and any number of devices per slot (rather than only
2). GS/OS allows volumes and files to be as large as 232 bytes (rather than only 16 MB for files and 32
MB for volumes),

The GS/OS file interface is described in Chapter 1 of this volume.

ProDOS 16 compatibility

GS/0S includes a complete set of ProDOS 16 calls and implements them just as ProDOS 16 does. All
well-behaved ProDQS 16 applications can run without modification under GS/OS. An added benefit
is that existing ProDOS 16 applications running under GS/OS can now automatically access files on
non-ProDOS disks, and can also access character devices as files.

Where to find call descriptions

As already noted, there are several categories of calls that programs can make to GS/OS. Broadly,
calls can be divided into application-level calls (made from application programs to GS/OS) and
low-level calls (made between GS/OS and low-level software such as device drivers). Most
application-level calls are described in Volume 1; most low-level calls are described in Volume 2.
Within these broad divisions, there are several subcategories of calls and call-related descriptions;
each subcategory is described in a different place in the two volumes. The categories are as follows:

In Volume 1:

Introduction: What is GS/08? 17

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

standard GS/0S calls: Also called class 1 calls or just GY/OS calls, these are the primary calls an
application makes to access files or system information. They are application-level calls. This
category covers all operating system calls that a typical GS/OS application makes.

FST-specific information on GS/0S calls: Because different file systems have different
characteristics, not all respond identically to GS/OS calls. In addition, each FST can support the
GS/0S call FSTSpecific, an application-level call whose function is defined individually for each FST.
Therefore, this book includes descriptions of how each FST handles certain GS/OS calls, including
FSTSpecific.

ProDOS 16 calls: Also called class 0 calls, these are application-level calls that are identical to the
calls described in the Apple ligs ProDOS 16 Reference. GS/OS supports these calls so that existing
ProDOS 16 applications can run without modification under GS/OS.

FST-specific information on ProDOS 16 calls: Because different file systems have different
characteristics, not all respond identicaily to ProDOS 16 calls. Therefore this book includes
descriptions of how each FST handles ProDOS 16 calls. There is no FSTSpecific ProDOS 16 call as
there is for GS/OS calls.

In Volume 2:

- GS/0S device calls: These are a subset of the application-level; standard GS/OS calls described in

Volume 1, but they are special because they bypass the file level altogether and access devices
directly. _

Driver-specific information on GS/0S device calls: Because different devices have different
characteristics, not all device drivers respond identically to GS/OS calls. Therefore, this book
includes descriptions of how each GS/OS driver handles certain GS/OS device calls.

Driver calls: These are calls that GS/OS makes to individual device drivers. They are low-level calls,
of interest mainly to device-driver writers.

System service calls: System service calls give low-level components of GS/OS (such as FSTs and
device drivers) a uniform method for accessing system information and executing standard routines.
This book describes the system service calls that GS/OS device drivers can make.

System Loader calls: These are calls a program can make to load other programs or program
segments into memory Although the typical application makes no System Loader calls, they are
described in this book so that shells and system-level programs can make use of them.

Figure 1-2 shows you where to look in each volume for the principal descriptions of each call
category. For example, the descriptions of all standard GS/OS calls (except those that access
devices) are in Part I of Volume 1 (Chapter 7); the descriptions of driver calls are in Part II of Volume
2 (Chapter 9). :

18 GS/0S Reference

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Note: Figure 1-2 is reproduced in each Part opening in this book, highlighted in each case 1o
show the calls described in that part.

Figure I-2 Where to find call descriptions in this book.

Most applications make only the calls described in Part I of Volume 1 (shaded area).

Part] PartII

Appendixes

ProDOS 16 calls
(Appendix A)

\-—_.,._.-/
FST-specific

information on
ProDQOS 16 calls

(Appendix B)

Volume 1

Volume 2

GS/0S device calls

GS/0S system requirements

GS/0S will not run on a standard Apple IT computer. It requires an Apple IIGS with 2 ROM revision of
1.0 or greater, at least 512 KB of RAM, and a disk drive with at least 800 KB capacity. A second 800
KB drive or a hard disk is strongly recommended.

Introduction: What is GS/08? 19

GS/OS Reference (Volume 1) Draft 3 (AFDA) 8/31/88

Background to the development of GS/0S

To summarize this overview of GS/OS, this chapter ends with a brief discussion of how GS/OS
evolved from previous Apple II operating systems.

Apple has created several operating systems for the Apple II family of computers. GS/OS is the latest
in that line; it is related to several earlier systems, but has far greater capabilities than any of them.
Here are thumbnail sketches of the other systems:

* DOS: DOS (for Disk Operating System) was Apple's first operating system. It provided the Apple
computer with its first capability to store and retrieve disk files. DOS has relatively slow data
transfer rates by modern standards, supports a flat (rather than hierarchical) file system, can read 140
KB disks only, has no uniform interrupt support, includes no memory management, and is not
extensible.

s Pascal: Apple II Pascal is an Apple implementation and enhancement of the University of California,
San Diego Pascal System. Its lineage is completely separate from the other Apple operating systems.
Apple II Pascal supports only a flat file system, is characterized by slow, interpretive execution,
provides no uniform support for interrupts, has no memory management, and is difficult to extend.

» SOS: SOS (for Sophisticated Operating System) was developed for the Apple III, but its most
important feature, the file system, is the heart of the ProDOS family of operating systems (described
next). SOS gives much faster data transfer than DOS, represents Apple's first hierarchical file system,
suppotts block devices up to 32 Mb, provides a uniform sequential /O model for both block devices
and character devices, and includes interrupt handling, memory management, device handling, and
extensibility via device drivers and interrupt handlers. The major deficiency of SOS (for standard
Apple 1T computers) is that it requires at least 256 Kb RAM for effective operation.

¢ ProDOS 8: ProDOS 8 (originally called ProDOS, for Professional Disk Operating System), brought
some of the advanced features of SOS to 8-bit Apple II computers (Apple II Plus, Apple Ile, Apple
Ic). It requires no more than 64 Kb of RAM, and in fact can directly access only 64K of memory
space. ProDOS supports exactly the same hierarchical file system as SOS, but does not have the
uniform I/O model for character devices and files, memory management, or uniform treatment of
device drivers and interrupt handlers.

* ProDOS 16: ProDOS 16 (ProDOS for the 16-bit Apple IGS) is the first step toward an operating
system designed specifically for the Apple IIGS computer. It is an extension of ProDOS 8—although
there are a few important additions, it has essentially the same features as ProDOS 8 and supports
exactly the same hierarchical file system. ProDOS 16's main advantage is that it allows applications
to interact with the operating system from anywhere in the 16 Mb Apple IIGS address space.

2 GS/0S Reference

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

GS/08: GS/OS fully exploits the capabilities of the Apple 1IGs. It is a fast, modular, and extensible
operating system that provides a file-system-independent and device-independent environment for
applications. While upwardly compatible from ProDOS 16, it corrects deficiencies in ProDQS 16's
1/0 performance and eliminates its restrictions on number and size of open files, volumes, and
devices. GS/OS supports character devices as files, it handles devices uniformly, and it supports
RAM-based device drivers. GS/OS can create, read and write files among a potentially unlimited
number of different file systems (including ProDQS).

Although it is an extension of the ProDOS lineage, GS/OS is really a completely new operating system.
As its name suggests, it is designed specifically for the Apple IIGS computer, and it is intended to be
the principal Apple 1IGS operating system

Introduction: What is GS/08? 21

GS0S Reference (Volume 1)

Part I

Volume 1

Volume 2

Draft 3 (APDA)

G5/05 device calls

/\._—_/
Driver-specific
information on

GS5/0S device calls

The Application Level

Part

(Chapter %-11)

System service calls

e Appendixes

ProDOS 16 calls
(Appendix A)

w_-"‘s..____,__-'
EST-specific

_ information on

ProDOS 16 calls
{Appendix B)

—

Appendixes

Systemn Loader calls
] (Appendix B)

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

A Volume 1: Applications and GS/OS Part I: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA)

Chapter 1

The GS/0S Abstract File System

Two key features of GS/0OS are its ability to insulate applications from the
details of (1) the hardware devices connected to the system, and (2) the file
systems used to store applications and their data, This chapter shows how
GS/0S implements these features. It also lists, by category, the GS/OS calls that
an application can make.

Chapter 1: The GS/OS Abstract File System 25

8/31/88

GS/05 Reference (Volume 1)

Draft 3 (APDA)

A high-level interface

GS/0S has been designed to insulate you, as the application programmer, from the details of the
system. Normally, you simply make a GS/OS call, and GS/OS routes the call to the correct device.

Conceptually, you can think of GS/OS as looking like the illustration shown in Figure 1-1.

Figure 1-1 Application level in GS/OS

Application program

Block Black
device device
driver driver
Block Block
device device

% Volume 1: Applications and GS§/OS

Character Character
device device
driver driver

Character Character
device device

Part I: The Application Level

8/31/88

Application
level

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

GS/0S can keep your application from dealing with FSTs and devices at all, and thus allow you to
take a higher-level approach, by supporting files in a hierarchical file system.

In 2 hierarchical file system, some files, called directory files, can contain the names of either files
or other directories. Those directories can in tumn contain the names of files or other directories.
Figure 1-2 shows the relationships among files in a hierarchical file system.

Figure 1-2 Example of a hierarchical file structure

; ﬁ 1
uﬂuﬁ%

File File

In GS§/0S, the root-level directory is called a volume directory. A volume is a logical entity that
allows you to access the files contained on a physical storage medium Only block devices can be
identified by volume name, and then only if the named volume is mounted. For example, an entire
disk is identified by its volume name, which is the filename of its volume directory.

GS/OS also makes certain assumptions about what each file in this hierarchical file system looks like.
The assumptions are as follows:

 that each file can be classified as a directory, standard, or extended file

e that each file has a name in a certain format

 that the logical location of each file can uniquely identified by a pathname, which is a collection of
the filenames that lead to it

Chapter 1: The GS/OS Abstract File System 27

GS/0S Reference (Volume 1) Draft 3 (APDA)

» that each file has access privileges

» that each file has a filetype and an auxiliary file type

» that each file has a creation and modification date and time
The following sections define these assumptions.

Classes of GS/0S files
Every GS/OS file is a collection of bytes on a device.

The three classes of files are as follows:

» directory files, which store information about other files

» standard files, which are a collection of a single sequence of data
o extended files, which are a collection of two sequences of data

Note These classes of files are for block devices. GS/OS also allows you to Lréat character
devices as if they contained files. See Chapter 11 “The Character FST” for more
information.

Directory files

A directory file contains informational entries about other directories and files. Each entry in the
directory file describes and points to another directory file, standard file, or exiended file, as shown
in Figure 1-3.

28 Volume 1: Applications and GS/0S Part I: The Application Level

8/31/88

GS0S Reference (Volume 1)

Figure 1-3 Directory file format

Directory file

File entry

File entry

Draft 3 (APDA)

(file 4) >

Standard flle
File A Extended file
File B
> (dara fork)

More entries

File entry

(file B)
File entry \
(file ©) File B

Standard file

(resource fork)

(file n) E—

Flen

Directory files can be read from, but not written to (except by GS/0S).

8/31/88
Directory file (C)
File entry
(file X
File entey
(ile Y)
Mort entrics
File entry
(fiie)

A directory can, but need not, have associated file information such as access controls, file type,
creation and modification times and dates, and so on.

You usually only need to examine directory files when you are creating catalog-type applications;
more information about directory files is given in the section. “Examining Directory Entries” in

Chapter 4.

Standard files

Standard files are named collections of data consisting of a sequence of bytes and associated file

information such as access controls, file type, creation and modification times and dates, and so on.
They can be read from and written to, and have no predefined internal format, because the
arrangement of the data depends on the specific file type.

Chapter 1: The GS/OS Abstract File System

2

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Extended files

Extended files are named collections of data consisting of two sequences of bytes and a single set
of file information such as access controls, file type, creation and modification times and dates, and
so on. The two different byte sequences of an extended file are called the data fork and the resource
fork, They can be read from and written to, and GS/OS makes no assumptions about their internal
formats; the formats depend on the specific file types.

Filenames

Every GS/OS file is identified by a filename. A GS/OS filename can be any number of characters long,
and can include spaces as part of the filename. Your application must encode filenames as sequences
of 8bit ASCII codes.

All 256 extended ASCII values are legal except the colon (ASCI $3A), although most file system
translators (FSTs) support much smaller legal character sets.

Important Because the colon is the pathname separator character, it must never appear in a
filename, See the next section for more details about separators and pathnames.

If an FST does not support a character that the user attempts to use in a filename, GS/OS returns emor
$40 (pathname syntax error). FSTs are also responsible for indicating whether filenames should be
case-sensitive or not, and whether the high-order bit of each character is turned off. See Part I of
this volume for more information about FSTs,

A filename must be unique within its directory. Some examples of legal filenames are as follows:
file-1
January Sales

long file name with spaces and special characters !@#5%

3 Volume 1: Applications and G§/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Pathnames

In a hierarchical file system, a file is identified by its pathname, a sequence of file names starting
with the name of the volume directory name and ending with the name of the file. These pathnames
specify the access paths to devices, volumes, directories, subdirectories, and files within flat or
hierarchical file systems.

A GS/OS pathname is either a full pathname or a partial pathname, as described in the following sections.

Full pathnames

A full pathname is one of the following names:

* 2 volume name followed by a series of zero or more filenames, each preceded by the same separator,
and ending with the name of a directory file, standard file, or extended file

* adevice name followed by a series of zero or more filenames, each preceded by the same separator,
and ending with the name of a directory file, standard file, or extended file

A separator is a character that separates filenames in a pathname. Both of the followiné separators

are valid:

¢ A colon *” (ASCII code $3A).

s A slash character “/” (ASCII code $2F)

The first colon or slash in the input string determines the separator. When the colon is the separator, the

constituent filenames must not contain colons, but can contain slashes. When the slash is the separator,
the constituent filenames must not contain slashes or colons. Thus, colons are never allowed in filenames.

Examples of legal full pathnames are as follows:
/aloysius/beelzebub/cat
ta:zb:c
/=
X
.dl/a/b

Examples of illegal full pathnames are as follows:
lassfsels a “" must not appear in a filename
/a/bl/c assuming that the first filename is supposed to be “a/b”

Chapter 1: The GS/OS Abstract File System 31

GS0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

/a/bfc/ cannot have a separator after the last filename
a/b/c/ must start with a volume or device name

All calls that require you to name a file will accept either a full pathname or a partial pathname.

Prefixes and partial pathnames

A full pathname can be broken down into a prefix and a partial pathname. In essence, the prefix starts at
the beginning of the pathname (that is, at the volume or device name) and can continue down through the
last directory name in the path. In contrast, the partial pathname starts at the end of the pathname and
can continue up to, but not inciude, the volume name or device name. Thus, when the prefix and partial
pathname are combined, they yield the full pathname. Figure 14 illustrates the possible prefix and partial
pathname portions of a single full pathname,

Figure 14 Prefixes and partial pathnames

Prefixes are convenient when you want to access many files in the same subdirectory, because you
can use a prefix designator as a substitute for the prefix, thus shortening the pathname references.

Prefix designators

A prefix designator takes the place of a prefix, and can be

» A digit or sequence of digits followed by a pathname separator. The digits specify the prefix number.
Thus, the prefix designators “002:" and “2/” both specify prefix number 2.

e The asterisk character (*) followed by a pathname separator. This special prefix designator specifies
the volume from which GS/OS was last booted.

¢ Nothing. This is identical to prefix 0 (that is, equal to “0:" or “00000/").

2 Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/38

If you supply a partial pathname that doesn’t contain a prefix designator to GS/OS, GS/QOS automatically
creates the full pathname by adding the prefix designator 0/ in front of the partial pathname. GS/OS
determines the separator for a partial pathname in the same way that it determines the separator for a full
pathname.

Note: Although you may use a prefix designator as an input to the GS/OS SetPrefix call,
prefixes are always stored in memory in their full pathname form (that is, they include no
prefix designators themselves).

GS/OS supports two types of prefixes, as follows:

» Short prefixes, referred to by the prefix designators “*” and “0” through “7," cannot be longer than 63
characters. Short prefixes are identical to the prefixes supported by ProDOS 16.

* Long prefixes, referred to by the prefix designators “8” through *31," can contain up to about 8,000
characters.

~ This means that GS/OS allows you to set 32 prefixes. You set and read prefixes using the standard
GS/OS calls SetPrefix and GetPrefix. GetPrefix returns a string in which all separators are colons
(ASCI $3A) and alphabetic characters have the same case in which they were entered by way of a
SetPrefix call.

Predefined prefix designators

For progmrriming convenience, some prefix designators have predefined values. One has a fixed
value, and the others have default values assigned by GS/OS at application launch (see Tables 2-4
through 2-6 in Chapter 2). The most important predefined prefix designators are as follows:

*/ the boot prefix—it is the name of the volume from which the presently running GS/OS was booted.

0/ the default prefix (automatically attached to any partial pathname that has no prefix number)—it
has a value dependent on how the current program was launched. In some cases it is equal to the boot
prefix.

1/ the application prefix—it is the full pathname of the subdirectory that contains the currently running
application.

2/ the system run-time library prefix—it is the pathname of the subdirectory {on the boot volume) that
contains the run-time library files used by applications. Run-time libraries are described in Volume 2.

Your application can assign the rest of the prefixes, In fact, once your application is running, it can
also change the value of any prefix (including 0/, 1/, or 2/) except prefix */.

Chapter 1: The GS/OS Abstract File System 33

GS/0S Reference (Volume 1) Draft 3 (APDA) ' 8/31/88

Table 1-1 shows some examples of prefix use. They assume that prefix 0/ is set to /VOLUME1/ and
prefix 5/ is set to /VOLUME1/TEXT.FILES/. The pathname provided by the application is compared
with the full pathname constructed by GS/0S.

Table 1-1 Examples of prefix use

» Full pathname provided:

as supplied: /VOLUME1/TEXT.FILES/CHAP.3
as expanded by GS/OS: /VOLUME1/TEXT.FILES/CHAP.3

 Partial pathname—implicit use of prefix /0:

as supplied: GS.0S
as expanded by GS/08: /VOLUME1/GS.0S

» Explicit use of prefix /0:

as supplied: 0/SYSTEM/FINDER
as expanded by GS/0OS: /VOLUME1/SYSTEM/FINDER

s Use of prefix 5/:

as supplied: 5/CHAP.12
as expanded by GS/0OS: /VOLUMEI1/TEXT.FILES/CHAP.12

File information

GS/OS files are marked as having several characteristics, including those that follow:
¢ Access permissions to the file

» TFile type and auxiliary type of the file

s The size of the file and the current reading-writing position in the file

¢ Creation and modification date and time

Your application can access and modify this information, as introduced in the following sections and
described more completely in Chapter 4, “Accessing GS/OS Files.”

3 Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

File access

The characteristic of flle access determines what operations can be performed on the file. Several
GS/OS calls read or set the access attribute for the file, which can determine the following
capabilities:

» whether the file can be destroyed

» whether the file can be renamed

» whether the file is invisible; that is, whether its name is displayed by file~cataloging applications
» whether the file needs to be backed up

» whether an application can write to the file

« whether an application can read from the file

File types and auxiliary types

The file type and auxiliary type of a file do not affect the contents of a file in any way, but do
indicate to GS/OS and other applications the type of information stored in the file. Apple Computer
reserves the right to assign file type and auxiliary type combinations, except for the user-defined file
types $F1 through $F8.

Important: If you need a new file type or auxiliary type assignment, please contact Apple Developer
Technical Support.

Table 1-2 shows the valid table types. In Table 1-2, the descriptions under the Auxiliary type column
have the following meanings:

« Application specific means that the auxiliary type specifies which application created the file
* Way the xxxx is stored means the auxiliary type differentiates between various storage methods

o Upper/lower case in filename means that AppleWorks uses 15 bits of the auxiliary type word (it's a
word on disk, instead of a long word, for the ProDOS file system) to flag whether to display that
letter of the filename in lowercase

* Not loaded if bit 15 is set means that GS/OS won't load or execute files like DAs and Setup files if bit 15
of the auxiliary type is set
« APW language type is the language designation for APW source files

* [oad address in bank for BASIC.SYSTEM is the default load address for ProDOS 8 execurable binary
files (file type $06)

Chapter 1: The GS/OS Abstract File System 35

GY0S Reference (Volume 1)

Draft 3 (APDA) 8/31/88

Random-access record length specifies the record length for an ASCII text file (file type $04)

Table 1-2 GS/0S file types and auxiliary types

Flle

type Description Auxiliary type

$00 Uncategorized file

$01 Bad blocks file

$04 ASCII text file Random-access record-length (0=Sequential file)
$06 Binary file Load address in bank for BASIC.SYSTEM
$08 Double Hi-Res file

$OF Directory file

§19 AppleWarks database file Upper/lower case in file name
$1A AppleWorks word processor file Upper/lower case in file name
$1B AppleWorks spreadsheet file Upper/lower case in file name
$50 Word processor file Application specific

$51 Spreadsheet file Application specific

$52 Database file Application specific

$53 Object-oriented graphics file " Application specific

$54 Desktop publishing file Application specific

$55 Hypermedia file Application specific

$56 Educational data file Application specific

§57 Stationery file Application specific

$58 Help file Application specific

$59 Communications file Application specific

$5A Application configuration file Application specific

$AB GS BASIC program file

$AC GS BASIC Toolbox definition file

$AD GS BASIC data file

$B0 APW source file APW language type

$B1 APW object file

$B2 APW library file

$B3 GS/0S application

$B4 GS/0S Run-time library file

$B5 GS/0S Shell application file

$B6 GS/OS permanent initialization file Not loaded if high bit set

$B7 Apple IIGS temporary initialization file ~ Not loaded if high bit set

$B8 New Desk Accessory Not loaded if high bit set

$B9 Classic Desk Accessory Not loaded if high bit set

$BA Tool file

$BB Apple IIGS device driver file Not loaded if bit 15 set

$BC Generic load file

3% Volume I: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1)

Draft 3 (APDA)

$BD GS/0S file system translator Not loaded if bit 15 set
$BF Apple IIGS sound file

$Q0 Apple IIGS Super Hi-Res screen image ~ Way the image is stored
$C1 Apple IIGS Super Hi-Res picture file Way the picture is stored
$C8 Apple IIGS font file

$C9 Apple IIGS Finder data file

$CA Apple 1IGS Finder icon file

$Ds5 Music sequence file Application-specific
$D6 Instrument file Application-specific
$D7 MIDI file

$E0 Telecommunications Library file Application-specific
$E2 AppleTalk File

$EF Pascal area on partitioned disk

$FO BASIC.SYSTEM Command File

$F1 User-defined file type #1

$F2 Userdefined file type #2

$F3 User-defined file type #3

$F4 User-defined file type #4

$F5 User-defined file type #5

$F6 User-defined file type #6

$F7 User-defined file type #7

§F8 User-defined file type #8

$F9 GS/05 System file

§FA Integer BASIC program file

$FB Integer BASIC varable file

$FC AppleSoft BASIC program file

$FD AppleSoft BASIC variable file

$FE EDASM relocatable code file

$FF ProDOS 8 application

EOF and mark

To aid reading from and writing to files, each open standard file and each fork of an open extended

file has a byte count indicating the size of the file in bytes (EOF), and another defining the current
position in the file (the mark). GS/OS moves both EQF and mark automatically when data is added

to the end of the file, but an application program must move them whenever data is deleted or added
somewhere else in the file,

EOF is the number of readable bytes in the file, Since the first byte in a file has number 0, EOF
indicates one position past the last character in the file.

Chapiter 1: The GS/OS Abstract File System

3

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

When a file is opened, the mark is set to indicate the first byte in the file. It is automatically moved
forward one byte for each byte written to or read from the file. The mark, then, always indicates the
next byte to be read from the file, or the next byte position in which to write new data. It cannot
exceed EOF,

If the mark meets EOF during a write operation, both the mark and EOF are moved forward one
position for every additional byte written to the file. Thus, adding bytes to the end of the file
automatically advances EOF to accommodate the new information. Figure 1-5 illustrates the
relationship between the mark and EOF.

Figure 1-5 Automatic movement of EOF and mark

Beginning position EOF
MARK
After writing or reading two bytes EOF
/
1 I
I [
Old MARK MARK
ABesmiiing omooselyses Old EOF EOF
| -
Old MARK MARK

An application can place EOF anywhere, from the current mark position to the maximum possible
byte position. The mark can be placed anywhere from the first byte in the file to EOF. These two
functions can be accomplished using the SetEOF and Setmark calls. The current values of EOF and
the mark can be determined using the GetEOF and Getmark calls.

3 Volume 1: Applications and GS/OS Part I: The Application Level

e

GY/0S Reference (Volume 1) Dmaft 3 (APDA) 8/31/88

Creation and modification date and time

All GS/0S files are marked with the date and time of their creation. When a file is first created,
GS/0S stamps the file’s directory entry with the current date and time from the system clock. If the
file is later modified, GS/OS then stamps it with a modification date and time (its creation date and
time remain unchanged).

The creation and modification fields in a file entry refer to the contents of the file. The values in
these fields should be changed only if the contents of the file change. Since data in the file’s directory
entry itself are not part of the file's contents, the modification field should not be updated when
another field in the file entry is changed, unless that change is due to an alteration in the file’s
contents. For example, a change in the file’s name is not a modification; on the other hand, a change
in the file’s EOF always reflects a change in its contents and therefore is a modification.

Remember also that a file’s entry is a part of the contents of the directory or subdirectory that
contains that entry. Thus, whenever a file entry is changed in any way (whether or not its
modification field is changed), the modification fields in the entries for all its enclosing
subdirectories—including the volume directory—must be updated.

Finally, when a file is copied, a utility program must be sure to give the copy the same creation and
modification date and time as the original file, and not the date and time at which the copy was
created. .

Character devices as files

As part of its uniform interface, GS/OS permits applications to access character devices, like block
devices, through file calls. An extension to the GS/OS abstract file system lets you make standard
GS/OS calls to read to and write from character devices. This facility can be a convenience for /O
redirection.

~ When character devices are treated as files, only certain features are available. You can read from a
character device but you cannot, for example, format it. Only the following GS/OS calls have
meaning whan applied to character devices: Open, Newline, Read. Write, Close, and Flush (see brief
descriptions of these calls later in this chapter)

In general, character “files” under GS/OS are much more restricted in scope than block files:

» There are no extended or directory files. Character devices are accessed as if they were standard
files—single sequences of bytes. And, unlike with block files, it is not possible to obtain or change
the current position (mark) in the sequence.

» Character devices are not hierarchical. The only legal pathname for a character “file” is a device name.

Chapter 1: The GS/OS Abstract File System %

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

» Character devices may recognize some file-access attributes (read-enable, write-enable), but not
others (rename-enable, invisibility, destroy-enable, backup-needed).

s Character *files” have no file type, auxiliary type, EOF, creation time, or other information
associated with block-file directory entries.

In spite of these restrictions, it is generally quite simple and straightforward to treat character
devices as files. For more information on file-access to character devices, see Chapter 11, “The
Character FST”.

Groups of GS/0S calls

Chapters 4 through 6 list and describe the GS/OS operating system routines that are normally called by
an application. They are divided into the following categories:

* File access calls (described in Chapter 4)
e Volume and pathname calls (described in Chépter 5)
» System information calls (described in Chapter 6)

In addition to these groups of calls, the Quit call is used when an application quits, and is described
in Chapter 2.

Finally, GS/OS provides calls that directly access devices and install interrupt and signal handlers. For
more detail on those calls, refer to Volume 2, Table 1-3 lists the groups of GS/OS calls.

40 Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA)

Table 1-3 GS/OS call groups

Eile access calls Volum Device calls

Create ($2001) ChangePath ($2004 SetSysPrefs ($200C) DControl (3202E)
Destroy ($2002) Volume ($2008) GetSysPrefs ($200F) Dinfo ($202C)
SetFilelnfo ($2005) SetPrefix ($2009) GetName ($2027) DRead ($202F)
GetFilelnfo ($2006) GetPrefix ($200A) GetVersion ($2024) DStatus ($202D)
GetFilelnfo ($2006) ExpandPath ($200E) GetFSTInfo ($202B) DWrite ($2030)
ClearBackup ($200B) Format ($2024)

Open (52010) EraseDisk ($2025)

Newline ($2011) GetBootVol (§2028)

Read ($2012)

Write ($2013)

Close ($2014)

Flush ($2015)

SetMark ($2016)

GetMark ($2017)

SetEof ($2018)

GetEof ($2019)

Setlevel ($201A)

GetLevel ($201B)

GetDirEntry ($201C)

BeginSession ($201D)

EndSession ($201E)

SessionStatus ($201F)

ResetCache ($2026)

The following sections give you an overview of the capabilities of the calls in these groups. Each call
is discussed in much greater detail in Chapter 7 of this volume,

File access calls

The most common use of GS/OS is to make calls that access files. Your application places a file on
disk by issuing a GS/OS Create call. This call specifies the file's pathname and storage type (standard
file, extended file, or directory) and possibly other information about the state of the file, such as
access attributes, file type, creation and modification dates and times, and so on.

Your program must make the GS/OS Open call in order to access a file’s contents. For an extended
file, individual Open calls are required for the data fork and resource fork, which are then read and
written independently. When your application opens a file, the application must establish the access
privileges.

Chapter 1: The G5/0S Abstract File System 41

8/31/88

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

A file can be simultaneously opened any number of times with read access. However, a single open
with write access precludes any other opens on the given file.

While a file is open, your application can perform any of the following tasks:
» Read data from the file by using the Read call, or write data to the file by using the Write call

» Setor get the the Mark by using the SetMark and GetMark calls, and set or get the end of the file by
using the SetEOF and GetEOF

* Enable or disable newline mode by using the Newline call
» If the open file is a directory file, get the entries held in the file by using the GetDirEntry call

* Write changes to the disk for one or more open files by using the Flush, GetFileLevel, and SetFileLevel
calls

When you are through working with an open file, you issue a GS/OS Close call to close the file and
release any memory that it was using back to the Memory Manager.

After the file has been closed, you can use other GS/OS calls to work with it. One of these calls,
ClearBackup, clears a bit so that the file appears to GS/OS as if it does not need backing up; another
GS/0S aall, Destroy, can be used to delete a file. Other GS/OS calls that work on closed files are
described in Chapter 5..

Two other GS/OS calls, SetFilelnfo and GetFileInfo, allow you to access the information in the file's
directory entry. These calls are particularly useful when you are copying files because the calls allow
you to change the creation and modification dates for a file.

A final group of GS/OS calls—BeginSession, EndSession, and SessionStatus—are useful when you
want your application to defer disk writes.

The background information on the file access calls is described in Chapters 1 and 4, and each |
individual call is listed alphabetically by name and described in detail in Chapter 7.

Volume and pathname calls

GS/0S provides a whole set of calls to deal with those situations where you want to work directly
with volumes and pathnames. These calls allow you to do the foilowing tasks:

» get information about a currently mounted volume by using the Volume call

* build a list of all mounted volumes by using the Dinfo, Volume, Open, and GetDitEntry calls

* get the name of the current boot volume by using the GetBootVol call

42 Volume 1: Applications and G§/OS . Part [: The Application Level

GS0S Reference (Volume 1) Drafl 3 (APDA) 8/31/38

» physically format a volume by using the Format call

o quickly empty a volume by using the EraseDisk call

* setor get pathname prefixes by using the SetPrefix and GetPrefix calls

» change the pathname of a file by using the ChangePath call

e expand a partial pathname of a file to its full pathname by using the ExpandPath call

The background information on the volume and pathname calls is described in Chapter 5, and each
individual call is listed alphabetically by name and described in detail in Chapter 7.

System information calls

The system information calls allow you to do the following tasks:

¢ set or get system preferences by using the SetSysPrefs and GetSysPrefs calls, which allow you to
customize some GS/OS features

 get information about a specified FST by using the GetFSTInfo call
+ find out the version of the operating system by using the GetVersion call
» get the filename of the currently executing application by using the GetName call

The background information on the system information calls is described in Chapter 6, and each
individual call is listed alphabetically by name and described in detail in Chapter 7.

Device calls

GS/0S offers a set of calls that allow you to access devices directly, rather than going through any file
system. Most applications will not need to use any of these calls, except perhaps DInfo (that use is
described in Chapter 5). The GS/OS device calls allow you to perform the following tasks:

o get general information about a device by using the DInfo call
» read information directly from a device by using the DRead call
» write information directly to a device by using the DWrite call
* get status information about a device by using the DStatus call
* send commands to a device by using the DControl call

A brief summary of the individual calls is listed alphabetically by name in Chapter 7, and information
device calls are completely described in Volume 2.

Chapter 1: The GS/OS Abstract File System 43

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

4 Volume 1: Applications and GS/0S Part I: The Application Level

GY/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Chapter 2

GS/0S and Its Environment

GS/0S is one of the many components that make up the Apple [IGS operating
environment, the overall hardware and software setting within which Apple 1IGS
application programs run. This chapter describes how GS/OS functions in that
environment and how it relates to the other components.

Chapter 2: G§/0S and its Environment 45

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Apple IIcs memory

The Apple IIGs microprocessor can directly address 16 megabytes (16 MB) of memory. The minimum
memory configuration for GS/OS on the Apple 1IGS is 512 kilobytes (512 KB) of RAM and 128 KB of
ROM. As shown in Figure 2-1, the total memory space is divided into 256 banks of 64 KB each.

Figure 2-1 Apple IIGS memory map

Bapk Nlumbers

$7F $E0 $E1

EE=E GS/0S and System Loader
Other reserved memory
[Memory available to the application

GS/0S and the System Loader together occupy nearly all addresses from $D000 through SFFFF in
banks $00, $01, $EO, and $E1. In addition, GS/OS reserves (through the Memory Manager)
approximately 9.5 KB just below $C000 in bank $00 for GS/0OS system code and data, None of these
reserved memory areas is available for use by applications.

Banks $EO and $E1 are used principally for high-resolution video display, additional system software,
and RAM-based tools. Specialized areas of RAM in these banks include I/O space, bank-switched
memory, and display buffers in locations consistent with standard Apple 1I memory configurations.

Other reserved memory includes the ROM space in banks $FE and $FF; they contain firmware and
ROM-based tools. In addition, banks $F0 through $FD are reserved for future ROM expansion.

4% Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Memory allocatable to applications through the Memory Manager is in bank $00, at locations S0800-
$9A00, bank $01 at $0800-$C000, and banks $02-$7F at locations $0000-SFFFF (all 64 KB) in each
bank.

For example, a 1 MB Apple [IGs Memory Expansion Card makes available 16 additional banks of
memory numbered $02 to $11.

Under most circumstances, you should simply request memory from the Memory Manager and not use
fixed locations. The only fixed locations you need to use are listed in the next sections.

For more detailed pictures of Apple IGS memory, see the Technical Introduction to the Apple IIGS, the
Apple {IGs Hardware Reference, and the Apple IIGs Firmware Reference.

Entry points and fixed locations

Because most Apple 1IGS memory blocks are movable and under the control of the Memory Manager
(see the next section), there are very few fixed entry points available to applications programmers.
References to fixed entry points in RAM are strongly discouraged, since they are inconsistent with
flexible memory management and are sure to cause compatibility problems in future versions of the
Apple TIGS. Informational system calls and referencing by handles (see “Accessing a Movable Memory
.Block” in this chapter) should take the place of access to fixed entry points.

The supported GS/OS entry points are $E100A8 and E100B0. These locations are the entry points for
all GS/OS calls. The Tool Locator entry point is $E10000, which is the entry point for all Apple IIGS
tool calls, including the System Loader (described in Chapter 2).

Note: How to use the entry points to make GS/OS calls is described in Chapter 3, “Making
GS/0s Calls.”

The GS/OS entry points, and the other fixed locations in bank $E1 that GS/OS supports, are shown in
Table 2-1.

Chapter 2: GS/OS and its Environment 47

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Table 2-1 GS/0S vector space

Address Description
$E10000 Entry vector for all Apple [1GS tool calls.
$E100A8 - $E100AB Eatry vector for inline GS/OS system calls
$E100AC - $E100AF Reserved for internal use
$E100B0 - $E100B3 Entry vector for stack-based GS/OS system calls
$E100B4 - $E100B9 Reserved for internal use
$E100BA - $E100BB Two null bytes (guaranteed to be zeros)
$E100BC ‘ OS_KIND byte—indicates currently running operating system, as
follows:
$00 - ProDOS 8
$01 - GS/0S
$FF - none; operating system is being loaded or switched
$E100BD 0S_BOOT byte—indicates the operating system that was initially
booted, as follows:
$00 - ProDOS 8
$01 - G§/0S
$E100BE - $E100BF $0000 - GS/OS is not busy

$8000-GS/OS is busy processing a system call

Managing application memory

The Memory Manager, a ROM-resident Apple [IGS tool set, controls the allocation, deallocation, and
repositioning of memory blocks in the Apple TIGS. It works closely with GS/OS and the System
Loader to provide the needed memory spaces for loading programs and data and for providing
buffers for input/output. All Apple IIGS software, including the System Loader and GS/OS, must
obtain needed memory space by making requests (calls) to the Memory Manager.

48 Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

The Memory Manager keeps track of how much memory is free and what parts are allocated to whom.
Memory is allocated in blocks of arbitrary length; each block possesses several attributes that
describe how the Memory Manager can modify it (such as moving it or deleting it), and how it must
be placed in memory (for example, at a fixed address). See the chapter on the Memory Manager in
the Apple 11GS Toolbox Reference for more information.

Besides creating and deleting memory blocks, the Memory Manager moves blocks when necessary to
consolidate free memory. When it compacts memory in this way, it of course can move only those
blocks that needn’t be fixed in location. Therefore, as many memory blocks as possible should be
movable (not fixed), if the Memory Manager is to be efficient in compaction.

When a memory block is no longer needed, the Memory Manager either purges it (deletes its contents
but maintains its existence) or disposes of it (completely removes it from memory).

Obtaining application memory

Normal memory allocation and deallocation is completely automatic, as far as applications are
concerned. When an application makes a GS/OS call that requires allocation of memory (such as
opening a file or writing from a file to a memory location), GS/OS first obtains any needed memory
blocks from the Memory Manager and then performs its tasks. Conversely, when an application
informs the operating system that it no longer needs memory, that information is passed on to the
Memory Manager, which in turn frees that application’s allocated memory.

Any other memory that an application needs for its own purposes must be requested directly from
the Memory Manager. Figure 2-1 shows which parts of the Apple IIGS memory applications can
allocate through requests to the Memory Manager. Applications for Apple IIGS should avoid
requesting absolute (fixed-address) blocks. See also the Programmer’s Introduction to the Apple IIGS
and the Apple IIGs Toolbox Reference.

Accessing data in a2 movable memory block
To access data in a movable block, an application cannot use a simple pointer because the Memory

Manager may move the block and change the data's address. Instead, each time the Memory Manager
allocates a memory block, it returns to the requesting application a handle referencing that block.

Chapter 2: GS/OS and its Environment 49

GS0S Reference (Volume 1) Draft 3 (AFDA)

A handle is a pointer to a pointer; it is the address of a fixed (nonmovable) location, called the
master pointer, that contains the address of the block. If the Memory Manager changes the location
of the block, it updates the address in the master pointer; the value of the handle itself is not
changed. Thus the application can continue to access the block using the handle, no matter how
often the block is moved in memory. Figure 2-2 illustrates the difference between a pointer and a
handle.

If a block will always be fixed in memory (locked or unmovable), it can be referenced by a pointer
instead of by its handle. To obtain a pointer to a particular block or location, an application can
dereference the block’s handle. The application reads the address stored in the location pointed to
by the handle—that address is the pointer to the block. Of course, if the block is ever moved, that
pointer is no longer valid,

GS/0S and the System Loader use both pointers and handles to reference memory locations,
Pointers and handles must be at least three bytes long to access the full range of Apple IIGS memory.
However, all pointers and handles used as parameters by GS/OS are four bytes long, for ease of
manipulation in the 16-bit registers of the 65C816 microprocessor.

% Volume 1: Applications and GS/OS Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Figure 2-2 Pointers and handles

a. Pointer:
Value of pointer =
sarting address of memory block
$XXX >
Memory Block
b. Handle: $XXX
Value of handle = .
address of master pointer * Master Pointer
$227 »-$22Z
Value of master pointer =
current starting address of
memory block

Allocating stack and direct page

In the Apple IIGS, the 65C816 microprocessor’s stack-pointer register is 16 bits wide; that means that,
in theory, the hardware stack can be located anywhere in bank $00 of memory, and the stack can be
as much as 64 KB deep.

The direct page is the Apple 1IGS equivalent to the standard Apple II zero page. The difference is
that it need not be absolute page zero in memory. Like the stack, the direct page can theoretically
be placed in any unused area of bank $00—the microprocessor's direct register is 16 bits wide, and all
zero-page (direct-page) addresses are added as offsets to the contents of that register.

Chapter 2: G§/OS and its Environment 51

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

In practice, however, there are several, restrictions on available space. First, only the addresses
between $800 and $C000 in bank $00 can be allocated—the rest is reserved for 1/0 space and system
software, Also, because more than one program can be active at a time, there may be more than one
stack and more than one direct page in bank $00. Furthermore, many applications may want to have
parts of their code as well as their stacks and direct pages in bank $00.

Your program should, therefore, be as efficient as possible in its use of stack and direct-page space.
The total size of both should probably not exceed about 4 KB in most cases.

Automatic allocation of stack and direct page

Only you can decide how much stack and direct-page space your program will need when it is running.
The best time to make that decision is during program development, when you create your source
files. If you specify at that time the total amount of space needed, GS/OS and the System Loader
will automatically allocate it and set the stack and direct registers each time your program runs.

Definition during program development

You define your program’s stack and direct-page needs by specifying a “direct-page/stack” object
segment (KIND = $12) when you assemble or compile your program. The size of the segment is the
total amount of stack and direct-page space your program needs. It is not necessary to create this
segment; if you need no such space or if the GS/OS default (see the section “GS/OS Default Stack
and Direct Page” later in this chapter) is sufficient, you may leave it out.

When the program is linked, it is important that the direct-page/stack segment not be combined
with any other object segments to make a load segment—the linker must create a single load segment
corresponding to the direct-page/stack object segment. If there is no direct-page/stack object
segment, the linker will not create a corresponding load segment.

Allocation at load time

Each time the program is started, the System Loader looks for a direct-page/stack load segment. If
it finds one, the loader calls the Memory Manager to allocate a page-aligned, locked memory block of
that size in bank $00. The loader loads the segment and passes its base address and size, along with
the program’s user ID and starting address, to GS/OS. G5/0S sets the accumulator (4), direct (D),
and stack pointer (S) registers as shown, then passes control to the program:

2 Volume 1: Applications and G/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (AFDA) 8/31/88

A = user ID assigned to the program
D = address of the first (lowest-address) byte in the direct-page/stack space
S = address of the last (highest-address) byte in the direct-page/stack space

By this convention, direct-page addresses are offsets from the base of the allocated space, and the
stack grows downward from the top of the space.

Important: GS/OS provides no mechanism for detecting stack overflow or underflow, or collision of
the stack with the direct page. Your program must be carefully designed and tested to
make sure this cannot occur.

When your program terminates with a Quit call, the System Loader’s Application Shutdown function
makes the direct-page/stack segment purgeable, along with the program’s other static segments. As
long as that segment is not subsequently purged, its contents are preserved until the program restarts.

Note: There is no provision for extending or moving the direct-page/stack space after its
initial allocation. Because bank $00 is so heavily used, any additional space you later
request may be unavailable—the memory adjoining your stack is likely to be occupied
by a locked memory block. Make sure that the amount of space you specify at link time
fills all your program's needs.

GS/0S default stack and direct page

If the loader finds no direct-page/stack segment in a file at load time, it still returns the program's
user ID and starting address to GS/OS. However, it does not call the Memory Manager to allocate a
direct-page/stack space, and it returns zeros as the base address and size of the space. GS/OS then
calls the Memory Manager itself, and allocates 2 4 KB direct-page/stack segment.

See the Apple IIGs Toolbox Reference for a general description of memory block attributes assigned by
the Memory Manager.

GS/OS sets the A, D, and § registers before handing control to the program, as follows:
A = User ID assigned to the program

D = address of the first (lowest-address) byte in the direct-page/stack space

S = address of the last (highest-address) byte in the direct-page/stack space

When your application terminates with a Quit call, GS/OS disposes of the direct page/stack
segment.

Chapter 2: GS§/0S and its Environment 53

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

System startup considerations

The startup sequence for the Apple IIGS is is invisible to applications and relatively complex, so
further discussion of the sequence is presented in Appendix D, “GS/OS System Disks and Starmup.”
That appendix describes the structure of a valid system disk.

The Apple IIGS startup sequence ends when control is passed to the GS/OS program dispatcher. This
routine is entered both at boot time and whenever an application terminates with a G§/OS, ProDOS
16, or ProDOS 8 Quit call. The GS/OS program dispatcher determines which program is to be run next,
and runs it. After startup, the program dispatcher is permanently resident in memory.

Quitting and launching applications

When you want your application to quit, you issue a GS/OS Quit call. The GS/OS program dispatcher
performs all necessary functions to shut down the current application, determines which application
should be executed next, and then launches that application..

When you issue the Quit call, you can indicate to GS/OS whether your application can be restarted
from memory. You can also specify the next application to be launched, and whether your
application should be placed on the quit return stack so that it will be restarted when the other -
program quits. The following sections further explain your options when quitting.

Specifying whether an application can be restarted from memory

When your application sets the restart-from-memory flag in the Quit call to TRUE (bit 14 of the flags
word = 1), the application can be restarted from 2 dormant state in the computer’s memory. If your
application sets the restart-from-memory flag to FALSE (bit 14 = 0), the program must be reloaded
from disk the next time it is run.

If you set the restart-from-memory flag to TRUE, remember that the next time the application is run,

its code and dawa will be exactly as they were when the apphcauon quit. Thus, you may need to
reinitialize certain data locations.

S Volume 1: Applications and GS/0S Part [: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Specifying the next application to launch

When you are quitting your application, and want to pass control to another application, you supply
the pathname of that application in the Quit call.

Note: GS/0S loads only programs that have a file type $B3, $B5, or $FF.

Specifying a GS/OS application to launch

You should not specify a device name if you are specifying the pathname of a GS/OS application;
GS/0S returns a fatal error if the device does not contain a disk. The GS/OS program dispatcher does
not handle volume names or filenames longer than 32 characters.

Specifying a ProDOS 8 application to launch

If you are quitting to a ProDOS 8 application, the pathname specified in the Quit call must be a legal
ProDOS 8 pathname. In particular, device names must not be used when specifying the pathname of
a ProDOS 8 application since ProDOS 8 will retumn 2 fatal esror.

The GS/OS program dispatcher then takes the following steps:
1. Shuts down GS/OS and the System Loader.

2. Allocates all special memory for the application.

3. Loads and starts up ProDOS 8.

When the ProDOS 8 application quits, the next action depends on whether the ProDOS 8 application
uses 2 standard ProDOS 8 QUIT call, or an enhanced ProDOS 8 QUIT call, as follows:

 If the ProDOS 8 application executes a standard ProDOS 8 QUIT call, the GS/OS program dispatcher
restarts GS/OS and the System Loader and launches the next application on the quit return stack.

» If the ProDOS 8 application executes an enhanced ProDOS 8 QUIT call, which contains a pathname
to an application to be launched, control is passed to the specified application. The specified
application can be a ProDOS 8 application or a GS/OS application. If it is a GS/OS application, the
program dispatcher will restart GS/OS and the System Loader and then launch the application.

Chapter 2: GS/OS and its Environment 55

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Specifying whether control should return to your application

The quit return stack is a stack of user IDs used to restart applications that have previously quit. If
an application specifies 2 TRUE quit return flag in its Quit call, GS/OS pushes the user ID of the
Quitting program onto the quit return stack and saves information needed to restart the program. As
subsequent programs run and quit, several user IDs may be pushed onto the stack. With this
mechanism, multiple levels of shells can execute subprograms and subshells, while ensuring that they
eventually regain control when their subprograms quit.

For example, the START file might pass control to a software development system shell, using the
Quit call to specify the pathname of the shell and placing its own ID on the stack. The shell in turn
could hand control to a debugger, likewise placing its own ID on the stack. If the debugger quits
without specifying a2 pathname, control would pass automnatically back to the shell; if the shell then
quits without specifying a pathname, control would pass automnatically back to the START file.

This automatic retumn mechanism is specific to the GS/OS Quit call, and therefore is not available to
ProDOS 8 programs. When a ProDOS 8 application quits, it cannot put its ID on the internal stack.

Quitting without specifying the next application to launch

If you want to quit your application and do not want to specify the next application to be launched,
supply the following parameters in the Quit call:

* o pathname

» 2 FALSE quit retun flag

GS/OS then attempts to pull a user ID off the Quit return stack and relaunch that application. If the
Quit return stack is empty, GS/OS will atterpt to relaunch the START program.

Launching another application and not returning

When you are quitting your application, and want to pass control to another application, but do not
want control to eventually return to your application, supply the following parameters in the Quit call:

» pathname of the application to be launched
» 2 FALSE quit return flag

GS/0S will attempt to launch the specified application.

% Volume 1: Applications and GS/OS Part I: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/38

Launching another application and returning

If you want to pass control to another application, and want control to return to your application
when the next application is finished, set the quit return flag to TRUE in the Quit call. That way your
program can function as 2 shell~whenever it quits to another specified program, it knows that it will
cventually be reexecuted. Supply the following parameters in the Quit call:

+ pathname of the application to be launched
¢ a TRUE quit return flag

GS/0S pushes the User ID of your quitting application onto the quit return stack, and then attempts
to launch the specified application.

Machine state at application launch

The GS/OS§ program dispatcher initializes certain components of the Apple IIGS and GS/OS before it
passes control to an application. The initial state of those components is described in the following
sections.

Machine state at GS/OS application launch

When a GS/0S program is launched, the machine state is as shown in Table 2-2,

Table 2-2 Machine state at GS/OS application launch

Item State

Reserved memory Addresses above $9A00 in bank zero are reserved for GS/0S, and are
therefore unavailable to the application. A direct-page/stack space,
of a size determined either by GS/OS or by the application itself, is
reserved for the application; it is located in bank $00 at an address
determined by the Memory Manager. The only other space that
GS/0S requires in RAM is the language-card areas in banks $00, $01,
$E0, and $E1. '

Hardware registers
accurnulator Contains the user ID assigned to the application.

Chapter 2: GS/OS and its Environment 57

GY0S Reference (Volume 1)

X- and Y-registers

e-, m-, and x-flags in the
processor status register

stack register
direct register
Standard input/output

Shadowing

Vector space values

Pathname prefix values

38 Volume 1: Applications and GS/OS

Draft 3 (APDA) 8/31/88

Contain zero ($0000).

All set to zero, processor in full native mode.
Contains the address of the top of the direct-page/stack space.
Contains the address of the bottom of the direct-page/stack space.

For both $B3 and $BS5 files, standard input, output, and error
locations are set to Pascal 80-column character device vectors.

The value of the Shadow register is $1E, which means:

language card and 1/O spaces: shadowing ON
text pages: shadowing ON
graphics pages: shadowing OFF

Addresses between $00A8 and $00BF in bank $E1 constitute GS/OS
vector space. The specific values an application finds in the vector
space are shown in Table 2-1 earlier in this chapter.

Set as described in the section “Pathname Prefixes at GS/OS
Application Launch” later in this chapter.

Part I: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Machine state at ProDOS 8 application launch

When a ProDOS 8 program is launched, the machine state is as shown in Table 2-3.

Table 2-3 Machine state at GS/OS application launch

Item State
Reserved space , All special memory is reserved for use by the program.
Hardware registers
A-, X- and Y-registers Undefined.
e-flag in processor
status register Set to one; processor is in emulation mode.
stack register Set to $01FB.
direct register Undefined. _
Shadowing Shadow register is $08, which means:
language card and 1/0 spaces: shadowing ON
text pages: shadowing ON
graphics pages: shadowing ON
Pathname prefix values Set as described in the section “Pathname Prefixes at ProDOS 8

Application Launch” later in this chapter.

Pathname prefixes at GS/OS application launch

When a GS/OS application is launched, all 32 GS/OS prefix numbers are assigned to specific
pathnames (some are meaningful pathnames, whereas others are null strings). Because an application
can change the assignment of any prefix number except the boot prefix (*/), and certain initial prefix
values might be left over from the previous application, beware of assuming a value for any particular
prefix.

Tables 2-4 through 2-6 show the initial values of the prefix numbers that a GS/OS application receives,
under the three different launching conditions possible on the Apple IIGS.

Note: In each of the following cases, prefix 1 and prefix 9 are both set to the full pathname of
the directory containing the current application. If the string is greater than 64
characters long, prefix 1 is set to a null string and prefix 9 contains the full string.

Chapter 2: GS/OS and its Environment 59

GS/0S Reference (Volume 1) Draft 3 (APDA)

At all times during execution, GetName retums the filename of the current application (regardless of
whether prefix 1/ has been changed), and GetBootVol returns the boot volume name, equal 1o the

value of prefix */ (regardless of whether prefix 0/ has been changed).

Table 2-4 Prefix values when GS/OS application launched at boot time

Prefix Description

. boot volume name

0 boot volume name

1 full pathname of directory containing current application

2 */SYSTEM/LIBS

38 null strings

9 equal to prefix 1

10-31 null strings

Table 2-5 Prefix values—GS/OS application launched after GS/OS application quits
Prefix Description

i unchanged from previous application

0 unchanged from previous application

1 full pathname of directory containing current application

2 unchanged from previous application

3-8 unchanged from previous application

9 equal to prefix 1

10-31 unchanged from previous application

Table 2-6 Prefix values—GS/O$ application launched after ProDOS 8 application quits
Prefix Description

. boot volume name

0 unchanged from the ProDOS 8 system prefix under previous application
1 full pathname of the directory containing the current application

2 */SYSTEM/LIBS

3-8 null strings

9 equal to prefix 1

10-31 null strings

60 Volume 1: Applications and GS/OS

Part 1: The Application Level

8/31/88

GS/0S Reference (Volume 1) " Draft 3 (APDA) 8/31/38

Pathname prefixes at ProDOS 8 application launch

Table 2-7 shows the initial values of the ProDOS 8 system prefix and the pathname at location $0280
in bank $00 when a ProDOS 8 application is launched from GS/OS.

Table 2-7 Prefix and pathname values at ProDOS 8 application launch

Condition System prefix Location $0280 pathname
Application launched at boot boot volume name filename of current

time application

Application launched through unchanged from full or parial pathname
enhanced ProDOS 8 QUIT call previous application given in QUIT call
Application launched after a previous application's full pathname given in.
GS/0S application has quit (if prefix 0/ QUIT call

Quit call specified a full :

pathname)

Application launched after a prefix specified in the partial pathname given in
GS/0S application has quit (if Quit call - Quit call

Quit call specified a prefix and 2

partial pathname)

Chapter 2: G5/0S and its Environment 61

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Chapter 3 Making GS/OS Calls

This chapter describes the methods your application must use to make GS/0S
calls. The current application, a desk accessory, and an interrupt handler are
examples of applications that can make GS/OS calls.

Chapter 3: Making GS/OS Calls 63

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

GS/0S call methods

When an application makes a GS/OS call, the processor can be in emulation mode or full native mode,
or any state in between (see the Technical Introduction to the Apple IIGs). There are no register
requirements on entry to GS/0S. GS/OS saves and restores all registers except the accumulator (A)
and the processor status register (P); these two registers store information on the success or failure of
the call.

Calling in a high-level language

To make a G5/0S call from a high-level language, such as C, you supply the name of the call and 2
pointer to the parameter block.

Calling in assembly language

You can make GS/OS calls in assembly language using any of the following techniques:

¢ Macro technique—uses macros defined by Apple to generate inline calls. Macro calls are the simplest
and the easiest to read.

* Inline call technique—similar to ProDOS 8

¢ Stack call technique—consistent with the way compilers generate code

There is virtually no difference in the run-time performance of these three techniques; essentially,
which one of the techniques you use is a matter of personal preference. Each of these techniques is
detailed separately in the following sections.

To make a GS/OS assembly language call, your application must provide

* 2 2-byte call number or the macro name of the call

« If you don’t use the macro name, a Jump to Subroutine Long (JSL) instruction to the appropriate
’ GS/OS entry point

* 2 4-byte pointer to the parameter block for the call; the parameter block passes information between
the caller and the called function

The macro name or call number specifies the type of GS/OS call, as follows:

6 Volume 1: Applications and GS/OS Part [: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

e Standard GS/OS calls: These calls aliow you to access the full power of GS/QS; you should use them if
you are writing a new application. Most of the description in this manual is devoted solely to these
calls.

» ProDOS 16 calls: These calls, described in Appendix A of this document, are provided only for
compatibility with ProDOS 16. (ProDOS 16 is described in the Apple IIGS ProDOS 16 Reference.)

Every GS/OS call that doesn’t use the macro technique must specify the system call number and class
in a parameter referred to in the next sections as callnum The callnum parameter has the
following format:

l15[14[13]12]11]10] 9 [8]7] 6 s5[4]3]2]1]0]
{ J |]

reserved = 2.7
class | =]

s call number

The primary call number is given in each call description. For example, the call number for the Open
call is $10.

Thus, to make a standard GS/OS (class 1) Open call, your application would use the macro name or a
callnum value of $2010; to make a ProDOS 16-compatible {class 0) OPEN call, the caller would use 2
callnum value of $0010.

Making a GS/0S call using macros

To make a standard GS/OS call using the macro technique, perform the following steps:
1. Provide the name of the standard GS/OS call.
2. Follow the name with a pointer to the parameter block for the call.

GS/0S performs the function and retums control to the instruction that immediately follows the
macro.

The following code fragment illustrates a macro call:

_CallName Cl parmblock ;Name of call

bcs error shandle error if carry set on return
error ;code to handle error return
parmblock ;parameter block

Chapter 3: Making GS/OS Calls 65

GS/0S Reference (Volume 1) Drafl 3 (APDA)

Making an inline GS/OS call

To make a standard GS/OS call using the inline method, perform the following steps:
1. Perform a JSL 1o $E100A8, the GS/OS inline entry point.

2. Follow the JSL with the call number,

3. Follow the call number with a pointer to the parameter block.

GS/OS performs the function and retums control to the instruction that immediately follows the
parameter block pointer.

The following code fragment illustrates an inline call:

inline_entry gequ $E100A8 ;address of GS/0S inline entry point
sl inline_entry ;long jump to GS/0S5 inline entry point
de i2"callnum’ scall number
de i4*parmblock’ ;parameter block pointer
bcs error thandle error if carry set on return
error jcode to handle error return
parmblock ;parameter block
Making a stack call

To make a standard GS/OS call using the stack method, perform the following steps:

1. Push the parameter block pointer onto the stack (high-order word first, low-order word second).
2. Push the call number of the call onto the stack.

3. Perform a JSL to $E100BO, the GS/OS stack entry point.

GS/0S performs the GS/OS command and returns control to the instruction that immediately follows
the JSL.

The following code fragment illustrates a stack call:

stack_entry gequ $E100BO yaddress of GS/0S5 stack entry point
pea parmblock|~-16 spush high word of parameter block pcinter
pea parmblock ;push low word of parameter block pointer
pea callnum jpush call number
jsl stack_entry ;long jump to G5/0S stack entry point
bes error ;handle error if carry set on return

error jcode to handle error return

parmblock ;parameter block

& Volume 1: Applications and GS/OS Part I: The Application Level

8/31/88

GS/OS Reference (Volume 1) Drafl 3 (APDA) 8/31/88

Including the appropriate files
If you are writing your application in assembly language, include the following files, as appropriate:

E16.SYSCALLS and M16.SYSCALLS If you are making standard GS/OS calls
E16.PRODOS and M16.PRODOS If you are making ProDOS 16-compatible calls

If you are writing your application in C, include one or both of the following files:

SYSCALLSH If you are making standard GS/OS calls
PRODOS.H If you are making ProDOS 16-compatible calls

Important In either language, if you include files to make both standard GS/OS and ProDOS 16-
compatible calls, you must append the suffix Gs to the standard GS/OS call names and
parameter block type identifiers.

GS/0S parameter blocks

A GS/0S parameter block is a formatted table that occupies a set of contiguous bytes in memory.
The block consists of a number of fields that hold information that the calling program supplies to
the function it calls, as well as information returned by the function to the caller.

Every GS/0S call requires a valid parameter block (parmblock in the preceding examples),
referenced by a 4-byte pointer. The application is responsible for constructing the parameter block
for each call that it makes; the block can be anywhere in memory.

The formats of the fields for individual parameter blocks are presented in the detailed system call
descriptions in Chapter 7.

Types of parameters
Each field in 2 GS/OS parameter block contains a single parameter, one or more words in length. Fach

parameter is an input from the application to GS/OS or a result that GS/OS returns to the application,
or both an input and a result.

Chapler 3: Making GS/OS Calls 67

GS/0S Reference (Volume 1) Drafi 3 (APDA) 8/31/88

* An input can be either a numerical value or a pointer to a string or other data structure.
e A result is a numerical value that GS/OS places into the parameter block for the caller to use.

« A pointer is the 4-byte address of a location containing data, code, or buffer space in which GS/OS
can receive or place data; that is, the pointer may point to a location that contains an input, or point
to space that will receive a result, or point to a location that both contains an input and receives a
result.

Parameter block format

All standard GS/OS parameter blocks begin with a parameter couat, which is a word-length input
value that specifies the total number of parameters in the block. This allows you to vary the number
of parameters in a call as needed, and also makes possible future parameter block expansion.

All parameter fields that contain block numbers, block counts, file offsets, byte counts, and other
file or volume dimensions are 4 bytes long. Using 4-byte fields ensures that GS/OS will accommodate
large devices using file system translators.

- All parameter fields contain an even number of bytes, for ease of manipulation by the16-bit 65C816
processor. Pointers, for example, are 4 bytes long even though 3 bytes are sufficient to address any
memory location. Wherever such extra bytes occur they must be set to zero by the caller; if they are
not, compatibility with future versions of GS/OS will be jeopardized.

Pointers in the parameter block must be written with the low-order byte of the low-order word at the
lowest address.

Imporiant The range of theoretically possible values as defined by the length of a parameter is
often very different from the range of permissible values for that parameter. The fact
that all fields are an even number of bytes is one reason. Another reason is that the
permissible values for a field depends upon its file system.

GS/0S string format

GS/0S strings resemble Pascal-style strings. A Pascal-style string begins with a length byte that
defines the length of the string in bytes, followed by the string itself, with each character equal to one
byte. A GS/OS string is very similar, except that it begins with a length word instead of a byte. See
Figure 3-1.

68 Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Figure 3-1 GS/0S and Pascal strings

GS/08 string

length word siring

Pascal string
length byte string

String parameters consist of a pointer parameter in the call's parameter block that points to a data
structure containing the string. For standard GS/OS calls, that data structure varies depending on
whether the string parameter is an input to or output from the call.

ProDOS 16-compatible calls use Pascal-style strings, with the exception of the GET_DIR_ENTRY call,
which uses GS/OS strings.

GS/0S input string structures

When a string is used as an input from an application to GS/OS, a pointer in the call's parameter block
points to the low-order byte of the length word of the string, as shown in Figure 3-2.

Figure 3-2 GS/0S input string structure

GS/06 string
r : =4

pathname pointer ——e | length word siring

GS/0S result buffer

When a string is retumed as a result from a GS/OS call to an application, a pointer in the parameter
block points to a buffer reserved for the result. This buffer starts with a buffer length word that
specifies the total length of the buffer, including the buffer length word, as shown in Figure 3-3.

Chapter 3: Making GS/OS Calls &)

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Figure 3-3 GS/0S result buffer

GS/0S string
L
r N
pathname pointer ‘ b"‘ﬁmg‘h length word string

How GS/OS returns the result depends on whether or not there is enough space in the buffer
(excluding the buffer length word) to hold the output sting. If there is enough space, the result is
placed in the buffer starting just after the buffer length word.

The first two bytes of the string are its length word. If there is not enough space, GS/OS retumns only
the length word of the string, placing it immediately after the buffer length word. This gives the caller
the opportunity to resize the buffer and reissue the call. The proper size is the value in the string
length word plus four (to account for the buffer and string length words).

If the area is too small to contain the string, GS/OS returns a “buffer too small” error and sets the
string length field to the actual string length. In this case, the string field is undefined. The caller must
add four to the returned string length to determine the total area size needed to hold the string and
the two length fields.

The GetDirEntry call is an exception to the preceding rules. For this call only, if the result does not fit
in the buffer, GS/QOS copies as much of the string into the buffer as possible. The length word of the
string will be set to the actual string length, not the size of the string placed in the buffer. Thus, the
application may choose to use a partial string—for example, in a directory listing with a limited
number of columns for the filename—or reissue the call to get a complete string,

Setting up a parameter block in memory

Each GS/OS call uses a 4-byte pointer to point to its parameter block, which can be anywhere in
memory. All applications must obtain needed memory from the Memory Manager, and therefore
cannot know in advance where the memory block holding such a parameter block will be.

You can set up a G5/OS parameter block in memory in one of two ways:

1. Code the block directly into the program, referencing it with a label. This is the simplest and most
typical way to do it The parameter block will always be correctly referenced, no matier where in
memory the program code is loaded.

AN Volume 1: Applications and G§/OS Part I; The Application Level

G505 Reference (Volume 1) Draft 3 (APDA)

2. Use Memory Manager and System Loader calls to place the block in memory, as follows:

a. Request a memory block of the proper size from the Memory Manager. Use the procedures
described in the Apple IIGs Toolbox Reference. The block should be either fixed or locked.

b. Obtain a pointer to the block, by dereferencing the memory handle returned by the Memory
Manager (that is, read the contents of the location pointed to by the handle, and use that
value as a pointer to the block).

¢. Set up your parameter block, starting at the address pointed to by the pointer obtained in
step (b).

Conditions upon return from a GS/0S call

When control returns to the caller, the registers have the values shown in Table 3-1.

Table 3-1 Registers on exit from GS/0§

Register_ Description

A zero if call successful, error code if call unsuccessful
X unchanged
. X unchanged
S unchanged
D unchanged
P shown in Table 3-2
DB unchanged
PB unchanged
PG address of next instruction

“Unchanged” means that GS/OS initially saves, and then restores when finished, the value that the
register had just before the call.

When control returns to the caller, the processor status and control bits have the vatues shown in Table
3-2.

Chapter 3: Making GS/0S Calls 71

5/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA)

Table 3-2 Status and control bits on exit from GS/Q8

Register Description

undefined
undefined
unchanged
unchanged
unchanged
unchanged
0 if call unsuccessful, 1 if call successful
0 if call successful, 1 if call unsuccessful
unchanged

fbﬂN""D-ﬂa":.':'l

Note: The n flag is undefined here; under ProDOS 8, it is set according to the value in the
accumulator,

Checking for errors

When control returns to your application, the carry bit will be set to 1 if an error occurred, and the
error code (if any) will be in register A, You can thus use a Branch if Carry Set (BCS) instruction to
branch to an error-handling routine, and then pick up the error code from register A.

Fatal GS/OS errors are handled by the GS/OS Error Manager. When a fatal error occurs, the GS/0S
Error Manager displays a failure message on the screen and halts execution of GS/OS. If the error is
unrecoverable and requires that the system be rebooted, the GS/OS Error Manager calls the System
Failure Manager, a part of the Apple 1IGs Toolbox. The System Failure Manager is described in the
chapter *Miscellaneous Tool Set” in the Apple IIGS Toolbax Reference .

The errors that specifically apply to a particular call are listed as part of the call description in Chapter

7. Other errors can occur for almost any of the calls. For example, almost any call can retum error $54
(out of memory), and perhaps you would want to invoke a special error handler for that condition.

72 Volume 1: Applications and GS/OS Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Chapter 4

Accessing GS/0S Files

The most common use of GS/OS is to access files that contain data on a storage
medium. A file is an ordered collection of bytes that has several attributes,
including a name and a file type.

GS/08 tries to free you, as an application programmer, from knowing more
about files and file systems than you want to. GS/OS has been built on the
theory that, in most cases, you only want to assign the attributes that are critical
to the function of the file, and that you're not really interested in where the user
chooses to store the file.

Thus, this chapter assumes that you want to access files using the simplest
possible method. Using this method, you call the Apple 1IGS Toolbox routines
SFPutFile or SFGetFile (from the Standard File Operations Tool Set) to
construct the name of the file the user wishes to create or open. With this
method, you don't have to worry about the pathname to the file, since GS/OS is
able to automatically construct the full pathname to the file.

If you want to build the pathname yourself, GS/OS also gives you that
capability; see Chapter 5, “Working with Volumes and Pathnames.”

Chapter 4: Accessing GS/OS Files 73

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/38

The simplest access method

To use this method, perform the following steps:

1. If you are creating a new file, call the tool set routine SFPutFile to get a pointer to the pathname of
the file that the user wishes to create. Save the pointer, and use it in a GS/OS Create cal! to place the
file on the disk.

If the user is opening an existing file, call the tool set routine SFGetFile to get a pointer to the
pathname of the file that the user wishes to open. Save the pointer, and use it in a GS/OS Open call
to open the file,

2. If the user is opening an existing file, call the tool set routine SFGetFile to get a pointer to the
pathname of the file the user wishes to open. Save the pointer, and use it in a GS/OS Open call to
open the file.

3. “While the file is open, you can do the following tasks:
+ Read and write data to the file by making Read and Write calls.

¢ Move or get the current reading and writing position in the file by making SetMark and GetMark
calls,

* Move or get the current end-of-file (EOF) by making SetEOF and GetEOF calls.

» Enable newline mode, which terminates a read if the read encounters one of the specified newline
characters, or disable that mode.

» Write all buffered information to storage to ensure data integrity by making a Flush call.
4. When you have finished working with the file, close it by making a Close call,

This chapter provides you with some information on how to use the file access calls. For more details
on each individual call, see Chapter 7, “GS/OS Call Reference.”

Creating a file

When you want your application to create a file, issue a G8/0S$ Create call. When you issue that call,
you assign some important characteristics to the file:

74 Volume 1: Applications and G§/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

¢ A pathname, which must place the file within an existing directory. As already mentioned, if you use
the Toolbox routine SFPutFile, you only have to save the pathname pointer it returns and supply that
pointer to GS/OS. If you want to build the pathname yourself, see Chapter 5.

¢ The file access, which determines whether or not the file can be written to, read from, destroyed, or
renamed, and whether the file is invisible.

» A file type and auxiliary type, which indicate to other applications the type of information to be
stored in the file. It does not affect, in any way, the contents of the file.

* A storage type, which determines the physical format of the file on the disk. There are three different
formats: one is used for directory files, the other two for nondirectory files. Once a file has been
created, you can't change its storage type.

+ The size of the file and the size of the resource of the file, which are used to preallocate disk storage
for the file to be created. Under most circumstanices, you can leave these parameters set to their
default of 0.

When GS/OS creates the file, it places the properties listed above on disk, along with the current
system date and time (called creation date and creation time). A created file remains on disk until
it is deleted (using the Destroy call).

Opening a file

Before you can read information from or write information to a file that has been created, you must
use the Open call to open the file for access. When you open a file, you specify a pathname to a
previously created file; the file must be on a disk mounted in a disk drive or GS/OS retumns an error. As
already mentioned, you can query the user for the filename by using the SFGetFile routine in the
Standard File Operations Tool Set of the Apple 1IGS Toolbox.

The Open call returns a reference number that your application must save; any other calls you make
affecting the open file must use the reference number. The file remains open until you use the Close
call. ,

Multiple open calls can be made to files on block devices for read-only access; in that situation, the
file remains open until you make a Close call for each file you opened.

GS/0S allows any number of open files at a time limited only by the amount of total available
memory and number of available reference numbers. In practice, there is no limit to the aumber of
open files.a practical limit, . However, each open file requires some system overhead, so in cases
where memory is in short supply, your application might want to keep as few files open as possible.

Chapter 4: Accessing GS/OS Files 75

GS/OS Reference (Volume 1) Draft 3 (AFDA) 8/31/88

Your application can also further limit the read-write access to a file when it makes a GS/OS Open
call; for example, if the file was created with read-write access, you could change that access 1o read-
only.

You should be aware of the differences between a file on disk and portions of an open file in
memory. Although some of the file's characteristics and some of its data may be in memory at any
given time, the file itself still resides on the disk. This allows GS/OS to manipulate files that are much
larger than the computer's memory capadty. As an application writes to the file and changes its
characteristics, new data and characteristics are written to the disk.

Working on open files

When you open a file, some of the file’s characteristics are placed into a region of memory. Several of
these characteristics are accessible to calling applications by way of GS/OS calls, and can be changed
while the file is open.

This section describes the GS/OS calls that work with open files.

Reading from and writing to files

Read and Write calls to GS/OS transfer data between memory and 2 file. For both calls, the
application must specify the following information:

* reference number of the file (assigned when the file was opened)
e location in memory of a buffer that contains, or is to contain, the transferred data
* number of bytes to be transferred

» cache priority, which determines whether or not the blocks involved in the call are saved in RAM for
later reading or writing

When the request has been carried out, GS/OS passes back to the application the number of bytes
that it actually transferred.

A read or write request starts at the current Mark, and continues until the requested number of bytes
has been transferred (or, on a read, until the EOF has been reached). Read requests can also terminate
when a specified character is read.

7% Volume 1; Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APD4) 8/31/88

Setting and reading the EOF and Mark

Your application can place the EOF anywhere, from the current Mark position to the maximum
possible byte position. The Mark can be placed anywhere from the first byte in the file to the EOF,
These two functions can be accomplished using the SetEOF and SetMark calls. The current values of
the EOF and the Mark can be determined using the GetEOF and GetMark calls.

Enabling or disabling newline mode

Your application can use the Newline call to indicate that read requests terminate on a specified
character or one of a set of specified characters. For example, you can use this capability to read
lines of text that are terminated by carriage returns.

Examining directory entries

Your application does not need to know the details of directory format to access files with known
names. You need to examine a directory’s entries only when your application is pefforming
operations on unknown files (such as listing the files in a directory). The GS/OS call you use to
examine a directory’s entries is called GetDirEntry; for more details, see GetDirEntry in Chapter 7.

Flushing open files

The GS/OS Flush call writes any unwritten data from an open file’s /O buffer to the file, and updates
the file’s size in the directory. However, it keeps the reference number (returned from the Open call)
and file’s buffer space active, and thus allows continued access to the file.

When used with a reference number of 0, Flush normally causes all open files to be flushed. Specific
groups of files can be flushed using the system file level (see “Setting and Getting File Levels” later in
this chapter).

Closing files
When you finish reading from or writing to a file, you must use the Close call to close the file. When

you use this call, you specify only the reference number of the file that was assigned when the file was
opened.

Chapter 4: Accessing GS/OS Files 77

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

The Close call writes any unwritten data from memory to the file and updates the file’s size in the
directory, if necessary. Then it frees the file’s buffer space for other uses and releases the file's
reference number and file control block. To access the file again, you must reopen it.

Information in the file’s directory, such as the file’s size, is normally updated only when the file is
closed. If the user were to press Control-Reset (typically halting the current program) while a file is
open, data written to the file since it was opened could be lost, and the integrity of the disk could be
damaged. You can prevent this situation from occurring by using the Flush call.

Setting and getting file levels

When a file is opened, it is assigned a file level equal to the current value of the system file level.
Whenever a Close or Flush call is made with a reference number of 0, GS/OS closes or flushes only those
files whose levels are greater than the current system level.

The system file level feature can be used, for example, by a controlling program such as a
development system shell to implement an EXEC command:

1. The shell opens an EXEC program file when the level is $00.

2. The shell then sets the level to, for example, $07.

3. The EXEC program opens whatever files it needs.
4

. The EXEC program executes a G5/OS Close command with a reference number of $0000 to close ali
the files it has opened. All files at or above level $07 are closed, but the EXEC file itself remains oper.

You assign a value to the system file level with a SetLevel call; you obtain the current value by making
a Getlevel call.

Working on closed files

This section describes some of the functions of the GS/OS calls that work with closed files, Some of
the calls that work with pathnames are performed on closed files; see Chapter 5, “Working with
Volumes and Pathnames,” for more information.

78 Volume 1: Applications and G§/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Clearing backup status

Whenever a file is altered, GS/OS automatically changes the information about the file’s state to
indicate that it has been changed but not backed up. Thus, an application that performs backups
can check the backup status to determine whether or not to backup the file.

If you want to change the state information about the backup, and in effect indicate to GS/OS that
the file does not need to be backed up, you can use the ClearBackup call. This resets the backup
status so that it looks to GS/OS as if the file had not been altered. For example, you could use this
technique in a word-processing application if the user deleted something from the file but then
decided to undo the change; issuing the ClearBackup call would prevent the file from being backed

up.

Deleting files

If you want your application to delete a file on disk, you can use the GS/OS Destroy call to delete the
file. You can use this technique only on subdirectories, standard files, and extended files; you can’t
use the technique to delete volume directories or character-device files,

Note Character-device files are treated somewhat differently. See Chapter 11, “Character
FST,” for a detailed discussion of that kind of file,

Setting or getting file characteristics

Certain characteristics about an open or closed file can be retrieved or modified by the standard
GS/0S calls SetFileInfo and GetFileInfo.

Important Although SertFilelnfo and GetFileInfo calls can be performed on open files, you might not
get back the information you want. It's safer to perform these calls only on closed files.

Those characteristics include:

e access to the file

* file type and auxiliary type
* creation time and date

¢ modification time and date

Chapter 4: Accessing GS/OSFiles 7

GS0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

« a pointer to an option list for FST-specific information (see Part II of this manual for more
information about FSTs)

An example of how you can use SetFilelnfo and GetFileInfo is given in the section “Copying Files” in
this chapter.

Changing the creation and modification date and time

The creation and modification fields in a file entry refer to the contents of the file. The values in
these fields should be changed only if the contents of the file change. Each field contains the time
and date information in the format shown in Table 4-1.

Table 41 Date and time format

Item Byte position
seconds Byte 1
minutes Byte 2 -

hour Byte 3

year Byte 4

day Byte 5

month Byte 6

mull Byte 7
weekday Byte 8

Since data in the file's directory entry itself are not part of the file’s contents, the modification field
should not be updated when another field in the file entry is changed, unless that change is due to an
alteration in the file’s contents. For example, a change in the file’s name is not a modification; on the
other hand, a change in the file’s EOF always reflects a change in its contents and, therefore, is a
modification.

Remember also that a file’s entry is a part of the contents of the directory or subdirectory that
contains that entry. Thus, whenever a file entry is changed in any way (whether or not its
modification field is changed), the modification fields in the entries for all its enclosing
subdirectories—including the volume directory—must be updated.

& Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Finally, when a file is copied, a utility program must be sure to give the copy the same creation and
modification date and time as the original file, and not the date and time at which the copy was
created, See the section “Copying Files” in this chapter for more information.

Copying files

GS/0S provides several techniques that help your application copy files. This section details those
techniques.

Copying single files

To copy single files, perform the following steps:

1. Make a GetFileInfo call on the source file (the file to be copied), to get its creation and modification
dates and times.

2. Make a Create call to create the destination file (the file to be copied).

3. Open both the source and destination files. Use Read and Write calls to copy the source to the
destination. Close both files.

4. Make a SetFileInfo call on the destination file, using all the information returned from GetFileInfo in
step 1. This sets the modification date and time values to those of the source file.

Copying multiple files

GS/0S provides a write-deferral mechanism that allows you to cache disk writes in order to increase
performance.

To use this technique, perform the following steps:

1. Start the write-deferral session by making a GS/OS BeginSession call.
2. Copy the files .

3. End the write-deferral session by making a GS/OS EndSession call.

The SessionStatus call also allows you to check whether a write-deferral session is currently in force.

Chapter 4: Accessing GS/OS Files 81

GS/0S Reference (Volume 1) Draft 3 (APD4) 8/31/88

Important The price of the increased perfformance is increased caution. Do not allow your
application to exit while a writedeferral mechanism is in force; you could harm the data
integrity of any open disk files. Make sure that you place an EndSession call in the flow
of both a normal and an abnormal exit.

If your application gets error $54 (out of memory) when sessions are active, it should make an

EndSession call, make a BeginSession call, and try the operation again. If the operation still fails,
more EndSession and BeginSession calls will not help.

& Volume 1: Applications and G§/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Chapter 5 Working with Volumes and Pathnames

If you don't want to, you can usually avoid working with volumes, pathnames, and devices in detail;
GS/OS can free you from keeping track of exactly where files exist. As discussed in Chapter 4, if you
use the Apple IIGS Standard File Operations Tool Set routines SFPutFile and SFGetFile, you don't
need to know where a file is, since these routines tell GS/OS where the file is located.

In some situations, however, you may not be able to or may not want to use SFPutFile and SFGetFile.
For example, you might need or want more control if your application has any of the following
characteristics:

e [t is text-based (and thus unable to access SFPutFile and SFGetFile).

s It needs to check whether particular files are in the appropriate directories; for example, if the data
files for an application need to be in the same directory as the application.

o [t builds its own pathnames; for example, if you want to present alist of all mounted volumes to the
user. :

In any of these cases, you have to understand more about mMm and volumes, and just a litde bit
more about devices. This chapter discusses the concepts you need to understand about those
entities, and the GS/OS calls that allow you to work with them.

Note: This chapter doesn't discuss direct access to devices; for that information, see Volume
‘ 2, “The Device Interface.”

Working with volumes

Some GS/0S calls are designed to allow you to work directly with volumes, as described in the
following sections.

Chapter 5: Working with Volumes and Pathnames &

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Getting volume information

GS/0S provides the Volume call to retrieve information about the volume currently mounted in a
specified device. You can retrieve the following information:

* name of the volume

* total number of blocks on the volume

« number of free blocks on the volume

« file system contained on the volume

« size, in bytes, of a block on the volume

An example of the use of the Volume call is given in the next section.

Building a list of mounted volumes

If you want your application to build a list of all the mounted volumes, you need to use the following
GS/OS calls:

1. To determine the names of the current devices, make Dinfo calls for device 1, device 2, and so on
until GS/OS returns error $53 (parameter out of range). Dinfo returns the name of the device
associated with that device number (see Chapter 7 for details on the Dinfo call).

2. Once you have the device name, you can use the GS/OS Volume call to obtain the name of the volume
currently mounted on the device.

You can also continue from this point to examine directroy entries and build the pathname to a file.
See the section “Building Your Qwn Pathnames” later in this chapter for more information.

Getting the name of the boot volume

If you need to determine the name of the volume from which GS/OS was booted, use the standard
GS/0S call GetBootVol to retrieve a pointer to the volume name. That name is equivalent to the
prefix specified by */. For example, an application could start up QuickDraw II and the Event
Manager and then use the GetBootVol call to check if the boot volume is online. This would allow the
application to put up a custom dialog box if the boot volume was offline.

Volume 1: Applications and G§/OS Part I: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/83

Formatting a volume

GS/0S provides two format options to applications, as follows:

e The GS/OS Format call attempts to physically format the disk; this method is necessary when your
application can't read the existing volume.

» The GS/OS EraseDisk call assumes that a physically formatted medium already exists in the
appropriate device, and writes new boot blocks, directory, and bitmaps to the disk. EraseDisk is
usually faster than Format, but requires that the disk already be physically formatted. You can use this
call, for example, to quickly make all of the space reusable on a disk that can already be read by your
application.

ln both of these cases, you have to provide a device name to the call, so you 'l need to use the GS/OS
Dinfo call at some point to find out the device name.

After you issue the EraseDisk or Format call, GS/OS takes control, and presents a graphics or text
interface that allows the user to choose the file system to be used to format the volume.

Note: If you don’t want to give the user the option of selecting the file system to be placed on
the volume, you can specify the file system as a parameter to the EraseDisk or the
Format call.

For GS/0S to present the graphics user interface, your application has to meet the following
requirements:

* The IIGS Toolbox Desk Manager must be active; by implication, all of the tools sets upon which the
Desk Manager depends must also be active (see the Apple IIGs Toolbox Reference).

* In addition, the List Manager must be active.
« For the graphics tools to run, 64 KB of free RAM must be available.
» The super hi-res screen must be currently displayed.

If all of these requirements are met, GS/OS presents the graphics interface to the user; if any one of
the requirements are not met, GS/OS presents the text interface to the user.

Working with pathnames

If you need to, you can work directly with the pathname of a file. The following sections indicate the
pathname capabilities of GS/OS.

Chapter 5: Working with Volumes and Pathnames 8

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Setting and getting prefixes

You can use standard GS/OS calls to manually set and retrieve the prefix assignments. The SetPrefix
call explicitly sets one of the numbered prefixes to the prefix you want, and the GetPrefix call retumns
the current value of any of the numbered prefixes.

Important SetPrefix and GetPrefix cannot be used to change or retrieve the boot volume prefix.
To retrieve the name of the boot volume prefix, use the GS§/OS GetBootVol call, as
described earlier in this chapter and detailed in Chapter 7. Your application cannot
change the prefix of the boot volume at all. However, if the user renames the boot
volume, GS/OS will automatically adjust all pathnames to reflect the changed prefix.

Changing the path to a file

GS/0S allows you to change the path to a specified file. From the user's viewpoint of a file system,
this “moves” the file from the old directory to the new directory, even though the physical location of
the file does not change. In addition, if you change the path to a directory, all files and d

To change the pathname, use the standard GS/OS call ChangePath. For detailed information about
how to change the path, see ChangePath in Chapter 7.

Expanding a pathname

GS/0S allows you to expand a partial pathname into its corresponding full pathname.

To expand the pathname, use the standard GS/OS call ExpandPath. For detailed information about
how to expand the path, see ExpandPath in Chapter 7.

Building your own pathnames

If you want your application to build a pathname by itself, you need to use several GS/OS calls, as
follows: '

1. To determine the names of the current devices, make Dinfo calls for device 1, device 2, and so on
until GS/OS returns error $11 (invalid device number), The Dinfo call returns the name of the device
associated with that device number (see Chapter 7 for details on DInfo).

8 Volume 1: Applications and GS/OS Part [: The Application Level

GS/0S Reference (Volume 1) Drajt 3 (APDA) 8/31/88

2. Once you have the device name, you can use the GS/OS Volume call to obtain the name of the volume
currently mounted on the device. ;

3. Open that volume by using the GS/OS Open call.
4. Get the directory entries for the files by using sucl:essivc GetDirEntry calls.

Introducing devices i

A device is a physical piece of equipment that transfe,rs information to or from the Apple 1iGs. Disk
drives, printers, mice, and joysticks are external devices. The keyboard and screen are also
considered devices. An input device transfers information to the computer, an output device
transfers information from the computer, and an mpur/output device transfers information both

ways. ;

GS/0S communicates with several different types of c{ievices, but the type of device and its physical
location (slot or port number) need not be known to 4 program that wants to access that device.
Instead, a program makes calls to GS/OS, 1denuﬁrmg the device it wants to access by its volume
name or device name,

Device names !

GS/0S identifies devices by device names. A GS/0S dewce name is a sequence of 2 to 32 characters

beginning with a period (). |

Your application must encode device names as sequerkes of 7-bit ASCII codes, with the device name
in all uppercase letters and with the most significant bm off. The slash character (/; ASCII 2F) and the

colon (: ; ASCII 3A) are always illegal in device names. |

Block devices L

A block device reads and writes information in multiples of one block of characters at a time.
Furthermore, it is a random-access device—it can access any block on demand, without having to
scan through the preceding or succeeding blocks. Block devices are usually used for storage and
retrieval of information, and are usually input/output dbwces for example, disk drives are block
devices. \

GS/0OS supports two different kinds of access to block% devices, as follows:

Chaqter 5: Working with Volumes and Pathnames &7

GS/0S Reference (Volume 1) | Draft 3 (APDA) 8/31/88

* File access, where you make a GS/0S Readior Write call, and GS/0OS does the work of finding and
accessing the device, This process is described in Chapter 4.

» Direct access, which you can use if your application needs to directly access blocks. The calls that
directly access devices are briefly summarized in Chapter 7, and discussed in detail in Chapter 2 of
Volume 2.

Note: RAM disks are software constructs; that the operating system treats like devices, GS/OS
supports any RAM disk that behaves like a block device in all respects just as if it were 2
block device. '

Character devices

A character device reads or writes a stream of characters in order, one at a time, It is a sequential-
access device—it cannot access any position in a stream without first accessing all previous
positions. It can neither skip ahead nor go back to a previous character. Character devices are usually
used to pass information to and from a user or another computer; some are input devices, some are
output devices, and some are input/output de\ﬁrices. The keyboard, screen, printer and
communications port are character devices. |

GS/0S supports character devices through bbtl:‘l direct and file access. For more information, see
Chapter 11 in this volume. |

Direct access to devices |

Generally, you don't need to do the work of aefcessing devices directly. For some special
applications and devices, however, you may want to take over that work; if you do, you'll have o
know a lot more about devices. See Volume 2 “The Device Interface,” for that information.

Device drivers

Block devices generally require device drivers to translate a file system’s logical block device model
into the tracks and sectors by which information is actually stored on the physical device. Character
devices also require drivers. ‘

There are two types of GS/OS drivers; loaded drivers, which are RAM-based, and generated drivers,
which are constructed by GS/0S. Device drivers are discussed in Volume 2 of this manual,

8 Volume I: Applications and GS/0S Part I: The Application Level

GS/0S Reference (Volume 1} Dmﬁ_fﬁ (APDA) | 8/31/88

Chapter 5: Working with Volumes and Pathnames 9

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Chapter 6 Working with System Information

Several G§/0OS calls provide acce$ to information about GS/OS. This chapter
introduces you to them. !

GS/0S Reference (Volume 1) | Draft 3 (APDA) 8/31/88

Setting and getting system preferences

GS/0S provides a preference word that allows t(our application o customize some GS/OS functions.
One of the options provided is the ability of the application using pathname callsto determine
whether or not it wants to handle error $45 (volyme not found) itself, or whether it wants to have
GS/0S handle those errors. ,

For information on how to set up the preferenc{es word, and on any other options available in that
word, see the description of SetSysPrefs and GetSysPrefs in Chapter 7.

Checking FST information

I

If you want to check the information for a sped:ﬁc EST, you can use the standard GS/OS call
GetFSTInfo. That call returns the following mformauon about the FST:

* name and version number of the FST

* some general attributes of the FST, such as Erwhether GS/0S will change the case of pathnames to
uppercase before passing them to the FST, and whether it is a block or character FST

» block size of blocks handled by the FST
¢ maximum size of volumes handled by the EST
maximum size of files handled by the FST |

For more detailed information about how to re;trieve the information, see GetFSTInfo in Chapter 7.
For more information about FSTs, see Part II of this volume

Finding out the version of t;he operating system

If your application depends upon some faturef of GS/0S that was implemented in a version later
than 2.0, you can use the standard GS/OS call GetVersion to retrieve the version number of GS/OS.
For more detailed information about how to retﬁeve the information, see the GetVersion call in

Chapter 7.

%2 Volume 1: Applications and GS/OS Part I: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

I
I
|
|
i
H

Getting the name of the currenté application

To get the filename of the application that is currently %axecuting, you can use the standard GS/OS call
GetName. For example, if an application wanted to display its own name to the user, it could use
GetName to get its current name (remember, the user can rename applications).

For more detailed information about how to retrieve ﬂ'ige information, see the GetName call in
Chapter 7. 3

C:hapter 6: Working with System Information 93

GY0S Reference (Volume 1)

Chapter 7

|
Draft 3 (APDA) ' 8/31/88

GS/0S Call Referegxce

This chapter provides the detailed description for all GS/OS calls, arranged in
alphabetical order by call name. Each description includes these elements:

the call's name and call number

a short explanation of its use}

a diagram of its required parimeter block

a detailed description of all parameters in the parameter block

.a list of all possible opemdngisystem EITor messages.

| Chapter 7: G§/OS Call Reference %

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

The parameter block diagram and description

The diagram accompanying each call description is a simplified representation of the call's parameter
block in memory. The width of the parameter block diagram represents one byte; successive tick
marks down the side of the block represent successive bytes in memory. Each diagram also includes
these features:

Offset: Hexadecimal numbers down the left side of the parameter block represent byte offsets from
the base address of the block.

Name: The name of each parameter appears at the parameter’s location within the block.

No.: Each parameter in the block has a number, identifying its position within the block. The total
number of parameters in the block is called the parameter count (pCount); pCount is the initial
(zeroth) parameter in each call. The pCount pamameter is needed because in some calls parameter
count is not fixed; see Minilmum parameter count, below.

Size and type: Each parameter is also identified by size (word, longword, or double longword) and
type (input or result, and value or pointer). A word is 2 bytes; a longword is 4 bytes; a double
longword is 8 bytes. An input is a parameter passed from the caller to GS/OS; a result is 2 parameter
returned to the caller from GS/OS. A value is numeric or character data to be used directly; a pointer
is the address of a buffer containing data (whether input or result) to be used.

Minimum parameter count: To the right of each diagram, across from the pCount parameter,
the minimum permitted value for pCount appears in parentheses. The maximum permitted value for
pCount is the total number of parameters shown in the parameter block diagram.

Each parameter is described in detail after the diagram.

% Volume 1: Applications and GS/OS Part I: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA) /31/38

$201D BeginSession

Description This call tells GS/OS to begin deferring block writes to disk. Normally GS/OS
writes blocks to disk immediately whenever part of the system issues a block
write request. However, when a write deferral session is in progress, GS/OS
caches blocks that are to be written until it receives an EndSession call,

This technique speeds up multiple file copying operations because it avoids
physically writing directory blocks to disk for every file. To do a fast multiple
file copy, the application should execute a BeginSession call, copy the files,
then execute an EndSession call.

Parameters '
Offset No. Size and type
S0 peount o _ yord INPUT value (minimum =0)
pCount " Word input value: The number of paraméters in this parameter block. Minimum
is 0; maximum is 0.
Errors (none)

Chapter 7: GS/0S Call Reference 97

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2031 BindInt

Description This function places the address of an interrupt handler into GS/OS's interrupt
vector table,

For a complete description of GS/OS's interrupt handling subsystem, see
Volume 2. See also the UnbindInt call in this chapter.

Parameters
Offset No. Size and type
300 pCount - — Word INPUT value {minimum =3)
$ZL iotNum o | Word RESULT value
" vin < 2 Word INPUT value
m — i
—~ intCode o 3 Longword INPUT pointer
pCount Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 3.
intNum Word result value: An identifying number assigned by GS/OS to the the binding
between the interrupt source and the interrupt handler. Its only use is as an input
to the G5/0OS call UnbindInt. :
vrn Word input value: Vector Reference Number of the firmware vector for the
interrupt source to be bound to the interrupt handler specified by intcode.
intCode Longword input pointer: Points to the first instruction of the interrupt handler
routine.
Errors

$25 interrupt vector table full
$53 parameter out of range

%8 Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Drafl 3 (APD4)
$2004 ChangePath
Description This call changes a file’s pathname to another pathname on the same volume, or

Parameters

pCount

pathname

newPathname

Commenis

changes the name of a volume. ChangePath cannot be used to change a device
name.

Offset 7 No. Size and type
§00 pCount - — Word INPUT value (minimum =2)
$02| -
~ pathname -1 Longword INPUT pointer
$08| -
I~ newPathname - 2 Longword INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2, ' -

Longword input pointer: Points to a2 GS/OS string representing the name of the
file whose pathname is to be changed.

Longword input pointer: Points to a GS/OS string representing the new
pathname of the file whose name is to be changed.

Afile may not be renamed while it is open.

A file may not be renamed if rename access is disabled for the file.

A subdirectory s may not be moved into another subdirectory tif s=tor if 1 is
contained in the directory hierarchy starting at 5. For example, “rename /v to
v/w is illegal, as is “rename /v/w to /v/w/x",

Chapter 7. GS/OS Call Reference 99

8/31/88

GS/0S Reference (Volume 1)

Errors

$10
$27
$2B
$40
$44
$45
$46
$47
$4A
$4B
$4E
$50
$52
$53
$57
$58
$5A

Draft 3 (APDA4)

device not found

/O error

write-protected disk
invalid pathname syntax
path not found

volume not found

file not found

duplicate pathname
version error

unsupported storage type
access: file not destroy enabled
file open

unsupported volume type
invalid parameter
duplicate volume

not a block device

block number out of range

100 Volume 1: Applications and GS/0OS

Part I: The Application Level

8/31/83

G&/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$200B ClearBackup

Description This call sets a file’s state information to indicate that the file has been backed
up and not altered since the backup. Whenever 2 file is altered, GS/OS sets the
file’s state information to indicate that the file has been altered.

Parameters
Offset No. Size and type
W pcount < Word INPUT value (minimum =1)
$02{ _
— pathname] 1 Longword INPUT pointer
pCount Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.
pathname Longword input pointer: Points to a GS/OS string that gives the pathname of
the file or directory whose backup status is to be cleared.
Errors

$27 /O error

$28 no device connected
$2B write-protected disk
$2E disk switched

$40 invalid pathname syntax
$44 path not found

$45 volume not found

$46 file not found

$4A version error

$52 unsupported volume type
$58 not a block device

Chapter 7: GS/OS Call Reference 101

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2014 Close

Description This call closes the access path to the specified file, releasing all resources used
by the file and terminating further access to it. Any file-related information that
has not been written to the disk is written, and memory resident data structures
associated with the file are released.

If the specified value of the re fNum parameter is $0000, all files at or above the
current system file level are closed.

Parameters
Offset No. Size and type
o B pCount - — Word INPUT value (minimum =1)
02, refum o 1 Word INPUT value
pCount Wond input value: The number of parameters in this parameter block. Midimum
is 1; maximum is 1.
refNum Word input value: The identifying number assigned to the file by the Open call.
A value of $0000 indicates that all files at or above the current system file level
are to be closed.
Errors

$27 /O error

$2B write-protected disk

$2E disk switched

$43 invalid reference number
$48 volume full

$SA block number out of range

102 Volume 1: Applications and GS/0S Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA)
$2001 Create
Description This call creates either a standard file, an extended file, or a subdirectory on a

volume mounted in a block device. A standard file is a ProDOS-like file
containing a single sequence of bytes; an extended file is a Macintosh-like file
containing a data fork and a resource fork, each of which is an independent
sequence of bytes; a subdirectory is a data structure that contains information
about other files and subdirectories.

This call cannot be used to create a volume directory; the Format call performs
that function. Similarly, it cannot be used to create a character-device file; the
character FST creates that special kind of file (see Chapter 11).

This call sets up file system state information for the new file and initializes the
file to the empty state.

Chapter 7: GS/0S Call Reference 103

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Parameters
Offset No. Size and type
500.__ pCount = — Word INPUT value (minimum =1)
soz[_ i
~ Ppathname 4 | [pngword INPUT pointer
06 access - 2 Word INPUT value
$08 .
fileType -1 3 Word INPUT value
$0A -
t auxType] 4 Longword INPUT value
SOE| storageType — 3 Word INPUT value
s10[C -4
- eof N 6 Longword INPUT value
- —
$14 i
- resourceEOF _{ 4 Longword INPUT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 7.
pathname Longword input pointer: Points to a GS/OS string representing the pathname of

the file to be created. This is the only required parameter.

14 Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

access Word input value: Specifies how the file may be accessed after it is created and
whether or not the file has changed since the last backup, as shown in the
following bit flag:

wlafelr[e[spalaiz]1]0]

T
Destroy-enable bit

Rename-enable bit
Backup-needed bit
reserved —
File-invisible bit
Write-enable bit —
Read-enable bit —

The most common setting for the access word is $00C3.

Software that supports file hiding (invisibility) should use bit 2 of the flag to
determine whether or not to display a file or subdirectory.

fileType Word input value: Categorizes the file’s contents. The value of this parameter
has no effect on GS/0S’s handling of the file, except that only certain file types
may be executed directly by GS/OS. The file type values are assigned by Apple
Computer and listed in Table 1-2 in Chapter 1 of this volume.

auxType Longword input value: Categorizes additional information about the file. The
value of this parameter has no effect on GS/OS’s handling of the file. By
convention, the interpretation of values in this parameter depends on the value
inthe £ileType parameter. The auxiliary type values by Apple Computer and
listed in Table 1-2 in Chapter 1 of this volume.

storageType Word input value: The value of this parameter determines whether the file being
created is a standard file, an extended file, or subdirectory file. The following

values are valid:

$0000-50003* create a standard file
$0005 create an extended file
.$000D create a subdirectory file

*If this parameter contains $0000, $0002 or $0003, GS/OS interprets it as $0001
and actually changes it to $0001 on output.

Chapter 7: GS/0S Call Reference 105

GY0S Reference (Volume 1) Draft 3 (APDA)

eof

resourceEQF

Comments

Longword input value: The ecf parameter specifies an amount of storage to be
preallocated during the create call for the file that is being created. The type of
entity is specified by the storageType parameter.

For a standard file, the eof parameter specifies the file size, in bytes, for which
space is to be preallocated. GS/OS preallocates enough space to hold a
standard file of the given size.

For an extended file, the eof parameter specifies the size, in bytes, of the data
fork. GS/OS preallocates enough space to hold a data fork of the specified
size.

For a subdirectory, the eof parameter specifies the number of entries the caller
intends to place in the subdirectory. GS/QS preallocates enough space for the
subdirectory to hold the specified number of entries.

Longword input value: For an extended file, this parameter specifies the amount
of space to preallocate for the resource fork. GS/OS preallocates enough space
to hold a resource fork of the specified size. This parameter is meaningful only

if the storageType parameter value is $0005, indicating that an extended file

is to be created.

.The Create call applies only to files on block devices.

The storage type of a file cannot be changed after it is created. For example,
there is no direct way to add a resource fork to a standard file or to remove one
of the forks from an extended file.

All FSTs implement standard files, but they are not required to implement
extended files.

106 Volume 1: Applications and GS/0S Part [: The Application Level

8/31/88

GS/0S Reference (Volume 1)

Errors

$10
$27
$2B
$40
$44
$45
$46
$47
$48
$49
$4B
$52
$53
$58
$5A

Draft 3 (APDA)

device not found

1/O error

write-protected disk
invalid pathname syntax
path not found

volume not found

file not found

duplicate pathname
volume full

volume directory full
unsupported storage type
unsupported volume type
invalid parameter

not a block device

block number out of range

Chapter 7: GS/OS Call Reference

107

8/31/38

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$202E

Description

Parameters

pCount
devNum

code

DControl

This call sends control information to a specified device. This description only
provides general information about the parameter block; for more information,
see Volume 2, “The Device Interface.”

Offset No. Size and type
001 pCount = — Word INPUT value (minimum =5)
$02 devNum - 1 Word INPUT value
$od| code - 2 Word INPUT value
$06 | -
L list - 3 Longword INPUT pointer
$0A

. requestCount . 4 Longword INPUT valye

$0E
. transferCount .| 5 Longword RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 5; maximum is 5.

Word input value: Device number of the device to which the control
information is being sent.

Word input value: A number indicating the type of control request being made.
The contro] requests are described completely in Chapter 1 of Volume 2. Contro!
codes of $0000-$7FFF are standard status calls that must be supported by the
device driver. Device-specific control calls may be supported by a particular
device; they use status codes $8000-$FFFF. A list of standard control codes is as
follows:

108 Volume 1: Applications and GS/OS Part I: The Application Level

GS0S Reference (Volume 1)

list

requestCount

transferCount

Errors

$0000
$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0008
$0009

Draft 3 (APDA)

ResetDevice
FormatDevice

Eject
SetConfigParameters
SetWaitStatus
SetFormatOptions
AssignPartitionOwner
ArmSignal
DisarmSignal
SetPartitionMap

$000A-$7FFF (reserved)
$8000-SFFFF (device-specific subcalls)

Longword input pointer: Points to a buffer containing the device control
information. The format of the data returned in the control buffer depends on
the control code as described in Volume 2, “The Device Interface.”

Longword input value: For control codes that have a control list, this parameter
gives the size of the control list.

Longword result value: For control codes that have a control list, this parameter
indicates the number of bytes of information actually transferred to the device.

$11

invalid device number

$53 parameter out of range

Chapter 7: GS/OS Call Reference

19

8/31/58

GS/OS Reference (Volume 1) Draft 3 (APDA)
$2002 Destroy
Description This call deletes a specified standard file, extended file (both the data fork and

Parameters

pCount

pathname

resource fork), or subdirectory, and updates the state of the file system to
reflect the deletion. After a file is destroyed, no other operations on the file are
possible.

This call cannot be used to delete a volume directory; the Format call
reinitializes volume directories.

It is not possible to delete only the data fork or only the resource fork of an
extended file.

Before deleting a subdirectory file, you must empty it by deleting all the files it
contains.

Offsat No. Size and type
00| pCount - — Word INPUT value (minimum =1)
$0z2| -
L pathname - 1 Longword INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1. ’

Longword input pointer: Points to a GS/OS string representing the pathname of
the file to be deleted.

110 Volume 1: Applications and GS/OS Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1)

Comments

Errors

A file cannot be destroyed if it is currently open or if the access attributes do

Draft 3 (APDA)

not permit destroy access.

$10
$27
$2B
$40
$44
$45
$46
$4B
$4E
$50
$52
$53
$58
$5A

device not found

1/0 error

write-protected disk
invalid pathname syntax
path not found

volume not found

file not found
unsupported storage type
access: file not destroy-enabled
file open

unsupported volume type
invalid parameter

not a block device

block number out of range

Chapter 7: GS/OS Call Reference

111

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA)
$202C DInfo
Description This call returns general information about a device attached to the system.
Parameters
Offset No. Size and type
500 pCount - — Word INPUT value (minimum =2)
$02 | devNum i Word INPUT value
$04]
— devName - 2 Longword INPUT pointer
$08 —characteristics 3 Word RESULT value
$0A | o
~ totalBlocks o 4 Longword RESULT value
SE_ slotNum S Word RESULT value
$10_ unitNum - § Word RESULT value
] »
$12 version - 7 Word RESULT value
$ML deviceId - 3 \word RESULT value
I 3
M6l headlink o g word RESULT value
1 »
8L, forwardLink ~ 10 Word RESULT value
© sl 1
. extendedDIBptr { q; Longword INPUT pointer
peount ~ Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 11.

112 Volume 1: Applications and GS/0S

Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

devNum

devName

characteristics

totalBlocks

slotNum

Word input value: A device number. GS/OS assigns device numbers in sequence
1, 2, 3,... as it loads or creates the device drivers. There is no fixed
correspondence between devices and device numbers. To get information
about every device in the system, one makes repeated calls to DInfo with
devNum values of 1, 2, 3,... until GS/OS returns error $11 (invalid device
number).

Longword input pointer: Points to a result buffer in which GS/OS retums the
device name of the device specified by device number. The maximum size of
the string is 31 bytes so the maximum size of the returned value is 33 bytes. Thus
the buffer size should be 35 bytes.

Word result value: Individual bits in this word give the general characteristics of
the device, as shown in the following bit flag:

gl o (s [7]6[s5be3]2}

[«_‘ ;;3

{15[14]13]12

device is 2 RAM disk or ROM disk
device is a linked device
reserved
device is busy
reserved —
bits indicate device speed —
device is a block device —
writing to device allowed —

reading from device allowed —

reserved

formatting device allowed —
device contins remevabie media —

I'CSCNQdJ

Longword result value: If the device is a block device, this parameter gives the
maximum number of blocks on volumes handled by the device. For character
devices, this parameter returns zero.

Word result value: Slot number corresponding to the resident firmware
associated with the device or slot number of the slot containing the device.
Valid values are $0000-000F.

Chapter 7;: GS/OS Call Reference 113

GS/0S Reference (Volume 1) Draft 3 (APDA) ' 8/31/88

unitNum

version

devicelD

Word result value: Unit number of the device within the given slot. This
parameter has no correlation with device number.

Word result value: Version number of the device driver. This parameter has the
same format as the SmartPort version, as shown in the following bit flag:

{is14]13{12f1ifrofo 87 [6fs]4f3[2[1]0]
] L | [} !

mjorre}u.uenmnba-]

Minor release number

Release phase
A= Alpha
B=Ben
E = Experimental
0 = Final

For example, a version of 2.00 in this format would be entered as $2000; a
version of 0.18 Beta would be entered as $018B:

Word result value: An identifying number associated with a particular type of
device.

This parameter may be useful for Finder-type applications when determining
what type of icon to display for a particular device. Current definitions of
device ID numbers include:

114 Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

headLink

forwardLink

extendedDIBptr

Errors

$0000 Apple 5.25 Drive $0010 File Server
(includes UniDisk™, $0011 Reserved
DuoDisk™, Disk Ilc, $0012 AppleDesktop Bus
and Disk II) $0013 Hard disk (generic)
$0001 Profile 5 MB $0014 Floppy disk (generic)
$0002 Profile 10 MB $0015 Tape drive (generic)
$0003 Apple 3.5 Drive $0016 Character device driver (generic)
(includes UniDisk 3.5 $0017 MFM-encoded disk drive
Drive) $0018 AppleTalk network (generic)
$0004 SCSI (generic) " $0019 Sequential access device
$0005 SCS! hard disk $001A SCSI scanner
$0006 SCSI tape drive $001B Other scanner
$0007 SCSI CD ROM $001C LaserWriter SC
$0008 SCSI printer $001D AppleTalk main driver
$0009 Serial modem $001E AppleTalk file service driver
$000A Console driver $001F AppleTalk RPM driver

$000B Serial printer

$000C Serial Laser Writer
$000D AppleTalk LaserWriter
$000E RAM Disk

$000F ROM Disk

Word result value: A device number that describes a link to another device. It is
the device number of the first device in a linked list of devices that are
associated with each other because they represent distinct partitions on a single
disk medium. A value of 0 indicates that no link exists.

Word result value: A device number that describes 4 link to another device. It is
the device number of the next device in a linked list of devices that are
associated with each other because they represent distinct partitions on a single
disk. A value of 0 indicates that no link exists.

Longword input pointer: Points to a buffer in which GS/OS returns information
about the extended device information block.

$11 invalid device number
$53 parameter out of range

Chapter 7: GS/OS Call Reference 115

GS/0S Reference (Volume 1)

Draft 3 (APDA)

$202F DRead

Description This call performs a device-level read on a specified device,

This description only provides general information about the parameter block;
for more information, see Volume 2, “The Device Interface.”

Parameters
Offset No. Size and type
$001 pCount — Word INPUT value (minimum =6)
2. deviNum 1 Word INPUT value
m i
= buffer 2 Longword INPUT pointer
m pur
.~ requestCount 3 ‘Longword INPUT value
m p—
— startingBlock 4 Longword INPUT value
$10
L. blockSize 5 Word INPUT value
s12[”
L. transferCount 6 Longword RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 6; maximum is 6.
devNum Word input value: Device number of the device from which data is to be read.
buffer Longword input pointer: Points to a buffer into which the data is to be read.

The buffer must be big enough to hold the data.

116 Volume 1: Applications and GS/OS

Part [: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA)

requestCount

startingBlock

blockSize

transferCount

Errors

Longword input value: Specifies the number of bytes to be read.

Longword input value: For a block device, this parameter specifies the logical
block number of the block where the read starts. For a character device, this
parameter is unused.

Word input value: The size, in bytes, of a block on the specified block device.

For character devices, the parameter must be set to zefo.

Longword result value: The number of bytes actually transferred by the call.

$11 invalid device number
$53 parameter out of range

Chapter 7: G8/OS Call Reference

117

8/31/88

GY0S Reference (Volume 1) Draft 3 (APDA)
$202D DStatus
Description Returns status information about a specified device.
This description provides only general information about the call; for more
information, see Volume 2, “The Device Interface.”
Parameters
Offset . No. Size and type
0} pCount = — Word INPUT value ({minimum =5)
e 3 devNum - 1 Word INPUT value
L sode - 2 Word INPUT value
m po — .
— list = 3 Longword INPUT pointer
Soa | -
— requestCount — 4 [ongword INPUT value
$0E| _
. transferCount _| 5 Longword RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
' is 5; maximum is 5.
devNum Word input value: Device number of the device whose status is to be returned.
code Word input value: A number indicating the type of status request being made.

The status requests are described completely in Volume 2, “The Device
Interface.” Status codes of $0000-$7FFF are standard status calls that must be
supported by the device driver. Device-specific status calls may be supported
by a particular device; they use status codes $8000-$FFFF. These are the
standard status codes:

118 Volume 1: Applications and GS/OS - Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1)

list

requestCount

transferCount

Errors

$0000
$0001
$0002
$0003
$0004

Draft 3 (AFDA)

GetDeviceStatus
GetConfigParameters
GetWaitStatus
GetFormatOptions
GetPartitionMap

$0005-$7FFF (reserved)
$8000-$FFFF (device specific subcalls)

Longword input pointer: Points to a buffer in which the device returns its status
information. Details about the status list are provided in Chapter 1 of Volume 2.

Longword input value: Specifies the number of bytes to be retumed in the status
list. The call will never retum more than this number of bytes.

Longword result value: Specifies the number of bytes actually returned in the

status list. This value will always be less than or equal to the request count.

$11

invalid device number

$53 parameter out of range

Chapter 7: G§/0S Call Reference

119

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA)
$2030 DWrite
Description This call performs a device-level write to a specified device.

This description only provides general information about the parameter block;
for more information, see Volume 2, “The Device Interface.”

Parameters
Offset No. Size and type
soo} pCount ~ — Word INPUT value {minimum =6)
02| devNum -1 Word INPUT value
$04 | _
s buffer - 2 Longword INPUT pointer
so8 | _
— requestCount — 3 Eongword INPUT value
soc| -
- startingBlock o 4 Longword INPUT value
$10] plocksize 5 Word INPUT value
$12[” |
- transferCount - g4 mmord RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 6; maximum is 6.
devNum Word input value: Device number of the device from which data is to be
written.
buffer Longword input pointer: Points to a buffer from which the data is to be written.

1200 Volume 1: Applications and GS/OS

Part I The Application Level

8/31/88

GSOS Reference (Volume 1) Draft 3 (APDA) 8/31/88

requestCount Longword input value: Specifies the number of bytes to be written.

startingBlock Longword input value: For a block device, this parameter specifies the logical
block number of the block where the write starts. For a character device, this
parameter is unused.

blockSize Word input value: The size, in bytes, of a block on the specified block device.
For character devices, the parameter is unused and must be set to zero.

transferCount Longword result value: The number of bytes actually transferred by the call.

Errors

$11 invalid device number
$53 parameter out of range

Chapter 7: GS/OS Call Reference 121

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$201E

Description

Parameters

pCount

Errors

EndSession

This call tells GS/OS to flush any deferred block writes that occurred during a
write-deferral session (started by a BeginSession call) and to resume normal
write-through processing for all block writes.

Offset No. Size and type

00| pCount -~ Word INPUT value (minimum =0)

Word input value: The number of parameters in this parameter block. Minimum
is 0; maximum is 0.

(none)

12 Volume 1: Applications and G§/0S Part I: The Application Level

GS0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

§2025 EraseDisk

Description ‘This call puts up a dialog box that allows the user to erase a specified volume
and choose which file system is to be placed on the newly erased volume. The
volume must have been previously physically formatted. The only difference
between EraseDisk and Format is that EraseDisk does not physically format the
volume. See the Format call later in this chapter.

Parameters
Offset No. Size and type
L pCount - — Word INPUT value (minimum =3)
oz i
t devName = 1 Longword INPUT pointer
m pror —
- volName — 2 [ongword INPUT pointer
WAL filesysID - 3 word RESULT value
WL reqrilesysID | 4 wod INPUT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 4.
devName Longword input pointer: Points to a GS/OS string representing the device name
of the device containing the volume to be erased. ‘
volName - Longword input pointer: Points to a GS/OS string representing the volume name

to be assigned to the newly erased volume.

Chapter 7: GS/OS Call Reference 123

GY/OS Reference (Volume 1) Draft 3 (APDA)

£ileSysID

regFileSysID

Errors

Word result value: If the call is successful, this parameter identifies the file
system with which the disk was formatted. If the call is unsuccessful, this
parameter is undefined. The file system IDs are as follows:

$0000 reserved $0007 LISA

$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 33 $0009 reserved
$0003 DOS3.20r31 $000A MS/DOS
$0004 Apple II Pascal $000B High Sierra
$0005. Macintosh (MFS) $000C ISO 9660
$0006 Macintosh (HFS) $000D-$FFFF reserved

Word input value: Provides the file system ID of the file system that should be
initialized on the disk. The values for this parameter are the same as those for
the fileSysID parameter.

If you supply this parameter, it suppresses the initialization dialog that asks the
user which file system to place on the newly erased disk. Normally, your
application should not use this parameter; use it only if your application needs
to format the disk for a specific FST.

If the carry flag is set but A is equal to 0, the user selected cancel in the dialog
box.

$10 device not found

$11 invalid device request
$27 /O error

$28 no device connected
$2B write-protected disk
$40 invalid pathname syntax
$53 parameter out of range
$58 not a block device

$5D file system not available
$64 invalid FST ID

124 Volume 1: Applications and G§/OS Part I: The Application Level

8/31/38

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

S200E ExpandPath

Description This call converts the input pathname into the cormresponding full pathname with
colons (ASCII $3A) as separators. If the input is a full pathname, ExpandPath
simply converts all of the separators to colons. If the input is a partial
pathname, ExpandPath concatenates the specified prefix with the rest of the
partial pathname and converts the separators to colons.

If bit 15 (msb) of the £1ags parameter is set, the call converts all lowercase
characters to uppercase (all other bits in this word must be cleared). This call
also performs limited syntax checking, It returns an error if it encounters an
illegal character, two adjacent separators, or any other syntax error.

Parameters
Offset No. Size and type
%[peount - _ Word INPUT value (minimum =2)
wz r— ——
—~ inputPath o 1 Longword INPUT pointer
m p— ey
~ ~outputPath — 2 Iongword INPUT pointer
e = flags = 3 Word INPUT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 2, maximum is 3,
inputPath Longword input pointer: Points to a GS/OS string that is to be expanded.
outputPath Longword input pointer: Points to a result buffer where the expanded pathname
is retumed.
flags Word input value: If bit 15 is set to 1 this call returns the expanded pathname all

in uppercase characters. All other bits in this word must be zero.

Chapter 7: GS/0S Call Reference 125

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Errors

$40 invalid pathname syntax
$4F buffer too small

126 Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA)
$2015 Flush
Description This call writes to the volume all file state information that is buffered in

Parameters

pCount

refNum

memory but has not yet been written to the volume. The purpose of this call is
to assure that the representation of the file on the volume is consistent and up
to date with the latest GS/OS calls affecting the file.

Thus, if a power failure occurs immediately after the Flush call completes, it
should be possible to read all data written to the file as well as all file attributes.
If such a power failure occurs, files that have not been flushed may be in
inconsistent states, as may the volume as a whole. The price for this security is
performance; the Flush call takes time to compiete its work. Therefore, be
careful how often you use the Fiush call.

A value of $0000 for the re £Num parameter indicates that all files at or above
the current file level are to be flushed.

Offset No, Size and type
WL peount o Word INPUT value (minimum = 1)
¥l refNum 4] Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: The identifying number assigned to the file by the Open call.
A value of $0000 indicates that all files at or above the current system file level
are to be flushed.

Chapter 7: GS/OS Call Reference 127

8/31/88

GS/0OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Errors

$27 1/0 emor

$2B disk write protected

$2E disk switched

$43 invalid reference number
$48 volume full

$5A block number out of range

128 Volume 1: Applications and GS/OS Part [: The Application Level

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2024

Description

Parameters

pCount
devName

volName

Format

This call puts up a dialog box that allows the user to physically format a
specified volume and choose which file system is to be placed on the newly
formatted volume.

Some devices do not support physical formatting, in which case the Formar call
acts like the EraseDisk call and writes only the empty file system. See the
EraseDisk call earlier in this chapter.

Offset No. Size and type
S0l pcount - Word INPUT value (minimum = 3)
$02 B i

- devName = 1 Longword INPUT pointer
$06

l volName - 2 Longword INPUT pointer

A a
AL £ilesysID - 3 word RESULT value

$C_ reqFilesysID . 4 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 4.

Longword input pointer: Points to a GS/OS string representing the device name
of the device containing the volume to be formatted.

Longword input pointer: Points to a GS/OS string representing the volume name
to be assigned to the newly formatted blank volume.

Chapter 7: GS/0S Call Reference 129 -

GY0S Reference (Volume 1) Draft 3 (APDA)

fileSysID

reqFileSysID

Errors

Word result value: If the call is successful, this parameter identifies the file
system with which the disk was formatted. If the call is unsuccessful, this
parameter is undefined. The file system IDs are as follows:

$0000 reserved $0007 LISA

$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS3.20r3.1 $000A MS/DOS
$0004 Apple II Pascal $000B High Sierra
$0005 Macintosh (MFS) $000C ISO 9660
$0006 Macintosh (HFS) $000D-$FFFF reserved

Word input value: Provides the file system 1D of the file system that should be
initialized on the disk. The values for this parameter are the same as those for
the £ileSysID parameter.

If you supply this parameter, it suppresses the dialog from the Disk
Initialization package that asks the user how the disk should be formatted.
Normally, your application should not use this parameter; use it only if your
application needs to format the disk for a specific FST.

If the carry flag is set but A is equal to 0, the user selected cancel in the dialog
box.

$10 device not found

$11 invalid device request
$27 1/O error

$28 no device connected
$2B disk is write protected
$40 invalid pathname syntax
$53 parameter out of range
$58 not a block device

$5D file system not available
$64 invalid FST ID

130 Volume 1: Applications and GS/OS Part [: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2028 GetBootVol

Description Returns the volume name of the volume from which the file GS/OS was last
loaded and executed. The volume name returned by this call is equivalent to the
prefix specified by */.

Parameters
Offset No. ' Size and type
$0L pcount - Word INPUT value (minimum = 1)
wz = ——
- dataBuffer 4 | [Longword INPUT pointer
pCount Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.
dataBuffer Longword input pointer: Points to a memory area where a GS/OS output string
structure giving the boot volume name is to be returned.
Errors

$4F buffer too small

Chapter 7: GS/OS Call Reference 131

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2020 GetDevNumber

Description This call returns the device number of a device identified by device name or
volume name. Only block devices may be identified by volume name, and then
only if the named volume is mounted. Most other device calls refer to devices
by device number.

GS/0S assigns device numbers at boot time, The numbers are a series of
consecutive integers beginning with 1. There is no algorithm for determining the
device number for a particular device.

Because a device may hold different volumes and because volumes may be
moved from one device to another, the device number returned for a particular
volume name may be different at different times.

Parameters
Offset No. Size and type
WL pcount Word INPUT value (minimum = 2)
2 . :
- devName -1 1 Longword INPUT pointer
a6l devium - 2 Word RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2,
devName Longword input pointer: Points to a result buffer representing the device name
or volume name (for a block device).
devNum Word result value: The device number of the specified device.

132 Volume 1: Applications and G§/OS Part I: The Application Level

GS/0S Reference (Volume 1)

Errors

$10
$11
$40
$45

Draft 3 (APDA)

device not found

invalid device request

invalid device or volume name syntax
volume not found

Chapter 7: GS/OS Call Reference

133

8/31/88

GY0S Reference (Volume 1)

Draft 3 (APDA)

8/31/88

This call returns information about a directory entry in the volume directory or a

subdirectory. Before executing this call, the application must open the
directory or subdirectory. The call allows the application to step forward or
backward through file entries or to specify absolute entries by entry number.

$201C GetDirEntry
Description
Parameters
Offset
$00 pCount
$oz) refNum
S04 flags
$05 = base
$08 | displacement
m P
- name
$0E|_ entryNum
$10 - fileType
S12|
e eof
$16[_
L. blockCount
$1a

134 Volume 1: Applications and G5/0S

No.

Size and type
Word INPUT value (minimum = 5)
Word INPUT value

Word RESULT value

Word INPUT value

Word iNPUT value

Longword INPUT pointer

Word RESULT value

Word RESULT value

Longword RESULT value

Longword RESULT value

Part I: The Application Level

G¥0S Reference (Volume 1)

pCount

refNum

flags

$1A

2

$24

$30

$32

$36

$3A

Draft 3 (APDA) 8/31/88

—

| createDateTime 10
. modDateTime 1
= access 12
- auxType 13
- fileSysID 14
- optionList 15
. resourceElF 16.
. resourceBlocks 17

Double longword RESULT value

Double longword RESULT value

Word RESULT value

Longword RESULT value

Word RESULT value

Longword INPUT pointer

Longword RESULT value

Longword RESULT value

Word input value: The number of parameters in this parameter block. Minimum

is 5;

maximum is 17,

Word input value: The identifying number assigned to the directory or
subdirectory by the Open call.

Word result value: Flags that indicate various attributes of the file, as follows:

Chapter 7: GS/OS Call Reference 135

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

base

displacement

name

entryNum

fileType

eof

file is an extendad file = 1
file is not an extendad file =0

Word input value: A value that tells how to interpret the displacement
parameter, as follows:

$0000 displacement gives an absolute entry number

$0001 displacement is added to current displacement to get next entry
number '

$0002 displacement is subtracted from current displacement to get next
entry number

Word input value: In combination with the base parameter, the
displacement parameter specifies the directory entry whose information is
to be returned. When the directory is first opened, GS/0OS sets the current
displacement value to $0000. The current displacement value is updated on
every GetDirEntry call.

If the base and displacement parameters are both zero, GS/OS returns a 2-
byte value in the ent ryNum parameter that specifies the total number of active
entries in the subdirectory. In this case, GS/OS also resets the current
displacement to the first entry in the subdirectory.

To step through the directory entry by entry, you should set both the base and
displacement parameters to $0001.

Longword input pointer: Points to a result buffer giving the name of the file or
subdirectory represented in this directory entry.

Word result value: The absolute entry number of the entry whose information is
being returned. This parameter is provided so that a program can obtain the
absolute entry number even if the base and displacement parameters

specify a relative entry.
Word result value: The value of the file type of the directory entry.

Longword result value: For a standard file, this parameter gives the number of
bytes that can be read from the file. For an extended file, this parameter gives
the number of bytes that can be read from the file’s data fork.

136 Volume 1: Applications and GS/0S Part I: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

blockCount

createDateTime

modDateTime

access
auxType

fileSysID

optionList

resourceEQF

resourceBlocks

Longword result value: For a standard file, this parameter gives the number of
blocks used by the file. For an extended file, this parameter gives the number of
blocks used by the file’s data fork.

Double longword result value: The value of the creation date and time of the
directory entry. The format of the date and time is shown in Table 4-1 in
Chapter 4.

Double longword result value: The value of the modification date and time of
the directory entry. The format of the date and time is shown in Table 4-1 in
Chapter 4.

Word result value: Value of the access attribute of the directory entry.
Longword result value: Value of the auxiliary type of the directory entry.

Word result value: File system identifier of the file system on the volume
containing the file. Values of this parameter are described under the Volume call
later in this chapter.

Longword input pointer: Points t0 a data area where GS/OS returns FST-specific
information related to the file. This is the same information returned in the
option list of the Open and GetFileInfo calls.

This parameter points to a buffer that starts with a length word giving the total
buffer size including the length word. The next word is an output length value
which is undefined on input. On output, this word is set to the size of the
output data excluding the length word and the output length word. GS/OS will
not overflow the available space specified in the input length word. If the data
area is too small, the application can reissue the call after allocating a new
output buffer with size adjusted to output length plus four.

Longword result value: If the specified file is an extended file, this parameter
gives the number of bytes that can be read from the file's resource fork.
Otherwise, the parameter is undefined.

Longword result value: If the specified file is an extended file, this parameter
gives the number of blocks used by the file’s resource fork. Otherwise, the
parameter is undefined.

Chapter 7: G§/OS Call Reference 137

GS/OS Reference (Volume 1)

Errors

$10
827
54A
$4B
$4F
$52
$53
$58
$61

Draft 3 (APDA)

device not found

I/O error

version error

unsupported storage type
buffer too small
unsupported volume type
invalid parameter

not a block device

end of directory

138 Volume 1: Applications and GS/OS

Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1) ~ Draft 3 (APDA)
$2019 GetEOF
Description This function returns the current logical size of a specified file. See also the
SetEQF call.
Parameters
Offset No. Size and type
WL pcount] Word INPUT value (minimum = 2)
¥ refum 1 Word INPUT value
S04 -
- eof - 2 longword RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2. '
refNum Word input value: The identifying number assigned to the file by the Open call.
eof Longword result value: The current logical size of the file, in bytes.
Errors

$43 invalid reference number

Chapter 7: G§/0S Call Reference 1%

8/31/88

G505 Reference (Volume 1) Draft 3 (APDA)
$2006 GetFilelnfo
Description This call returns certain file attributes of an existing open or closed black file.

Important A GetFilelnfo call following a SetFileInfo call on an open file may

not return the values set by the SetFilelnfo call. To guarantee

recording of the attributes specified in a SetFilelnfo call, you must

first close the file.

No.

See also the SetFileInfo call.
Parameters
Offset
$00 - pCount
2|
— pathname
06| access
$08 L fileType
$0A [~
= auxType
$0E - storageType
s10[
.. createDateTime

140 Volume 1: Applications and GS/0S

Size and type

Word INPUT value (minimum = 2)
Longword INPUT pointer

Word RESULT value

Word RESULT value
Longword RESULT value

Word RESULT value

Double longword RESULT value

Part I: The Application Level

8/31/88

G¥0S Reference (Volume 1) Draft 3 (APDA)
$18) .
[modDateTime _ 5 Doubile longword RESULT value
$20 " -
- optionlist . g Longword INPUT pointer
§A4 -
| eof -9 Longword RESULT value
$28

pCount

pathname

access

fileType

auxType

-
- blocksUsed o 4 Longword RESULT value

'
~ TesourceEOF o 11 longword RESULT value

5%
| resourceBlocks _] 12 Longword RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 12.

Longword input pointer: Points to a GS/OS string representing the pathname of
the file whose file information is to be retrieved.

Word result value: Value of the file’s access attribute, which is described under
the Create call.

Word result value: Value of the file’s file type attribute.

Longword result value: Value of the file’s auxiliary type attribute.

Chapter 7: G§/0S Call Reference 141

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

storageType

createDateTime

modDateTime

optionlist

eof

blocksaUsed

resourceEQF

resourceBlocks

Word result value: Value indicating the storage type of the file.

$01 standard file
$05 extended file
$0D volume directory or subdirectory file

Double longword result value: Value of the file's creation date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

Double longword result value: Value of the file’s modification date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

Longword input pointer: Points to a result buffer . On output, GS/OS sets the
output length field to a value giving the number of bytes of space required by
the output data, excluding the length words, GS/OS will not overflow the
available output data area.

Longword result value: For a standard file, this parameter gives the number of
bytes that can be read from the file. For an extended file, this parameter gives
the number of bytes that can be read from the file’s data fork.

For a subdirectory or a volume directory file, this parameter is undefined.

Longword result value: For a standard file, this parameter gives the total number

of blocks used by the file. For an extended file, this parameter gives the number

of blocks used by the file's data fork. .
For a subdirectory or a volume directory file, this parameter is undefined.

Longword result value: If the specified file is an extended file, this parameter
gives the number of bytes that can be read from the file's resource fork.
Otherwise, the parameter is undefined.

Longword result value: If the specified file is an extended file, this parameter
gives the number of blocks used by the file’s resource fork. Otherwise, the
parameter is undefined.

12 Volume 1: Applications and GS/0S : Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1)

Errors

$10
$27
$40
$44
$45
$46
$4A
$4B
$52
$53
$58

Draft 3 (APDA)

device not found

/O error

invalid pathname syntax
path not found

volume not found

file not found

version error
unsupported storage type
unsupported volume type
invalid parameter

not a block device

Chapter 7: GS/OS Call Reference

143

8/31/88

G§0S Reference (Volume 1)

Draft 3 (APDA)

This function returns general information about a specified File System

Translator (FST). See also the SetFSTInfo call, and Part II of this guide.

$202B GetFSTInfo
Description
Parameters
Offset No.
S0f_ pCount
s02 - fstNum 1
504 filesysID 2
$06|
ER fstName 3
S'OA - version 4
$oc . attributes 5
$OE - blockSize 6
$10[
= maxVolSize v
S|
» maxFileSJ:.ze 8
pCount
is 2; maximum is 8.
£stNum

Size and type
Word INPUT value (minimum = 2)

Word INPUT value

Word RESULT value

Longword INPUT pointer

Word RESULT value
Word RESULT value

Word RESULT value

Longword RESULT value

Longword RESULT value

Word input value: The number of parameters in this parameter block. Minimum

Word input value: An FST number. GS/OS assigns FST numbers in sequence (1, 2,

3, and 50 on) as it loads the FSTs. There is no fixed correspondence between
FSTs and FST numbers. To get information about every FST in the system, one
makes repeated calls to GetFSTInfo with £stNum values of 1, 2, 3, and so on
until G§/OS returns error $53: parameter out of range.

144 Volume 1: Applications and GS/0S

Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

fileSysID Word result value: Identifies the file system as follows:
$0000 reserved $0007 LISA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS320r31 $000A MS/DOS
$0004 Apple II Pascal $000B High Sierra
$0005 Macintosh (MFS) $000C ISO 9660

$0006 Macintosh (HFS) $000D-$FFFF reserved

fstName Longword input pointer: Points to a result buffer where GS/OS is to return the
name of the FST.

version Word result value: Version number of the FST, in the following format:

[1s[14]1a]i2]nwolof8]7]6]s[4]3l2]1]c]|
L | L |

prototype release = 1
final release = 0
major release number
minor release number —
attributes Word result value: General attributes of the FST, as follows:

G5/0S call dispatcher should -I
capitalize pathnames
before passing them = 1
G5/05 call dispatcher should

capitalize case pathnames
before passing them = 0
characier FST = 1 —
block FST = 0
reserved =
blockSize Word result value: The block size (in bytes) of blocks handled by the FST.
maxVolSize Longword result value; The maximum size (in blocks) of volumes handled by the
FSL.

Chapter 7: G§/OS Call Reference 145

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

maxFileSize Longword result value: The maximum size (in bytes) of files handled by the FST.

Errors

$53 parameter out of range

146 Volume 1: Applications and GS/0S Part I: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA)
$201B GetLevel
Description This function retums the current value of the system file level. See also the
SetLevel call,
Parameters
Offset No. Size and type
S0 pCount . Word INPUT value (minimum = 1)
WL level 1 Word RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.
level Word result value: The value of the system file level.
Errors

$01 bad system call number

$04 parameter count out of range
$07 ProDOS is busy

$59 invalid file level

Chapter 7: GS/0S Call Reference

147

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA)
$2017 GetMark
Description This function returns the current file mark for the specified file. See also the
SetMark call.
Parameters
Offset No. Size and type
0L pcount - Word INPUT value (minimum = 2)
$2L resNum - 1 Word INPUT value
m pes —
— position 4 2 Iongword RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.
refNum Word input value: The identifying number assigned to the file by the Open call.
position Longword result value: The current value of the file mark in bytes relative to the
beginning of the file.
Errors

$43 invalid reference number

148 Volume 1: Applications and GS/0S Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2027 GetName

Description Returns the filename (not the complete pathname) of the currently running
application program.

To get the complete pathname of the current application, concatenate prefix 1/
with the filename returned by this call. Do this before making any change in

prefix 1/.
Parameters
Offset No. Size and type
$00 pCount Word INPUT value (minimum = 1)
02| _
-~ dataBuffer o 1 [Longword INPUT pointer
pCount Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.
dataBuffer Longword input pointer: Points to a result buffer where the filename is to be
returned.
Errors

$4F buffer too small

Chapter 7: G§/OS Call Reference 149

GS/0S Reference (Volume 1) Draft 3 (APDA)
S200A GetPrefix
Description This function returns the current value of any one of the numbered prefixes. The

Parameters

pCount

prefixNum

prefix

Errors

returned prefix string will always start and end with a separator. If the requested
prefix is null, it is returned as a string with the length field set t0 0. This call
should not be used to get the boot volume prefix (*/); use the GetBootVol call
to do that, See also the SetPrefix call.

Offset No. Size and type
%L pcount Word INPUT value (minimum = 2)
W2, prefixNum - 1 Word INPUT value
$04 _
— prefix -1 2 Longword INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Word input value: Binary value of the prefix number for the prefix to be
returned.

Longword input pointer: Pointer to 2 GS/OS output string structure where the
prefix value is returned.

$4F buffer too small
$53 invalid parameter

150 Volume 1: Applications and GS/OS Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$200F GetSysPrefs

Description This call retuns the value of the current global system preferences. The value of
system preferences affects the behavior of some system calls. See also the
SetSysPrefs call.

Parameters
Offset No. Size and type
§001 pCount — Word INPUT value (minimum = 1)
$2|_ preferences - 1 Word RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum

is 1; maximum is 1.

preferences Word result value: Value of system preferences, as follows:

display volume mount dialog = 1
do not display volume mount dialog = 0

Errors (none)

Chapter 7: G&/OS Call Reference 151

GS0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

S202A GetVersion

Description This call returns the version number of the GS/OS operating system. This value
can be used by application programs to condition version-dependent

operations.
Parameters
Offset No. Slze and type
S0 pCount - Word INPUT value (minimum = 1)
$2| version o 1 Word RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1. ‘
version Word result value: Version number of the operating system, in the following
format:
(Bl z[ulwn]s[8]7]6]5]4]3]2]1]0]
| i L 1
prolotype release = 1
finai release =
major release number
minor release number —
Errofs (none except general system errors)

152 Volume 1: Applications and GS/0S Part I: The Application Level

GY0S Reference (Volume 1) Draft 3 (APDA)
$2011 NewlLine
Description This function enables or disables the newline read mode for an open file and,

when enabling newline read mode, specifies the newline enable mask and
newline character or characters.

When newline mode is disabled, a Read call terminates only after it reads the
requested number of characters or encounters the end of file. When newline
mode is enabled, the read also terminates if it encounters one of the specified
newline characters.

When a Read call is made while newline mode is enabled and there is another
character in the file, GS/OS performs the following operations:

1. Transfers the next character to the user’s buffer.

2. Performs a logical AND operation between the character and the low-order
byte of the newline mask specified in the last Newline call for the open file.

Compares the resulting byte with the newline character or characters.

4. TIf there is a match, terminates the read; otherwise continues at step 1.

Parameters
Offset No. Size and type

S0 pCount — Word INPUT value (minimum = 4)

%2, refNum 1 Word INPUT value

$4| . enableMask 2 Word INPUT value

$6|. numChars 3 Word INPUT value

m poe s

— newlineTable 4 Longword INPUT pointer

pCount Word input value: The number of parameters in this parameter block. Minimum

is 4; maximum is 4.

Chapter 7: GS/0S Call Reference 153

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

refNum

enableMask

numChars

newlineTable

Errors

Word input value: The identifying number assigned to the file access path by the
Open call,

Word input value: If the value of this parameter is $0000, disable newline mode.
If the value is greater than $0000, the low-order byte becomes the newline mask.
GS/0S performs a logical AND operation of each input character with the
newline mask before comparing it to the newline character or characters.

Word input value: The number of newline characters contained in the newline
character table. If the enableMask is nonzero, this parameter must be in the
range 1-256. When disabling newline mode (enableMask = 50000), this
parameter is ignored.

Longword input pointer: Points to a table of from 1 to 256 bytes that specifies
the set of newline characters. Each byte holds a distinct newline character.
When disabling newline mode (enableMask = $0000), this parameter is
ignored.

$43 invalid reference number

154 Volume 1: Applications and GS/0S Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$200D Null

Description This call executes any pending events in the GS/OS event queue and in the
Scheduler queue before returning to the calling application. Note that every
GS/0S call performs these functions. This call provides a way to flush the
queues without doing anything else.

Parameters

Offset No. Size and type
WL pcount Jd _ Word INPUT value (minimum = 0)
pCount Word input value: The number of parameters in this parameter block. Minimum
is ; maximum is 0.
Errors (none)

Chapter 7: G§/0S Call Reference 155

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2010 Open

Description This call causes GS/OS to establish an access path to a file. Once an access path
is established, the user may perform file Read and Write operations and other

related operations on the file.
This call can also return all the file information returned by the GetFilelnfo call.

15 Volume 1: Applications and G5/0S Part I: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA)
Parameters
Offset No. Size and type
50| pCount — — Word INPUT value {(minimum = 2)
s02| refNum - 1 Word RESULT value
S04 -
-~ pathname - 2 Longword INPUT pointer
$8| requestaccess | 3 Word INPUT value
$A| resourceNumber — 4 Word INPUT value
%C | access -5 Word RESULT value
$E_ fileType = 6 Word RESULT value
$10[_
= auxType - 7 longword RESULT value
14
M storageType -| § Word RESULT value
$16| _
~ createDateTime = 9 Double longword RESULT value

$1E

Chapter 7: G5/0S Call Reference

157

8/31/88

GS/0S Reference (Volume 1)

Draft 3 (APDA) 8/31/88

$1E |
modDateTime _ 10 Double longword RESULT value
$26 5
optionList . 11 Longword INPUT pointer
$24]
eof ~ 12 longword RESULT valye
$2€]
blocksUsed 13 Longword RESULT value
$22 i
resourceEOF :JJ 14 Longword RESULT value
$3]
resourceBlocks — 15 Longword RESULT value
pCount Word input value: The number of parameters in this parameter biock. Minimum
is 2, maximum is 15.
refNum Word result value: A reference number assigned by GS/OS to the access path. All
other file operations (Read, Write, Close, and so on) refer to the access path by
this number.
pathname Longword input pointer: Points to a GS/OS string representing the pathname of

the file to be opened.

158 Volume 1: Applications and GS/0S

Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA)

requestAccess

resourceNumber

access

fileType

auxType

storageType

createDateTime

modDateTime

optionList

Word input value: Specifies the desired access permissions, as follows:

re.sefveclJ J

W = 1, request write permission
R = 1, request read permission

If this parameter is not included or its value is $0000, the file is opened with
access permissions determined by the file’s stored access attributes.

Word input value: This parameter is meaningful only when the pathname
parameter specifies an extended file. In this case, a value of $0000 tells GS/OS
to open the data fork, and a value of $0001 tells it to open the resource fork.

Word result value: Value of the file's access attribute, which is described under
the Create call.

Word result value: Value of the file’s file type attribute. Values are shown in Table
1-2 in Chapter 1.

Longword result value: Value of the file’s auxiliary type attribute. Values are
shown in Table 1-2 in Chapter 1.

Word result value: Value of the file's storage type attribute, as follows:

$01 standard file
$05 extended file
$0D volume directory or subdirectory file

Double longword result value: Value of the file's creation date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

Double longword result value: Value of the file’s modification date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

Longword input pointer: Points to a GS/OS result buffer to which FST-specific
information can be returned. On output, GS/OS sets the output length field to a
value giving the number of bytes of space required by the output data,
excluding the length words, GS/OS will not overflow the available output data
area.

Chapter 7: G&/OS Call Reference 159

8/31/38

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

eof

blocksUsed

resourcekEQCF

resourceBlocks

Errors

Longword result value: For a standard file, this parameter gives the number of
bytes that can be read from the file. For an extended file, this parameter gives
the number of bytes that can be read from the file’s data fork.

For a subdirectory or volume directory file, this parameter is undefined,

Longword result value: For a standard file, this parameter gives the number of
bytes used by the file, For an extended file, this parameter gives the number of
bytes used by the file’s data fork,

For a subdirectory or volume directory file, this parameter is undefined.

Longword result value: If the specified file is an extended file, this parameter
gives the number of bytes that can be read from the file’s resource fork, even
when one is opening the data fork. Otherwise, the parameter is undefined.

Longword result value: If the specified file is an extended file, this parameter
gives the number of blocks used by the file's resource fork, even if one is
opening the data fork, Otherwise, the parameter is undefined.

$27 1/O error

$28 no device connected

$2E disk switched

$40 invalid pathname syntax
$44 path not found

$45 volume not found

$46 file not found

$4A version error

$4B unsupported storage type
$4E access not allowed

$4F buffer too small

$50 file is open

$52 unsupported volume type
$58 not a block device

160 Volume 1: Applications and G§/0OS Part |: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2003

Description

Parameters

pCount

shutdownFlag

OSShutdown

This call allows an application (such as the Finder) to shut down the operating
system in preparation for either powering down the machine or performing a
cold reboot. GS/0S terminates any write-deferral session in progress and shuts
down all drivers and FSTs.

The action of the call is determined by the values of the shutdownFlag
parameter. If Bit 0 is set to 1, G§/OS performs the shutdown operation and
reboots the machine. If Bit 0 is cleared to 0, GS/OS performs the same
shutdown procedure and then displays a dialog box that allows the user to either
power down the computer or reboot. If the user chooses to reboot, GS/OS then
looks at Bit 1 of the shutdownFlag parameter. '

If Bit 1 is cleared to 0, GS/OS leaves the Memory Manager power-up byte alone;
this leaves any RAM disks intact while the machine is rebooted. If Bit 1 is set to
1, however, GS/OS invalidates the power-up byte, which effectively destroys
any RAM disk, before rebooting the computer.

Offset No. Size and type
$00

pCount — Word INPUT value (minimum = 1)

$02L shutdownFlag - 1 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: Two Boolean flags that give information about how to handle
the shutdown, as follows:

Chapter 7: GS/OS Call Reference 161

G5/0S Reference (Volume 1) Draft 3 (APDA) ' 8/31/88

. o 5 ‘31';'1 1]¢|
1'es¢=:1'ved—l J

Invalidate the Memory Manager power-up byte when powering down=1
Leave Memory Manager power-up byte alone when powering down=0

Perform shutdown and reboot the computer=1
Perforn shutdown and display=0 power-down/reboot dialog

Errors (none)

162 Volume 1: Applications and GS/0S Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA)} 8/31/88

$2029 Quit

Description This call terminates the running application. It also closes all open files, sets the
system file level to 0, initializes certain components of the Apple IIGS and the
operating system, and then launches the next application.

For more information about quitting applications, see Chapter 2, “GS/OS and
Its Environment.”

Parameters
Offset No. Size and type
l$00 pCount —| — Word INPUT value (minimum = 0)
sz .
- pathname - 1 Longword INPUT pointer
WL flags 3 Word INPUT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 0; maximum is 2.
pathname Longword input pointer: Points to a GS/OS string representing the pathname of

the program to run next. If this parameter is ull or the pathname itself has
length 0, GS/OS chooses the next application, as described in Chapter 2.

Chapter 7: GS/OS Call Reference 163

GY/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

flags Word input value: Two Boolean flags that give information about how to handle
the program executing the Quit call, as follows:

[15] 14

Place state information about the quitting
program on the Quit refurn stack so that
it will be autormatically restarted later = 1

Do not stack the quitting program = 0

The quitting program is capable of being =

restarted from its dormant memory image = 1
The quitting program must be reloaded from
disk if it is restarted = 0 reserved —

Comments Only one error condition causes the Quit call to return to the calling application:
error $07 (GS/OS busy). All other errors are managed within the GS/OS program
dispatcher.

Errors
$07 GS/OS busy

164 Volume 1: Applications and GS/0S Part I: The Application Level

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2012

Description

Read

This function attempts to transfer the number of bytes given by the
requestCount parameter, starting at the current mark, from the file specified
by the re£Num parameter into the buffer pointed to by the dataBuffer
parameter. The function updates the file mark to reflect the new file position
after the read.

Because of three situations that can cause the Read function to transfer fewer
than the requested number of bytes, the function returns the actual number of
bytes transferred in the transferCount parameter, as follows:

e If GS/OS reaches the end of file before transferring the number of bytes
specified in requestCount, it stops reading and sets transferCount
to the number of bytes actually read.

» If newline mode is enabled and a newline character is encountered before
the requested number of bytes have been read, GS/OS stops the transfer
and sets t rans ferCount to the number of bytes actally read, including
the newline character.

s If the device is a character device and no-wait mode is enabled, the call
returns immediately with t ransferCount indicating the number of
characters returned.

Chapter 7: GS/OS Call Reference 165

GS/0S Reference (Volume 1) Drafl 3 (APDA) 8/31/88

Parameters

pCount

refNum

dataBuffer

requestCount
tranaferCount

cachePriority

Offset No. Size and type
%00 pCount — ~ Word INPUT value (minimum = 4)
2| refNum - 1 Word INPUT value
$04] -
= dataBuffer - 2 Longword INPUT pointer
$8) -

= requestCount] 3 Longword INPUT value

[transferCount - 4 Longword RESULT value

$10 .. cachePriocrity - 5 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 4; maximum is 5.

Word input value: The identifying number assigned to the file by the Open call.

Longword input pointer: Points to a memory area large enough to hold the
requested data.

Longword input value: The number of bytes to be read.
Longword result value: The number of bytes actually read.

Wonrd input value: Specifies whether or not disk blocks handled by the read call
are candidates for caching, as follows:

$0000 do not cache blocks involved in this read
$0001 cache blocks involved in this read if possible

166 Volume 1: Applications and GS/OS Part I: The Application Level

GS/0S Reference (Volume 1)

Errors

$27
$2E
$43

$4E

Draft 3 (APDA)
/O error
disk switched
invalid reference number

eof encountered
access not allowed

Chapter 7: G§/0S Call Reference

167

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA)
S201F SessionStatus
Description This call returns a value that tells whether or not a write-deferral session is in
progress. See also BeginSession and EndSession in this chapter.
Parameters
Offset No. Size and cype
®oL pCount - — Word INPUT value (minimum = 1)
020 sratus 4 1 Word RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.
- status Word result value: A value that tells whether or not a write-deferral session is in
progress.
$0000 no session in progress
$0001 session in progress
Errors (none)

168 Volume 1: Applications and GS/0S Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA)
$2018 SetEOF
Description This call sets the logical size of an open file to a specified value which may be

Parameters

pCount

refNum

base

displacement

either larger or smaller than the current file size. The EOF value cannot be
changed unless the file is write-enabled. If the specified EOF is less than the
current EOF, the system may—but need not—free blocks that are no longer
needed to represent the file. See also the GetEOF call.

Offset No. Size and type

¥l peount - _ Word INPUT value (minimum = 3)
$0z | refNum - 1 Word INPUT value
$o4f base - 2 Word INPUT value
$061_ _
b= displacement - 3 Longword INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 3,

Word input value: The identifying number assigned to the file by the Open call.

Word input value: A value that tells how to interpret the displacement
parameter.

$0000 set EOF equal to displacement

$0001 set EOF equal to old EOF minus displacement

$0002 set EOF equal to file mark plus displacement

$0003 set EOF equal to file mark minus displacement

Longword input value: Used to compute the new value of the eof as described
for the base parameter.

Chapter 7: GS/OS Call Reference 169

8/31/88

GS/OS Reference (Volume 1)

Errors

$27
$2B
$43
$4D
$4E
$5A

Draft 3 (APDA)

1/O error

write-protected disk
invalid reference number
position out of range

file not write-enabled
block number out of range

170 Volume 1: Applications and GS/OS

Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2005

Description

SetFilelnfo

This call sets certain file attributes of an existing open or closed block file. This
call immediately modifies the file information in the file's directory entry
whether the file is open or closed. It does not affect the file information seen
by previously open access paths to the same file.

Important A GetFileInfo call following a SetFileInfo call on an open file may
not return the values set by the SetFileInfo call. To guarantee
recording of the attributes specified in a SetFileInfo call, you must
first close the file.

See also the GetFilelnfo call.

Chapter 7: GS/OS Call Reference 171

GS/0S Reference (Volume 1) Draft 3 (APDA) ' 8/31/88

Parameters
Offset No. Size and type
$00|, pCount — — Word INPUT valve (minimum = 2)
$oz| _
- pathname - 1 Longword INPUT pointer
506 access - 2 Word INPUT value
$8_ rileType | 3 Word INPUT value
$A| &
e auxType - 4 Longword RESULT value
WEL <null> o 5 Word INPUT value
$10[-
L. createDateTima | ¢ Double longword INPUT value

$18

172 Volume 1: Applications and GS/0S Part [; The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA)
$18)_ i
. modDateTime .. 7 Double longword INPUT value
m pracss —
~ optionlList 4 g [ongword INPUT pointer
$24|]
[<aull> - 9 Longword INPUT value
§28
- -| 10 Longword INPUT value
- <null> -
o -1 11 Longword INPUT value
L <null> -
$30
B 12 Longword INPUT value
e <null> —

pCount

pathname

access

fileType

auxType

<null>

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 12,

Longword input pointer: Points to a GS/OS string representing the pathname of
the file whose file information is to be set.

Word input value: Value for the file’s access attribute, which is described under
the Create call.

Word input value: Value for the file’s file type attribute.
Longword result value: Value of the file’s auxiliary type attribute.

Word input value: This parameter is unused and must be set to zero.

Chapter 7: GS/OS Call Reference 173

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APD4) " 8/31/88

createDateTime Double longword input value: Value of the file’s creation date and time
attributes. If the value of this parameter is zero, GS/OS does not change the
creation date and time. The format of the date and time is shown in Table 4-1 in

Chapter 4.

modDateTime Double longword input value: Value of the file's modification date and time
attributes. If the value of this entire parameter is zero, GS/OS sets the
modification date and time with the current system clock value. The format of
the date and time is shown in Table 4-1 in Chapter 4.

optionList Longword input pointer: Points to a GS/OS result buffer to which FST-specific

information can be returned.
<null> Longword input value: This parameter is unused and must be set to zero.
<null> Longword input value: This parameter is unused and must be set to zero.
<null> Longword input value: This parameter is unused and must be set to zero.
<null> Longword input value: This parameter is unused and must be set to zero.

Errors

$10 device not found

$27 1/Oemor

$2B write-protected disk

$40 invalid pathname syntax
$44 path not found

$45 volume not found

$46 file not found

$4A version efror

$4B unsupported storage type
$4E access: file not destroy-enabled
$52 unsuppored volume type
$53 invalid parameter

$58 not a block device

174 Volume 1: Applications and GS/0S Part [: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$201A

Description

Parameters

pCount

level

Errors

SetLevel

This function sets the current value of the’systern file level,

Whenever a file is opened, GS/OS assigns it a file level equal to the current
system file level. A Close call with a reference number of $0000 closes all files
with file level values at or above the current system file level. Similarly, a Flush call
with reference number of $0000 flushes all files with file level values at or above
the current system file level. See also the Getlevel call.

Offset No. Size and type
$00 pCount o _ Word INPUT value (minimum = 1)
$02 | level 1 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: The new value of the system file level. Must be in the range
$0000-500FF.

$59 invalid file level

Chapter 7: GS/OS Call Reference 175

GY/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2016

Description

Parameters

pCount

refNum

base

displacement

SetMark

This call sets the file mark (the position from which the next byte will be read or
to which the next byte will be written) to a specified value. The value can never
exceed EQF, the current size of the file. See also the GetMark call.

Offset No. Size and type
$00|_ pCount ~ — Word INPUT value (minimum = 3)
2| refNum < 1 Word INPUT value
L base < 2 Word INPUT value
$06 4
~ displacement - 3 [ongword INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 3. '

Word input value: The identifying number assigned to the file by the Open call.

Word input value: A value that tells how to interpret the displacement
parameter, as follows:

$0000 set mark equal to displacement

$0001 set mark equal to EOF minus displacement
$0002 set mark equal to old mark plus displacement
$0003 set mark equal to old mark minus displacement

Longword input value: A value used to compute the new value for the file mark,
as described for the base parameter.

176 Volume 1: Applications and G5/OS : Part I: The Application Level

GS/0S Reference (Volume 1)

Errors

$27
$43
$4D
$5A

Draft 3 (APDA)

1/0 error

invalid reference number
position out of range
block number out of range

Chapter 7: GS/OS Call Reference

177

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2009

Description

Parameters

pCount

prefixNum

prefix

SetPrefix

This call sets one of the numbered pathname prefixes to a specified value. The
input to this call can be any of the following pathnames:

m 2 full pathname

® 2 partial pathname beginning with a numeric prefix designator

m 2 partial pathname beginning with the special prefix designator “*/
® 2 partial pathname without an initial prefix designator

The SetPrefix call is unusual in the way it treats partial pathnames without initial
prefix designators. Normally, GS/OS uses the prefix 0/ in the absence of an
explicit designator. However, only in the SetPrefix call, it uses the prefix n/
where nis the value of the prefixnNum parameter described below. See also the
GetPrefix call.

Offset No. S$ize and type
WL poount o — Word INPUT value (minimum = 2)
$2| prefixNum o | Word INPUT value
S04 -
- prefix - 2 Longword INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Word input value: A prefix number that specifies the prefix to be set.

Longword input pointer: Points to a GS/OS string representing the pathname to
which the prefix is to be set. '

178 Volume 1: Applications and GS/0S Part I The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Comments Specifying a pathname with length 0 or whose syntax is illegal sets the
designated prefix to null.

GS/OS does not check to make sure that the designated prefix comesponds to
an existing subdirectory or file.

The boot volume prefix (*/) cannot be changed using this call.

Errors

$40 invalid pathname syntax
$53 invalid parameter

Chapter 7: G§/OS Call Reference 179

GS/0S Reference (Volume 1) Draft 3 (APDA) &/31/88

$200C

Description

Parameters

pCount

preferences

Comments

SetSysPrefs

This call sets the value of the global system preferences. The value of system
preferences affects the behavior of some system calls, See also the GetSysPrefs

Offset No. Size and type

$00§ pCount -+ — Word INPUT value (minimum = 1)

02| preferences — 1| Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1. -

Word input value: Value of system preferences, as follows:

Siapzizlilo]
J

display volume mount dialog = 1 J
do not display volume mount dialog = 0 reserved (retumed 25 0)

Under certain circumstances, parts of the system call the system’s Mount facility
to display a dialog asking the user to mount a specified volume. This can
happen when the call contains a reference number parameter or a pathname
parameter,

» TFor those calls that specify a reference number parameter (for example
Read, Write, Close), Mount always displays the dialog.

180 Volume 1: Applications and GS/0S Part I: The Application Level

GS/0S Reference (Volume 1)

Errors

Draft 3 (APDA)

For those calls that specify a pathname parameter, the Mount facility
displays the dialog only if system preference bit 15 is 1. Otherwise, Mount
returns the CANCEL retum code which normally causes the system to return a
volume-not-found error. Thus, an application can be written to either
handle volume-not-found errors itself (system-preference bit 15 = 0) or to
allow the system to automatically display mount dialogs (bit 15 = 1), except
for the situation where the System Loader is attempting to load a dynamic
segment.

For those calls that result in the System Loader attempting to load a
dynamic segment, the System Loader always sets the system preference bit
(bit 15) to 1, and then resets it to its original value when the segment has
been loaded. Thus, the Mount dialog box is always displayed when a
dynamic segment is requested.

{none)

Chapter 7: GS/OS Call Reference 181

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA)
$2032 UnbindInt
Description This function removes a specified interrupt handler from the interrupt vector

Parameters

pCount

intNum

Errors

table.

For a complete description of the GS/OS interrupt handling subsystem, see
Volume 2. See also the BindInt call.

Offset No. Size and type
$00| pCount — Word INPUT value (minimum = 1)
$0z) intHum - 1 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: Interrupt identification number of the binding between
interrupt source and interrupt handler that is to be undone.

$53 parameter out of range

182 Volume 1: Applications and GS/OS Part I: The Application Level

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88
$2008 Volume
Description Given the name of 2 block device, this call returns the name of the volume
mounted in the device, along with other information about the volume.
Parameters
Offset No. Size and type
$01_ pCount -J — Word INPUT value (minimum = 2)
02 -
~ devName - 1 Longword INPUT pointer
w e o
— volName o 7 [ongword INPUT pointer
m - —
. totalBlocks | 3 Longword RESULT value
L -
soE [i
— freeBlocks — 4 [5ngword RESULT value
ML filesysID o 5 wod RESULT value
ML blocksize o ¢ word RESULT vaue
pCount Word input value: The number of parameters in this parameter block. Minimum
is 2: maximum is 6.
devName Longword input pointer: Points to a GS/OS input string structure containing the
name of a block device.
volName Longword input pointer: Points to 2 GS§/OS output string structure where GS/OS
returns the volume name of the volume mounted in the device.
totalBlocks Longword result value: Total number of blocks contained on the volume.

Chapter 7: G§/OS Call Reference 183

GS/0S Reference (Volume 1)

freeBlocks

fileSysID

Draft 3 (APDA)

follows:

$0000
$0001
$0002
$0003
$0004
$0005
$0006

blockSize

Errors

$10
$11
$27
$28
$2E
$45
$4A
$52
$53
$57
$58

reserved
ProDQS/SOS
DOS 3.3
DOS3.20r31
Apple T Pascal
Macintosh (MFS)
Macintosh (HFS)

device not found
invalid device request
/O error

no device connected
disk switched
volume not found
version error
unsupported volume type
invalid parameter
duplicate volume

not a block device

184 Volume 1. Applications and GS/OS

$0007
$0008
$0009
$000A
$000B
$000C
$000D-$FFFF

Word result value: The size, in bytes, of a block.

Longword result value: The number of free (unallocated) blocks on the volume.

Word result value: Identifies the file system contained on the volume, as

LISA

Apple CP/M
reserved
MS/DOS
High Sierra
ISO 9660
reserved

Part I: The Application Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2013

Description

Parameters

pCount

refNum

dataBuffer

Write

This call attempits to transfer the number of bytes specified by requestCount
from the caller’s buffer to the file specified by the re £Num parameter starting at
the current file mark.

The function retumns the number of bytes actually transferred. The function
updates the file mark to indicate the new file position and extends the EOF, if
necessary, to accommodate the new data,

Offset No. Size and type
$0o0 pCount —~ _ Word INPUT value (minimum = 4)
0z refNum - 1 Word INPUT value
$04[-
— dataBuffer - 3 Longword INPUT pointer
$08

~ TrequestCount — 3 Longword INPUT value

L. transferCount _ 4 Longword RESULT value

10| cachePriority - 5 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 4; maximum is 5.

Word input value: The identifying number assigned to the file by the Open call.

Longword input pointer: Points to the area of memory containing the data to
be written to the file.

Chapter 7: GS/OS Call Reference 185

GS/OS Reference (Volume 1) ‘ Draft 3 (APDA) 8/31/88

requestCount Longword input value: The number of bytes to write.
transferCount Longword result value: The number of bytes actually written.

cachePriority Word input value: Specifies whether or not disk blocks handled by the call are
candidates for caching, as follows:

$0000 do not cache blocks involved in this call
$0001 cache blocks involved in this call if possible

Errors
$27 /O error
$2B write-protected disk
$2E disk switched
$43 invalid reference number
$48 volume full

$4E access not allowed
$5A block number out of range

186 Volume 1: Applications and GS/0S Part I: The Application Level

GS/OS Reference (Volume 1)

Draft 2

Part I The File System Level

Volume 1

Volume 2

Appendixes

ProDOS 16 calls
(Appendix &)

-\.____.-
FST-specific
information on
ProDOS 16 calls

(Appendix B)
TS

Appendixes

187

8/31/88

GS/0S Reference (Volume 1) Draft 2 8/31/88

188 Volume 1: Applications and GS/OS Part II: The File System Level

GS/0S Reference (Volume 1) Draft 3 (APDA)

Chapter 8

File System Translators

This chapter describes how GS/OS is able to communicate with many different
types of files and devices, in a manner that is transparent to the application.
The operating system does this by supporting

» 2 generic GS/OS file interface (the abstract file system, described in
Chapter 1) with which applications communicate

* individual file system translators (FSTs) that act as intermediaries between
the GS/OS file interface and specific file systems and devices

This chapter discusses FSTs in general; the following chapters in Part II describe
the individual FSTs suppplied with GS/OS.

Note: The file system translators in GS/OS handle both standard GS/OS
(class 1) calls and ProDOS 16-compatible (class 0) calls. Only the
standard GS/OS calls are described in this chapter and the rest of
Part II; for information on how FSTs handle ProDOS 16-style calls,
see Appendix B of this volume.

Chapter & File System Translators 189

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

The FST Concept

Every file system, such as ProDOS or Macintosh HFS, stores directories, subdirectories, files, and
possibly other data structures on disk volumes in a format unique to that file system. Furthermore,
each file system provides a slightly different set of system calls for accessing its files. The uniqueness
of these data structures and system calls makes it very difficult for an application program that uses
one file system to also access a volume created under another file system. Thus, application
programs are nearly always written to run with one particular file system.

A file system translator (FST) is a GS/OS software module that accepts GS/OS calls made by
applications and translates those calls into a form acceptable to the particular file system the FST
supports. Likewise, the FST takes data read from the device and converts it to a form consistent
with the generic GS/OS file interface (the abstract file system, described in Chapter 1). This makes it
possible to write an application in which the same set of file I/O calls can access files on volumes
created by any file system for which there is an FST. Application programs can thus transparently
access files from any file system, using standard GS/OS system calls.

Note: FSTs provide only the file access capabilities of GS/OS (see Chapter 4), which are similar
to those of ProDOS 16. Because all FSTs use the same standard set of calls, they cannot
implement all access capabilities and all calls for all file systems. Moreover, some FSTs
cannot even support all of the capabilities provided by GS/OS. The High Sierra FST, for
example, does not permit calls that write to disk.

190 Volume 1: Applications and GS/OS Part II: The File System Level

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Figure 8-1 The file system level in GS/OS§

Application program

GS/0S Call Manager

Device
Manager

J

Block

device device device device
driver . driver driver driver
Block Block Character Character

Figure 8-1 shows the conceptual position of FSTs in the GS/OS hierarchy. They make up the file
system level, which mediates between the GS/OS call dispatcher at the application level and
individual device drivers at the device level. When an FST receives a call, the call has been
preprocessed by the GS/0S call dispatcher. The FST either processes the call and returns successfully
or encounters an error condition and returns unsuccessfully with an error code. FSTs call the Device

" Dispatcher, which pedforms the actual I/O with calls to the device drivers. In addition, FSTs depend
on various services provided by the call manager, such as pathname prefix management and error
handling.

Chapter & File System Translators 191

GS/0S Reference (Volume 1) Draft 3 (APDA)

To GS/0S, all FSTs are equal. Any FST can be removed from the system by the user, and any FST can
be added. The user adds or removes FSTs from GS/OS by moving FST files into or out of the
subdirectory SYSTEM/FSTS on the boot disk. See Appendix D.

Calls handled by FSTs

GS/0S calls can be classified by the part of the operating system that handles them. File calls are
handled by FSTs, device calls are handled by the the Device Manager; and other calls are handled by
the GS/OS call manager itself. Table 8-1 lists all the GS/OS calls handled by FSTs.

Table 81 GS/0S calls handled by FSTs

Call no. Call name Call no. Call name
$2001 Create $2015 Flush

$2002 Destroy $2016 SetMark
$2004 ChangePath $2017 GetMark
$2005 SetFileInfo $2018 SetEQF
$2006 GetFileInfo $2019 GetEQF
$2008 Volume $201C GetDirEntry
$200B ClearBackupBit $2020 GetDevNum
$2010 Open $2024 Format
$2012 Read $2025 EraseDisk
$2013 Write $2033 FSTSpecific
$2014 Close

As an application writer, you can expect that every FST will in some way support each of the calls
listed in Table 8-1. Depending on the file system accessed, the call may be meaningful, it may do
nothing and return no error, or it may do nothing and return an error. See the description of each FST
for details. '

All of the calls listed in table 8-1 are described in Chapter 7 of this volume, except for FSTSpecific.
FSTSpecific is a call whose function is completely definable by each FST. For example, the High
Sierra FST (see Chapter 10) uses the call to control file type emulation. FSTSpecific is documented
individually for each FST that uses it, in the chapter that describes the FST.

192 Volume 1: Applications and GS/OS Part II: The File System Level

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

Programming for multiple file systems

When you first write an application for GS/OS, it may seem strange not to know what file system your
own application’s files will be stored on. In reality, it makes your job simpler, but you may have to be
careful in the beginning to avoid making some common incorrect assumptions.

Don’t assume file characteristics

File-system independence is a comnerstone of the GS/OS design. To be most useful and efficient, and
to avoid file-system-specific problems, your application should also be as file-system independent as
- possible.

In general, you will be working with file information in the format returned by the GS/OS call
GetFileInfo, rather than in the format of any real file system. For example, don't assume file-typing
conventions other than the file type/auxiliary type provided in the GS/OS abstract file system, it is
the job of each FST to translate that information into the file-type format for each file system.

Remember that different file systems use different block sizes. Don't simply assume that a block is
512 (or 256, or 520, or 1024) bytes; if you need to know the exact size of a block on a volume, use the
GS/0S Volume call to the device holding that volume.

In manipulating filenames and pathnames, don’t assume any fixed limit on name length, and don't
assume other restrictions such as a limited ASCII character set. Always allow for the GS/OS pathname
syntax: both colons and slashes are valid separators, and colons can only be separators. Detailed
filename and pathname rules are presented in Chapter 1 of this volume.

In general, go through the GS/OS file system level (by making standard GS/OS calls) as much as
possible, rather than performing file-system-specific or device-specific operations which may require
the presence of a particular FST, device driver, or device. Use GS/OS's file-system independence and
device independence to your own advaniage.

Chapiter 8: File System Translators 193

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Use GetDirEntry

If your program needs to catalog a volume, don't read directory files directly—that is, don't use the
Read call to find out what is in a directory. GetDirEntry gives you the information in a standard
format for all file systems, whereas with Read you need to know the exact format of a directory file
for the specific file system you are accessing. And, because the files of interest may be in any of a
number of file systems, it is far simpler to use GetDirEntry and let GS/OS take care of the details for
you.

Keep rebuilding your device list

Some applications construct a list of online devices only when they start up. This works fine if the list
never changes, but under GS/OS new devices can be added dynamically during execution. Therefore,
instead of constructing your own device list, scan the device list each time you need to use it. For
example, use repeated Dinfo or Volume calls with consecutive device numbers, until an error is
returned (such as invalid device number) signals that there are no more on-line devices.

Handle errors properly

Your application’s normal error-handling routines may be adequate for processing errors under GS/OS,
as long as you remember to always check for errors. A typical file-system-specific error might occur,
for example, from attempting to save a file from a file system that normally allows saving, such as
ProDOS, to a High Sierra disc. As long as your program is prepared to receive and act on any file error
that GS/OS can generate, there should be no problem. Remember also that, because different file
systems have different size limits on parameters, error $53 (parameter out of range) might be a very
common occurTence.

On the other hand, you may needlessly restrict your application’s capabilities if you assume an error
will occur when it may not. For example, if your program is written assuming a read-only file system, it
may unnecessarily prevent a user from saving a file to a different file system that is not read-only. In
general, it is probably better to let GS§/OS decide what file permissions and file calls are appropriate
and then act on the returned errors if necessary.

Furthermore, what you do when an error occurs can be significant. For example, if a user attempts to
save a very large file to a volume whose file system does not support the size of that file, your
application should put up a Standard File dialog box to let the user save the data to another file
system, rather than simply abort the save and lose the data.

194 Volume 1: Applications and GS/OS Part II: The File System Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Remember also that GS/OS allows access to character devices with file calls. Therefore, calls such as
Read or SetMark may be applied to devices (like a printer) for which they have no meaning. Thus
your error-handling should allow for not only different file systems, but completely different devices
as well. In fact, it is common for character devices to return status information with error codes; if
your file-access routines do not check for typical character-device errors, you may lose critical
information.

FSTs and file-access optimization

The file system translators written for GS/OS are designed to make file reads and writes as fast and
efficient as possible. You may be able to read a file under GS/OS faster than you can under the file's
native operating system. Furthermore, the disk caching available under GS/OS (see Chapter 11 of
Volume 2) makes reading faster still,

As much as possible, consecutive file blocks are written to consecutive sectors on disk for fast
access. More importantly, though, FSTs are optimized for large, multi-block transfers; for the
application writer, this means that it is best to read and write data in chunks as large as possible. If
you are interested in speed, try also to avoid Newline read mode (which forces every character to be
examined in turn) and the Flush call (which is slowed by the careful checking and updating it must
perform).

For the fastest possible multiblock copying, use the GS/OS call BeginSession to temporarily defer
block writes while copying, and then EndSession to flush the cache when you are done copying.
BeginSession and EndSession are most useful when doing multiple-file copies, because directory
blocks are not written to disk as every file is copied. See the descriptions of BeginSession,
EndSession and SessionStatus in Chapter 7.

Present and future FSTs

GS/0S applications can read files from any file system for which there is an existing, installed GS/OS
file system translator. Currendy, Apple defines the following file systems, each specified by its own
file system ID. This, then, is the total list of potential FSTs:

Chapter 8: File System Translators 195

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

File system File system

ID Description ID Description
$0000 reserved $0007 LISA

$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS 3.2 0r3.1 $000A MS/DOS
$0004 Apple 1I Pascal $000B High Sierra
$0005 Macintosh (MFS) $000C 1SO 9660
$0006 Macintosh (HFS) $000D-$FFFF reserved

Also, as new file systems are defined, Apple assigns them unique file system IDs. In theory, then, all of
the above file systems (and any future systems) can be accessed through GS/OS once FSTs are written
for them. In practice, Apple will create new FSTs as dictated by demand and time constraints. The
currently existing FSTs are described individually in subsequent chapters. Future releases of GS/OS
will include file system translators for other file systems.

Disk initia]ization and FSTs

Disk initialization is a complex issue under an operating system that supports multiple file formats
and many different types of devices.

For example, a system could be configured with several FSTs. A user might wish to write any one of
the file formats on a 3.5-inch disk or a 5.25-inch disk. Or, if a single 3.5-inch drive supports multiple
low-level formatting styles, a formatting routine might select different encoding schemes for
different file systems.

The Initialization Manager is a GS/OS routine that puts a dialog box on the screen, allowing the user
to select among valid formatting choices (given the current system configuration of FSTs and device
drivers). Once the user has made 2 selection, the appropriate FST then performs the format call and
writes the new file system.

Your application can use either the of the GS/OS calls Format or EraseDisk to initialize disks. The
format call physically formats the disk and writes out the file system; the EraseDisk call simply writes
out a new directory without formatting the disk. Either call causes the initialization dialog box to
appear, after the user makes the desired choices, the appropriate FST proceeds with the formatting.
For both calls, the return parameter £ilesys1D indicates which file system (if any) the user chose.
Format and EraseDisk are described in more detail in Chapter 7 of this volume.

196 Volume 1: Applications and GS/OS Part II: The File System Level

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Use of the Initialization Manager adds a user dialog to the initialization process. Because the
Initialization Manager dialog box allows the user to cancel, it is probably not necessary for your
application also to make the user confirm that a format or erasure is desired.

Chapter 8: File System Translators 197

GS/OS Reference (Volume 1) Draft 3 (APDA)

Chapter 9

The ProDOS FST

The ProDOS file system translator (ProDQS FST) provides a transparent
application interface to the ProDOS file system. The ProDOS FST can access
any block device whose GS/OS device driver can perform 512-byte block reads
and writes.

Note: This chapter describes only standard GS/OS (class 1) calls; for
descriptions of how the ProDOS FST handles equivalent ProDOS 16
(class 0) calls, see Appendix B.

Chapter 9: The ProDOSFST 199

8/31/88

GS/OS Reference (Volume 1) " Draft 3 (APDA) 8/31/88

The ProDOS file system

The ProDOS file system is the native file system for most of the Apple TI family of computers. All
applications that run under either ProDOS 8 or ProDOS 16 create and read ProDOS files (if they
create files at all).

The ProDOS file system is characterized by a hierarchical structure, 512-byte logical blocks, 16 MB
maximum file size and 32 MB maximum volume size. ProDOS files are either standard (sequential)
files or directory files; there are no random-access, record-based file types recognized as such by
ProDOS.

ProDOS filenames can be up to 15 characters long, consisting of the numerals 0~9, the uppercase
letters A-Z, and the period (.), in any combination (except that the first character must be a letter).
A PioDOS volume name is like a filename but is preceded by a slash (/) or a colon. A ProDOS
pathname consists of a sequence of slash-separated filenames, starting with a volume name.

The ProDOS file system is described in the ProDOS 8 Technical Reference Manual and the Apple ligs
ProDQS 16 Reference.

GS/0S and the ProDQS FST

The GS/OS abstract file system described in Chapter 1 is closely related to the ProDOS file system,
Therefore, the ProDOS file system duplicates many features of the abstract file system exactly, and
many GS/OS calls to the ProDOS FST behave exactly as described in Chapter 1. Here are the principal
differences:

* ProDOS 8 and ProDOS 16 do not create or recognize extended files, equivalent to the resource forks
of Macintosh files. However, the ProDOS FST under GS/OS can store and retrieve extended files in
ProDOS format, by defining 2 new storage type ($0005). When a file is stored in this format, a GS/OS
application can retrieve its resource fork and its data fork; applications under ProDOS 8 and ProDOS
16, however, cannot access the file at all; attempts to open the file result in error $4B (unsupported
storage type).

* Under GS/0OS, a ProDOS pathname can have either slashes (/) or colons (;) as filename separators. The
GS/0S Call Manager converts both types of separators to an internal format before passing on the
pathname to the ProDOS FST.

20 Volume 1: Applications and GS/OS Part 11: The File System Level

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

¢ Because ProDOS files and volumes have maximum sizes smaller than those supported by GS/OS,
parameters related to size (such as EOF, position, blockCount, requestCount, and
transferCount) may not be accepted by the ProDOS FST if they are too large. In such cases the
ProDOS FST returns error $53 (parameter out of range).

» Because several file-entry fields in ProDOS directories on disk are smaller than their equivalent
parameters in the GS/OS calls that access file entries, the high-order parts of some of those
parameters are always zero when a file entry is read, and must also be zero when a file entry is stored.
See the individuai call descriptions under “Calls to the ProDOS FST.”

Calls to the ProDOS FST

This section describes how the ProDOS FST handles certain GS/OS calls differently from the general
procedures described in Chapter 7. Calls not listed in this section are handled exactly as described in
Chapter 7.

GetDirEntry ($201C)

GetDirEntry returns file information contained in a volume directory or subdirectory entry. Under the
ProDOS FST, the following fields have timitations different from the general values permitted by
GS/08:

fileType Only the low-order byte contains information.

EOF Only the three low-order bytes contain information.
blockCount Only the two low-order bytes contain information.
auxType Only the two low-order bytes contain information.
optionList Not used.

resourceEOF Only the three low-order bytes contain information.
resourceBlockCount Only the two low-order bytes contain information,

Chapter 9: The ProDOS FST 201

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

GetFileInfo ($2006)

GetFilelnfo returns certain file attributes for an existing block file. Under the ProDOS FST, the
following fields have limitations different from the general values permitted by GS/OS:

fileType Only the low-order byte contains information.
auxType Only the two low-order bytes contain information.

storageType Only the low nibble of the low byte contains information.

optionList Not used. .

EOF Only the three low-order bytes contain information.
blocksUsed Only the two low-order bytes contain information.
SetFileInfo ($2005)

SetFileInfo assigns certain file attributes to an existing block file. Under the ProDOS FST, the
following fields have limitations different from the general values permitted by GS/OS:

fileType Only the low-order byte can be nonzero; otherwise, error $53 (parameter out of
range) is returned.

auxType Only the two low-order bytes can be nonzero; otherwise, error $53 (parameter
out of range) is returned.

optionlist Not used.

22 Volume 1: Applications and GS/0S Part II: The File System Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Chapter 10 The High Sierra FST

This chapter describes the GS/OS High Sierra file system translator (High Sierra
FST). The High Sierra FST provides transparent application access to compact
read-only optical discs (CD-ROM) and other media upon which High Sierra or
ISO 9660-formatted files may reside.

'The High Sierra and 1SO 9660 file formats are not documented here. See the
publications listed under “CD-ROM and the High Siefra/ISO 9660 Formats” for
more information. For information on the Apple extensions to ISO 9660, see
Appendix E.

Note: This chapter describes only standard GS/OS calls; for descriptions

of how the High Sierra FST handles equivalent GS/OS ProDOS 16-
compatible calls, see Appendix B.

Chapter 10: The High Siema FST 23

GS/0S Reference (Volume 1) Draft 3 (APDA)

CD-ROM and the High Sierra/ISO 9660 formats

Compact discs provide a new and promising method of information storage and retrieval. Compact
discs can hold vast amounts of information on 2 medium that is durable and inexpensive to
manufacture. The information can be played back using existing, well-established technology based
on CD music players.

A single CD-ROM disc holds about 550 megabytes of information. This large capacity is CD-ROM's
main advantage, but it comes at a price. Compared to magnetic disk drives, CD-ROM players have
much slower access times; it can take up to one second to find a byte of information on a CD-ROM
disc, compared to less than a tenth of a second on a large-capacity hard disk.

CD-ROM's biggest disadvantage, however, is that—at present—its optical storage technology is
read-only. Users can read from a CD, but they cannot write to it (hence the name CD-ROM).

The High Sierra Group format (named for the location of an ad-hoc committee’s original meeting
place) and the ISO 9660 format (the Intemational Standards Organization’s version of High Sierra)
are two nearly identical CD-ROM file formats that support the large files a compact disc can hold.
They also simultaneously attempt to minimize the penalties caused by slow access. Here are some of
the highlights of the formats that are relevant to GS/OS:

= Logical sectors contain 2048 bytes (2 KB) of data. A logical sector can contain 1, 2, or 4 logical
blocks.

8/31/88

* Files can contain data in any form or for any purpose; High Sierra/ISO 9660 specifies nothing about

file contents.
e File identifiers can consist of three parts: a filename, a filename extension, and a version number.

Directories have the filename part only. Nondirectory files under High Sierra need one or more of the

three parts (except that a file cannot be identified by a version number alone). Under ISO 9660, 2
nondirectory file must inctude all three parts.

The filename is 0 or more characters (uppercase A-Z, digits 0-9, or underscore); it must be followed
by a period. The filename extension is O or more characters, and it must be followed by a semicolon.

The version number is one to six digits. The sum of the filename and extension must be between 2

and 31 characters, including the period. Under ISO 9660, then, a minimum legal file name is something

like *A.;1" or “.A;1",

24 Volume 1: Applications and GS/OS Part [I: The File System Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Note: See the section “Apple Extensions to ISO 9660,” later in this chapter, for information on
how to devise High Sierra/ISO 9660 filenames that are transformable to other file
systems with different conventions.

* High Sierra/ISO 9660 is hierarchical; files may be placed in subdirectories. To speed access to files
deep within subdirectories, there is a Path Table that can be loaded into RAM for fast searching; it is
an index to all subdirectories on disc. In addition, directory entries are kept small (and therefore fast
to search) by putting auxiliary directory information—such as creation dates and access
permissions—into extended attribute records (XARs), stored separately.

* Both ISO 9660 and High Sierra support associated files (equivalent to resource forks of GS/OS
extended files); however, the High Sierra FST supports associated files for 1SO 9660-formatted files
only.

* High Sierra/ISO 9660 supports hidden files.

The High Sierra/ISO 9660 format from which Apple’s High Sierra FST was designed is defined in these

two documents:

o Working Paper for Information Processing—Volume and File Structure of Compact Read-Only Optical
Discs for Information Interchange, published by the CDROM Ad Hoc Advisory Committee. May 28,
1986, This is the original High Sierra Group proposal.

» ISO 9660: Information Porcessing— Volume and File Siructure of CD-ROM for Information
Interchange, first edition, 1988, This is the ISO 9660 standard, a slightly modified version of the High
Sierra Group format.

Non-CD-ROM implementation: Although High Sierma and ISO 9660 were developed specifically for
compact disc storage, nothing in either format requires the files to be on CD-ROM. It is
possible to have High Sierra/ISO 9660 files on essentially any storage medium that can
be formatted to accept them.

Limitations of the High Sierra FST

In translating file calls back and forth between CD-ROM drivers and GS/OS, the High Sierra FST
cannot support all aspects of the High Sierra/ISO 9660 file system, nor can it meaningfully implement
all GS/0S application calls. The High Sierra FST provided by Apple has the following features:

* It supports associated files (GS/OS extended files) for ISO 9660-formatted discs only.

It permits only a single volume descriptor—the Standard File Structure Volume Descriptor— per
physical volume.

Chapter 10: The High Sierra FST 205

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

* It does not support multi-volume sets (named and logically linked groups of volumes occupying more
than one disc).

¢ It does not support multi-extent files (files occupying more than one disc).

« It does not support random-access, record-based files; that is, it can read such files as streams of
bytes, but it cannot access individual records directly

o It maps the existence bit of the file flags into the invisibility bit of the GS/OS access word.
e Tt ignores the file permissions field in the extended attribute record.
* It is a read-only implementation.

This last limitation imposes strong restrictions on GS/OS system calls that write data to the disc:
those calls always return a2 write-protect error, after identifying that the file or device requested is
present and is in High Siera or ISO 9660 format.

In accessing files on a CD-ROM disc, remember that, under High Sierra or ISO 9660, block size is not
fixed across volumes. If necessary, you can use the GS/OS Volume call to get the block size for a
‘particular volume. Block counts returned by other calls are always in terms of blocks of the size
returned by the Voiume cail.

An associated file in ISO 9660 is analogous to the resource fork of a GS/OS extended file. If an ISO
9660 file named MyFile has an associated file, the associated file has these characteristics:

e It is also named MyFile (its file identifier is identical).

* Tts associated bit (in the file flags byte of the directory record) is set.

* Its directory entry resides immediately before the other MyFile’s directory entry.

Thus, GS/OS refers to the first MyFile (whose associated bit is set) as the resource fork of the

extended file MyFile, and the immediately following MyFile (whose associated bit is clear) as the
data fork of MyFile. Only data files can have associated files; directories cannot.

File types: High Sierra/ISO 9660 does not provide an explicit file typing convention. This can be a
problem because many applications select a particular file type as a filter when calling
the Standard File Tool Set to display files to the user. In such a case, files from a High
Sierra/1S0 9660 disc would never be selectable.

26 Volume 1: Applications and G§/0S Part II: The File System Level

GS/OS Reference (Volume 1) Drafl 3 (APDA) 8/31/88

To remedy this problem, the High Sierra FST, through the call FSTSpecific, defines and
implements a convention by which High Sierra/ISO 9660 filenames can be used to
convey file type information. See the discussion under “FSTSpecific”, later in this
chapter. In addition, Apple has defined a protocol that extends 13O 9660 to store file-
type and other information needed by either ProDOS or Macintosh HFS files, See the
next section *Apple Extensions to 1SO 9660".

Apple extensions to ISO 9660

To facilitate the transformation of ProDOS files or Macintosh HFS files to ISO 9660 files on CD-ROM
without loss of needed ProDOS or Macintosh file information Apple has defined a protocol that
extends the ISO 9660 specification. Discs created using the Apple extensions are valid ISO 9660
discs, and retain the filename as well as the filetype/auxiliary type (ProDOS) or
filetype/creator/bundle bit/icon resource (Macintosh) information needed to reconstruct the
original files from which they were made.

Because 15O 9660 does not provide for file typing and icons, the extra information is stored in a
special data structure in the file’s directory record. Filenames are preserved through transformations
of ProDOS or Macintosh filenames to valid ISO 9660 names, and back again.

This section does not discuss the protocol in detail. Please see Appendix E, “Apple Extensions to
ISO 9660,"

if you need to create or work with ProDOS or Macintosh files stored as ISO 9660 files. Here are the
main highlights of the protocol:

e The Protocol identifier: The protocol identifier consists of 32 bytes in the systemIdentifier
field of the Standard Volume Descriptor of an ISO 9660 volume. It is the characters "apPLE
COMPUTER, INC., TYPE: " followed by 4 bytes of protocol flags. The current version of the
type description gives the version number of the protocol and indicates whether the disc’s files
should be transformed to ProDOS file names when read.

The presence of the protocol identifier indicates that the Apple extensions have been applied to the
disc’s files.

* The systemUse field: The systemUse field in the file’s directory record is an optional field. The
Apple extensions use that field to store the extra file information. If the systemUse field is present,
and if it begins with the proper signature word, the subsequent information in the field can be
interpreted as ProDOS or Macintosh HFS information.

Chapter 10: The High Sierra FST 207

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

R

ProDOS filename transformaﬁons: 1f you (through an authoring tool) are creating ISO 9660 files
from ProDOS files, you can transform ProDOS filenames to valid ISO 9660 filenames in such 2 way
that users (through a receiving system) can access the files using their original ProDOS filenames. Do
this:

Replace all periods in the ProDOS filename with underscores. If the file is a directory file, that
completes the transformation.

If the file is not a directory file, append the characters *;1" to the filename. It is now a valid ISO
9660 filename.

In use, the receiving system performs the above transformation on user-supplied filenames before
searching for them on disc and reverses the transformation before presenting filenames to the user.

IF the transformation is to be done, it must be applied to all files on a disc.

HFS filename transformations: Unlike with ProDOS, it is not possible to make a simple,
reversible transformation from all valid Macintosh HFS filenames to valid SO 9660 filenames. To
make the transformation as consistent as possible, however, Apple recommends these guidelines:

Convert all lowercase characters to uppercase.

Replace all illegal characters, including periods, with underscrores.

If the filename needs to be shortened, truncate the rightmost characters.

If the file is not a directory file, append the characters *.;1” to the filename.

Such a transformation is not perfectly reversible, but its results are at least consistent across all files
and discs.

High Sierra FST calls

Table 10-1 lists all the GS/OS system calls supported by the High Sierra FST. Those in column 1
perform meaningful tasks; those in column 2 always return an error (with the exception of Flush; see
the call description).

Table 10-1 High Sierra FST calls

anin Not meaningful
$2006 GetFileInfo $2001 Create
$2008 Volume $2002 Destroy

A8 Volume 1: Applications and GS/0S Part II: The File System Level

GS/OS Reference (Volume 1) Draft 3 (APDA)

$2010 Open $2004 ChangePath
$2012 Read ‘ $2005 SetFilelnfo
$2014 Close $2013 Write

$2016 SetMark $2015 Flush

$2017 GetMark $2018 SetEOF
$2019 GetEOF $200B ClearBackupBit
$201C GetDirEntry $2024 Format

$2020 GetDevNum $2025 EraseDisk _

$2033 FSTSpecific

With the exception of Flush, all the calls on the right side of Table 10-1 do nothing and return error $2B
(write-protected). Flush also does nothing, but it returns with the carry flag cleared (no error).

The following sections describe how the High Sierra FST's handling of some of the calls listed on the
left side of Table 10-1 differs from standard GS/OS practice, as documented in Chapter 7. Calls listed
on the left side of Table 10-1 that are not described below are handled exactly as documented in
Chapter 7. Refer also to Chapter 7 for complete explanations of the calls and parameters listed here.

GetFileInfo ($2006)
GefFileInfo returns certain attributes of an existing block file. The file may be open or closed.
Parameter differences

access The only possibie values for this parameter under High Sierra/ISO 9660 are $01
(read-permission only) and $05 (read-permission only, file invisible).

fileType This output word value equals $00OF if the file is a directory; otherwise, it is
$0000 (unknown)—unless the filename extension matches an entry in the file-
type mapping table. See Appendix E “Apple Extensions to ISO 960™; see also
the call FSTSpecific, described later in this chapter.

modDateTime This output double longword value always has the same value as
createDateTime.

auxType This output long word value is always $0000 unless the Apple extensions to ISO
9660 have been applied. See Appendix E.

Chapter 10: The High Siera FST 209

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

optionList This is a longword input pointer to a data area to which results can be returned.
If an Extended Attribute Record (XAR) exists for the file, the High Sierra FST
returns the contents of the XAR in the data area pointed to. If an XAR does not
fit in the allotted space, the High Sierra FST returns as much of the data as
possible and generates error $4F (buffer too small).

Errors

In addition to the standard GS/OS GetFileInfo errors, the High Sierra FST can return these errors from
a GetFilelnfo call:

$4F buffer too small

Volume ($2008)

Given the name of a block device, Volume retums the name of the volume mounted in the device and
other information about the volume.,

Parameter differences
freeBlocks ‘This longword output value is aways $0000.

fileSysID This word result value describes the file system of the volume being accessed.
For High Sierra, £ileSysID = $000B; for ISO 9660, £ilesSysID = $000C. If
any other type of volume is accessed, the High Sierra FST returns error $52
(unsupported volume type).

Open ($2010)

This call causes the FST to establish an access path to a file. Once an access path is established, the
user may perform file reads and other related operations on the file.

A file can be opened more than once as long as it is not opened for write access, and each open
assigns a different reference number. Because High Sierra/ISO 9660 files are read-only, it is always
possible to have multiple open copies of a document.

Parameter differences

210 Volume 1: Applications and GS/OS Part II: The File System Level

GS/0S Reference (Volume 1) Draft 3 (APDA) _ 8/31/88

requestAccess

fileType

auxType

modDateTime

optionList

fileType

auxType

Errors

If this word input parameter is included, and if its value is anything other than
$0000 (use default permissions stored with file) or $0001 (read-access
requested), the High Sierra FST returns error $4E (access not allowed).

This word output value equals $000F if the file is a directory; otherwise, it is
$0000 (unknown)—unless the filename extension matches an entry in the file-
type mapping table. See Appendix E “Apple Extensions to ISO 9660"; see also
the FSTSpecific call, described later in this chapter.

This longword output value is always $0000 unless the Apple extensions to ISO
9660 have been applied. See Appendix E.

This double longword output parameter always has the same value as

createDateTime.

This is a longword input pointer to a data area to which results can be returned..
If an Extended Attribute Record (XAR) exists for the file, the High Sierra FST
retumns the contents of the XAR in the data area pointed to. If an XAR does not
fit in the allotted space, the High Sierra FST returns as much of the data as
possible and generates error $4F (buffer too small).

This output word value equals $000F if the file is a directory; otherwise, it is
$0000 ("unknown")}—unless the filename extension matches an entry in the file-
type mapping table. See Appendix E “Apple Extensions to ISO 9660”; see also
the call FSTSpecific, described later in this chapter.

This output long word value is always $0000 unless the Apple extensions to ISO
9660 have been applied. See Appendix E. _

In addition to the standard GS/OS Open errors, the High Sietra FST can return this error from an Open

call:

$4F buffer too small

Read ($2012)

This call attempts to transfer the requested number of bytes, starting at the current mark, from a
specified file into a specified buffer. The file mark is updated to reflect the number of bytes read.

Chapter 10: The High Siema FST 211

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

The High Sierra FST allows applications to read directory files as well as data files (but only with
standard GS/OS calls; ProDOS 16 Read calls to directories return error $4E—access not allowed).
Even so, as a reminder that directory structures differs for different file systems, the High Sierra FST
always returns a "caution” error ($66) after a successful read of a directory.

Also, the High Sierra FST does not allow Read calls and GetDirEntry calls with the same file reference
number: if an open file has previously been accessed by GetDirEntry, and a Read call is made with the
same reference number, the High Sierra FST returns error $4E (access not allowed). To avoid that
error, open the directory twice.

Errors

In addition to the standard GS/OS Read errors, the High Sierra FST can retum this error from a Read
call:

$66 FST Caution

GetDirEntry ($201C)

This call returns information about a directory entry in the volume directory or a subdirectory.
Before executing this call, the application must open the directory or subdirectory. The call allows
the application to step forward or backward through file entries or to specify absolute entries by
entry number.

The High Sierra FST does not allow Read calls and GetDirEntry calls with the same file reference
number: if an open file has previously been accessed by Read, and a GetDirEntry call is made with the
same reference number, the High Sierra FST returns error $4E (access not allowed). To avoid that
error, open the directory twice.

Parameter differences

fileType This output word value equals $000F if the file is a directory; otherwise, it is
$0000 (unknown)—~unless the filename extension matches an entry in the file-
type mapping table. See Appendix E “Apple Extensions to ISO 9660"; see also
the FSTSpecific call, described later in this chapter.

modDateTime This double longword output parameter always has the same value as

createDateTime.

auxType This longword output value is always $0000 unless the Apple extensions to ISO
9660 have been applied. See Appendix E.

212 Volume 1: Applications and GS/OS Part II: The File System Level

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/38

fileSysID This word result value describes the file system of the directory being accessed.
For High Sierra, £i1esys1D = $000B; for ISO 9660, £ilesysID = $000C. If
any other type of directory is accessed, the High Sierra FST returns error $52
(unsupported volume type).

optionList This is a longword input pointer to a data area to which results can be returned.
If an Extended Attribute Record (XAR) exists for the file, the High Sierra FST
returns the contents of the XAR in the data area pointed to. If an XAR does not
fit in the allotted space, the High Sierra FST returns as much of the data as
possible and generates error $4F (buffer too small).

Errors:

In addition to the standard GS/OS GetDirEntry errors, the High Sierra FST can return this error from a
GetDirEntry call:

$4F buffer too small

Chapter 10: The High Sierra FST 213

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$2033 FSTSpecific

Note: FSTSpecific is a call that is not described with the rest of the GS/OS calls in
Chapter 7. Its function can be defined individually for any file system
translator.

Description The High Sierra FST uses the call FSTSpecific to control file-type mapping. That
is, it simulates file types in High Sierra/ISO 9660 files (which do not have file
types) by mapping filename extensions to specific G5/OS file types.
FSTSpecific maintains a table in memory that controls which extensions
correspond to which file types.

The default table contains only two entries; it equates filenames with extensions
of .txt and .bat to GS/OS file type $04 (text file).

FSTSpecific uses a command number as one of its parameters and therefore
functions as four different calls. The four calls are:

MapEnable Enables/disables file-type mapping
GetMapSize Returns size, in bytes, of current file-type map
GetMapTable Returns the current file-type map
SetMapTable Replaces the current file-type map

Note: This mapping is independent of and unrelated to the file-typing
implemented by the Apple extensions to ISO 9660 described in

Appendix E.
Parameters This is the FSTSpecific parameter block:
Offset No. Sixe and type

50 | pCount = — Word INPUT value minimum = 3)

%2 fileSysID < | Word INPUT value

| commandNum 2 Word INPUT value

3 (subcall-specific parameter)

pCount Word input value: The number of parameters in this parameter block. Minimum

= 3 maximum = 3,

214 Volume 1: Applications and G/OS Part II: The File System Level

G&/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

fileSysID Word input value: The file system ID of the FST to which the call is directed.
For High Siema, £11esys 1D = $000B; for ISO 9660, £ilesysIDp = $000C.

commandNum Word input value: A number that specifies which particular subcail of
FSTSpecific to execute, as follows:

subcall commandNum
MapEnable $0000
GetMapSize $0001

GetMapTable $0002
SetmapTable $0003

See the individual subcall descriptions later in this chapter.

(subcall-specific) Word or longword input or result value: Depends on the specific subcall; see the
individual subcall descriptions later in this chapter.

Errors $04 parameter count out of range
$53 invalid parameter
$54 out of memory

What a map table is

The map table is the data structure that records which filename extensions are
to be assigned to which filetypes. The format of a map table is as follows:

Chapter 10: The High Sierra FST 215

GS/OS Reference (Volume 1) Draft 3 (APDA) ' 8/31/88

$00| mapSize _| Length of ble, including terminaror
02| | First map record (variable length)
record 0 :
"~ | Next map record
- -
: record 1 :
- =]
: Last map record
record n : Terminator (zero byte)
$00

A map record consists of a text string (with MSBs off) followed by a zero byte
followed by a file type byte. The text string can be any length and can include
any legal characters for a High Sierra filename (text must be uppercase, for
example). In APW assembly language, a map table can be defined as follows:

mapTable dec i2'end-mapTable+l' ;Length of table.
de ¢c'".TXT',h'00 04" ;Record 0.
de c'.TYPE',h'00 7£' ;Record 1.

end dec h'00"' ;Terminator.

MapEnable (FSTSpecific subcall)
The MapEnable subcall toggles file mapping on or off.

Parameters This is the FSTSpecific parameter block for the MapEnable subcall:

26 Volume 1: Applications and GS/0OS Part II: The File System Level

GS/OS Reference (Volume 1) Draft 3 (APDA) 7 8/31/88

= pCount -

_ fileSysID .

- commandNum

8 8 8 8

— enable -

The fc_>llowing parameters have particular values for this subcall.
commandNum For MapEnable, commandNum = $0000.

enable Word input value that equals either $0000 or $0001. If enable = $0000, file-
type mapping is disabled. If enable = $0001, file-type mapping is enabled.

GetMapSize (FSTSpecific subcall)

The GetmapSize subcall returns the size of the current file map.

Parameters This is the FSTSpecific parameter block for the GetMapSize subcall:

$00 | pCount —

= fileSysID -

$02
S04 commandNum -
$06

- mapSize -

The following parameters have particular values for this subcall.
commandNum For GctMapSizc, commandNum = $0001.

mapSize Word result value that is equal to the size (in bytes) of the current map table.

GetMapTable (FSTSpecific subcall)

The subcall GetMapTable returns a pointer to the current map table.

Chapter 10: The High Sierra FST 217

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Parameters This is the FSTSpecific parameter block for the GetMapTable subcall:
$o0 | pCount -
%20 filesysID -
4 commandNum
$06| -
. bufferPtr

The following parameters have particular values for this subcall.

commandNum For GetMapTable, commandNum = $0002.
bufferPtr A longword input pointer to a memory area large enough to hold the map table
that will be retumed by the call.

SetMapTable (FSTSpecific subcall)
The subcall SetMapTable sets the current map table to the one pointed to by the

input pointer.
Parameters This is the FSTSpecific parameter block for the SetMapTable subcall:
S04 pCount -
$02. filesysID
$4] commandNum -
$06| __
| mapPtr -

The following parameters have particular values for this subcall.

commandNum For SetMapTable, commandNum = $0003,

218 Volume 1: Applications and GS/0S Part II: The File System Level

GS/0S Reference (Volume 1) Draft 3 (APDA)

mapPtr Longword input pointer to the new map table. As long as there is space in
memory for the new table, it will replace the old one. If there is not enough
space, error $54 (out of memory) is retumed and the original table remains in
effect. No validity checking is done on the table.

Chapter 10: The High Sierra FST

219

8/31/88

GS0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Chapter 11 The Character FST

The Character file system translator (Character FST) provides a file-system-like
interface to character devices such as the console, printers, and modems. The
Character FST works with both generated and loaded drivers.

Note: This chapter describes only standard GS/OS (class 1) calls; for
descriptions of how the Character FST handles equivalent ProDQS
16 (class 0) calls, see Appendix B.

Chapter 11: The Character FST 21

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Character devices as files

The Character FST eanbles applications to read from and write to character devices as if they were
files. That is, your application can open , read, write, and close a printer, modem, console, or other
character device in a manner exactly analogous to performing those actions on 2 file on a block
device.

Not all GS/OS calls can be made to character devices, of course, and those that do may not always
function exactly the same as for block devices. This chapter discusses those calls that do apply to
character devices and notes any character-device-specific features they have.

Note: Although GS/OS lets you treat character devices as files in some ways, you cannot create,
destroy, or rename character files with GS/OS calls. The system and the user control the
existence and the names of character devices

The Character FST allows multiple Open cails, with both read- and write-access, to a character file.
Block-device FSTs, on the other hand, can allow multiple Opens for read-access only.

Character FST calls

The Character FST supports this subset of GS/OS calls:
Open

Newline

Read

Write

Close
Flush

All other GS/OS calls retum error $58 (Not a block device).
The following descriptions explain how the Character FST responds to some of these calls differently

from the standard procedures documented in Chapter 7. Any of the supported calls not described
here function exactly as documented in Chapter 7.

22 Volume 1: Applications and GS/OS Part II: The File System Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Open ($2010)

Open establishes an access path to a character file. With the requestaccess parameter, an
application can request limited access rights to the character file.

Parameter differences

pCount Maximum value = 3. Unlike with block devices, you cannot use the Open call to
a character device to get information normally returned by GetFileInfo.

pathname This input pointer must point to a character device name..

requestAccess The following values are allowed:

$00 open with available permissions

$01 open for read-access only

$02 open for write-access only

$03 open for both read- and write-access

Errors

In addition to the standard G5/OS Open errors, the Character FST can return these errors from an
Open call:

$04 pCount error

$24 driver prior open
$26 driver no resources
$28 driver no device
$2F driver off line

$54 out of memory

Read ($2012)

The Read call attempts to transfer the requested number of bytes from the specified character file
into the application’s data bulffer.

Parameter differences
pCount Minimum is 4; maximum is 4.

cachePriority Notused. Data transfers with character devices are not cached,

Chapter 11: The Character FST 23

GS/0S Reference (Yolume 1) Draft 3 (APDA) 8/31/88

Errors

In addition to the standard GS/OS Read errors, the Character FST can return these errors from a Read
call:

$04 pCount error

$23 driver not open

$2F driver off line

$53 parameter out of range
$54 out of memory

Write (5§2013)

The Write call attempts to transfer the requested number of bytes from the application’s data buffer
to the specified character file.

Parameter differences

pCount Minimum is 4; maximum is 4.

cachePriority Notused. Data transfers with character devices are not cached.
Errors

In addition to the standard GS/OS Write errors, the Character FST can return these errors from a Write
call:

$04 pCount error
$23 driver not open
$2F driver off line

Close (§2014)

The Close call terminates access o the specified (by re fNum) character file. Close also involves
flushing the file (see the Flush calb), to ensure completion of all data transfer before a character file is
closed.

24 Volume 1: Applications and GS/0S Part II: The File System Level

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Errors

In addition to the standard GS/OS Close errors, the Character FST can return these errors from a Close
calk

$04 pCount error
$23 driver not open
$2F driver off line

Flush ($2015)

The Flush routine completes any pending data transfer to the character file specifed by refNum. If
the character device is synchronous, all data transfer is by definition completed when the Write call
returns, 5o the Flush routine simply returns with no error. If the device is asynchronous (such as
interrupt-driven or direct memory access), the Flush routine waits until all data has been transferred
and then retums. If the file is multiply opened, all (output) access paths to the character file (not just
the one with the specified re £Num) are flushed.

Errors

In addition to the standard GS/OS Flush efrors, the Character FST can return these errors from a Flush
call:

$04 pCount Efror

$23 Driver not open
$2F Driver Off Line

Chapter 11: The Character FST 225

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Appendixes

Pan [PatII

: GS/OS calls FST-specific

: (except device calls) information on
Vdunel. (Chapter 7 G8/Os calls

. (Chapter 9-11)

‘\—/ﬁ/_-\‘—-_—-"-“ i Apmﬂdixﬁ

Volume 2 System Loader calls

Driver-specific (Appendix B)
information on System service calls
GS/0S device calls

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Appendix A GS/0S ProDOS 16 Calls

This appendix provides a detailed description of all the GS/OS ProDOS 16 calls,
arranged in alphabetical order by call name. These calls are provided only for
compatibility with ProDOS 16. For the standard GS/OS calls, see Chapter 7,
*GS/OS Call Reference,” in Part I of this manual.

The descriptions in this appendix follow the same conventions as those for the
standard GS/OS calls.

Appendix A: GS/OS ProDOS 16 Galls 229

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0031 ALLOC_INTERRUPT

Description This function places the address of an interrupt handler into GS/OS'’s interrupt
vector table.

For a complete description of GS/OS's interrupt handling subsystem, see
Volume 2, See also the DEALLOC_INTERRUPT call in this appendix.

Parameters
Offset Size and type
WL intNum o Word RESULT value
W2, intCode - Iongword INPUT pointer
intNum - Word result value: An identifying number assigned by GS/OS to the the binding
between the interrupt source and the interrupt handler. Its only use is as input to
the DEALLOC_INTERRUPT call.
intCode Longword input pointer: Points to the first instruction of the interrupt handler
© routine.
Errors

$25 interrupt vector table full
$53 parameter out of range

20 Volume 1: Applications and GS/OS Appendixes

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0004

Description

Parameters

pathname
newPathname

Comments

CHANGE_PATH

This call changes a file’s pathname to another pathname on the same volume, or
renames a volume,

CHANGE_PATH cannot be used to change a device name. You must use the
configuration program to change device names.

Offset Size and type
S0
B pathname 7| Longword INPUT pointer

. newPathname _ Longword INPUT pointer

Longword input pointer: Points to 2 Pascal string that represents the name of
the file whose pathname is to be changed.

Longword input pointer: Points to a Pascal string that represents the new
pathname of the file whose name is to be changed.

A file may not be renamed while it is open.
A file may not be renamed if rename access is disabled for the file.

A subdirectory s may not be moved into another subdirectory tif s = torif t is
contained in the directory hierarchy starting at s. For example, “rename /v to
/v/w is illegal, as is “rename /v/w to /v/w/X".

Appendix A: GS/0S ProDOS 16 Calls 231

GS/OS Reference (Volume 1)

Errors

$10
$27
$2B
$40
$44
$45

$47

$4B
$4E
$50
$52
$53
$57
$58
$5A

Draft 3 (APDA)

device not found

/O etror

write-protected disk
invalid pathname syntax
path not found

volume not found

file not found

duplicate pathname
version efror

unsupported storage type
access: file not destroy-enabled
file open

unsupported volume type
invalid parameter
duplicate volume

not 2 block device

block number out of range

232 Volume 1: Applications and GS/OS

Appendixes

8/31/88

GS/0S Reference (Volume 1) Drafi 3 (APDA)
S000B CLEAR_BACKUP_BIT
Description This call alters a file’s state information to indicate that the file has been backed
up and not altered since the backup. Whenever a file is altered, GS/OS sets the
file’s state information to indicate that the file has been altered.
Parameters
Offset Size and type
m ey et
B BREREAG 71 Longword INPUT pointer
pathname Longword input pointer: Points to a Pascal string that gives the pathname of the
file or directory whose backup status is to be cleared.
Errors

$27
$28
$2B
$2E
$40
$44
$45
$46
$4A
$52
$58

/O error

no device connected
write-protected disk
disk switched

invalid pathname syntax
path not found

volume not found

file not found

version error
unsupported volume type
not a block device

Appendix A: GS/0OS ProDOS 16 Calls

233

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0014

Description

Parameters

fileRefNum

Errors

CLOSE

This call closes the access path to the specified file, releasing all resources used
by the file and terminating further access to it. Any file-related information that
has not been written to the disk is written, and memory resident data structures
associated with the file are released.

If the specified value of the £ileRe £Num parameter is $0000, all files at or
above the current system file level are closed.

Offset Size and type

$0[fileRefNum Word INPUT value

Word input value: The identifying number assigned to the file by the OPEN call.
A value of $0000 indicates that all files at or above the current system file level
are to be closed. ‘

$27 1/Oermor

$2B write-protected disk

$2E disk switched

$43 invalid reference number
$48 volume full

$5A block number out of range

24 Volume 1: Applications and GS/OS - Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA)
$0001 CREATE
Description This call creates either a standard file, an extended file, or a2 subdirectory on a

Parameters

pathname

volume mounted in a block device. A standard file is a ProDOS-like file
containing a single sequence of bytes; an extended file is a Macintosh-like file
containing 2 data fork and a resource fork, each of which is an independent
sequence of bytes; a subdirectory is a data structure that contains information
about other files and subdirectories.

This call cannot be used to create a volume directory; the FORMAT call performs
that function. Similarly, it cannot be used to create a character-device file.

This call sets up file system state information for the new file and initializes the
file to the empty state.

Offset Size and type

$00

- pathname — o oword INPUT pointer

$04

— fRecess < wiord INPUT value
$06 fileType

— Word INPUT value
$08

~ AuETyoe 71 Longword INPUT value

SOC_ storageType -

Word INPUT value
$E| createDate Word INPUT value
§10 createTime Word INPUT value

Longword input pointer: Points to a Pascal string representing the pathname of
the file to be created. This is the only required parameter.

Appendix A: GS/0S ProDOS 16 Calls 235

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

fAccess

fileType

auxType

storageType

Word input value: Specifies how the file may be accessed after it is created and
whether or not the file has changed since the last backup.

simiigininlylsl7|6]s fefsfz|1]0
L | L
- J B
Destroy-enabled bit

Rename-enabled bit

Backup-needed bit |

reserved

File-invisible bit —

Write-enable bit —

Read-enable bit —

The most common setting for the access word is $00C3.

Software that supports file hiding (invisibility) should use the I bit to indicate
whether or not to display a file or subdirectory.

Word input value: Used conventionally by system and application programs to
categorize the file’s contents. The value of this field has no effect on GS/OS’s
handling of the file, except that only certain file types may be executed directly
by GS/0S. Many file types have already been standardized by Apple, as listed in
Table 1-2 in Chapter 1.

Longword input value: Used by system and application programs to store
additional information about the file. The value of this field has no effect on
GS/0S’s handling of the file. By convention, the interpretation of values in this
field depends on the value in the £11eType field. Many auxiliary types have
been standardized by Apple, as listed in Table 1-2 in Chapter 1.

Word input value: The value of this parameter determines whether the file being
created is a standard file, extended file, or subdirectory file, as follows:

$0000-$0003* create 2 standard file

$0005 create an extended file
$000D create a subdirectory file
All other values are invalid.

*If this field contains $0000, $0002 or $0003, GS/OS interprets it as $0001 and
actually changes it to $0001 on output.

26 Volume 1: Applications and GS/0S Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

createDate

createTime

Comments

Word input value: This parameter specifies a date that GS/OS saves as the file's
creation date value. If this word is $0000, GS/OS gets the date from the system
clock.

lisli4]13[12[nfrofofsf7]6]s[4[3[2]1]0]

year (121901, 21902, . .) =
month (1=January, 2=February,...)

day of the month (1,2, .. . ,31)

Word input value: This parameter specifies the time that GS/OS saves as the
file’s creation time valtue. If this word is $0000, GS/OS gets the time from the
system clock.

[1sTw][]r2]ulw]9 s 76 sT4a]3[2]1]0]

|0__|._| 1_‘]_4
hour (0—23) T :
0
minute (0—59)

The CREATE call applies only to files on block devices.

The storage type of a file cannot be changed after it is created. For example,
there is no direct way to add a resource fork to a standard file or to remove one
of the forks from an extended file.

All FSTs implement standard files, but they are not required to implement
extended files.

Appendix A: GS/0S ProDOS 16 Calls 237

GS/0S Reference (Volume 1)

Errors

$10
$27
$2B
$40
$44
$45
$46
$47
$48
$49
$4B
$52
$53
$58
$5A

Draft 3 (APDA)

device not found

I/O error

write-protected disk
invalid pathname syntax
path not found

volume not found

file not found

duplicate pathname
volume full

volume directory full
unsupported storage type
unsupported volume type
invalid parameter

not a block device

block number out of range

28 Volume 1: Applications and G§/0S

Appendixes

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0032

Description

Parameters

intNum

Errors

DEALLOC_INTERRUPT

This function removes 2 specified interrupt handler from the interrupt vector
table. See also the ALLOC_INTERRUPT call in this appendix.

Offset Size and type

%00 intNum ~ Word INPUT value

Word input value: Interrupt identification number of the binding that is to be
undone between interrupt source and interrupt handler.

$53 parameter out of range

Appendix A: G§/OS ProDOS 16 Calls 239

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0002 DESTROY

Description This call deletes a specified standard file, extended file (both the data fork and
resource fork), or subdirectory and updates the state of the file system to
reflect the deletion. After a file is destroyed, no other operations on the file are
possible.

This call cannot be used to delete a volume directory; the FORMAT call
reinitializes volume directories. Similarly, this call cannot be used to delete
character-device file.

It is not possible to delete only the data fork or only the resource fork of an

extended file.
Before deleting a subdirectory file, you must empty it by deleting all the files it
contains.
Parameters
Offset Size and type
m e e
B pathname ~| Longword INPUT pointer
pathname Longword input pointer: Points to a Pascal string that represents the pathname
of the file to be deleted.
Comments A file cannot be destroyed if it is currently open or if the access attributes do

not permit destroy access.

240 Volume 1: Applications and GS/OS Appendixes

GS/0S Reference (Volume 1)

Errors

$10
$27
$2B
$40
$44
$45
$46
$4B
$4E
$50
$52
$53
$58
$5A

Draft 3 (APDA)

device not found

I/O error

write-protected disk
invalid pathname syntax
path not found

volume not found

file not found
unsupported storage type
access: file not destroy-enabled
file open

unsupported volume type
invalid parameter

not a block device

block number out of range

Appendix A: GS/0S ProDOS 16 Calls 241

8/31/88

GS/0S Reference (Voiume 1) Draft 3 (APDA) 8/31/88

$002C

Description

Parameters

devNum

devName

Errors

D_INFO

This call returns general information about a device attached to the system,

Offset Size and type
%0 - devNum - Word INPUT value
$02] o
[. devName — Longword INPUT pointer

Word input vaiue: A device number. GS/OS assigns device numbers in sequence
(1, 2, 3, and so on) as it loads or creates the device drivers. There is no fixed
correspondence between devices and device numbers. To get information
about every device in the system, one makes repeated calls to D_INFO with
devNum values of 1, 2, 3, and so on until GS/OS returns error $53: parameter out
of range.

Longword input pointer: Points to a buffer in which GS/OS returns a Pascal
string containing the device name of the device specified by device number.
The maximum size of the string is 31 bytes, so the maximum size of the returned
value is 33 bytes. Thus, the buffer size should be 35 bytes.

$11 invalid device number
$53 parameter out of range

22 Volume 1: Applications and GS/0S Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0025 ERASE_DISK

Description This call puts up a dialog box that allows the user to erase a specified volume
and choose which file system is to be placed on the newly erased volume. The
volume must have been previously physically formatted. The only difference
between ERASE_DISK and FORMAT is that ERASE_DISK does not physically
format the volume. See the FORMAT call later in this appendix.

Parameters
Offset Size and type
m — oy
L devName = Longword INPUT pointer
$04 - _
- volName q Longword INPUT pointer
$08
- fi1eSysID — w4 RESULT value
devName Longword input pointer: Points to a Pascal string that represents the device
name of the device containing the volume to be erased.
volName Longword input pointer: Points to a Pascal string that represents the volume
name to be assigned to the newly erased volume.
fileSysID Word result value: If the call is successful, this field identifies the file system
with which the disk was formatted. If the call was unsuccessful, this field is
undefined.
$0000 reserved $0007 LISA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 33 $0009 reserved
$0003 DOS3.2o0r31 $000A MS/DOS
$0004 Apple I Pascal $000B High Sierra
$0005 Macintosh (MFS) $000C ISO 9660
$0006 Macintosh (HFS) $000D-$FFFF reserved

Appendix A: GS§/OS ProDOS 16 Calls 243

GS/0S Reference (Volume 1)

Errors

$10
$11
$27
$28
$2B
$53
$5D

Draft 3 (APDA)

device not found
invalid device request
/O error

no device connected
write-protected disk
parameter out of range
file system not available
invalid FST ID

244 Volume 1: Applications and GS/0S

Appendixes

8/31/88

GS05 Reference (Volume 1) Draft 3 (APDA) 8/31/88

$O000E EXPAND_PATH

Description This call converts the input pathname into the corresponding full pathname with
colons (ASCI $3A) as separators. If the input is a full pathname,
EXPAND_PATH simply converts all of the separators to colons. If the input is a
partial pathname, EXPAND_PATH concatenates the specified prefix with the
rest of the partial pathname and converts the separators to colons.

If bit 15 (MSB) of the £1ags parameter is set, the call converts all lowercase
characters 1o uppercase (all other bits in this parameter must be cleared). This
call also performs limited syntax checking. It returns an error if it encounters an
illegal character, two adjacent separators, or any other syntax error.

Parameters
Offset Size and type
m e —
- inputPath ~| Longword INPUT pointer
o4 J
- outputFath] Longword INPUT pointer
$08
- fla9% 9 word INPUT value
inputPath Longword input pointer: Points to a Pascal input string that is to be expanded.
outputPath Longword input pointer: Points to a buffer in which GS/OS returns a Pascal
string that contains the expanded pathname.
flags Word input value: If bit I5 is set to 1, this call retums the expanded pathname in
uppercase characters, All other bits in this word must be zero.
Errors

$40 invalid pathname syntax
$4F buffer too small

Appendix A: GS/OS ProDOS 16 Calls 245

GS/OS Reference (Volume 1) Drajt 3 (APDA) 8/31/88

246 Volume 1: Applications and GS/0S Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0015 FLUSH

Description This call writes to the volume all file state information that is buffered in
memory but has not yet been written to the volume. The purpose of this call is
to assure that the representation of the file on the volume is consistent and up
to date with the latest GS/OS calls affecting the file. Thus, if a power failure
occurs immediately after the FLUSH call completes, it should be possible to
read all data written to the file as well as all file attributes. If such a power failure
occurs, files that have not been flushed may be in inconsistent states, as may the
volume as a whole,

A value of $0000 for the £ileRe£Num parameter indicates that all files at or
above the current file leve! are to be flushed.

Parameters
Offset Size and type

$00

- fileRefNum .| word INPUT value

£ileRefNum Word input value: The identifying number assigned to the file by the OPEN call.
A value of $0000 indicates that all files at or above the current system file level
are to be flushed.

Errors

$27 1/O error

$2B write-protected disk

$2E disk switched

$43 invalid reference number
$48 volume full

$5A block number out of range

Appendix A: G§/0S ProDOS 16 Calls 247

GS/0S Reference (Volume 1) Draft 3 (APDA) _ 8/31/88

$0024

Description

Parameters

devName
volName

fileSysID

FORMAT

This call puts up a dialog box that allows the user to physically format a
specified volume and choose which file system is to be placed on the newly
formatted volume.

Some devices do not support physical formatting, in which case the FORMAT
call writes only the empty file system, and in effect is just like the ERASE_DISK
call. See the ERASE_DISK call earlier in this chapter.

Offset Size and type
$00

N deyNim 1 Longword INPUT pointer

o e

~ FoiRama 7| Longword INPUT pointer

$08 B fileSysID _ Word RESULT value

Longword input pointer: Points to a Pascal string that represents the device
name of the device containing the volume to be formatted.

Longword input pointer: Points to a Pascal string that represents the volume
name to be assigned to the newly formatted blank volume.

Word result value: If the call is successful, this field identifies the file system
with which the disk was formatted. If the call is unsuccessful, this field is
undefined. The file system IDs are as follows:

248 Volume 1: Applications and GS/OS Appendixes

GS/OS Reference (Volume 1)

Errors

$0000
$0001
$0002
$0003
$0004
$0005
$0006

$10
$11
$27
$28
$2B
$53
$5D

Draft 3 (APDA)
reserved $0007
ProDQS/S0OS $0008
DOS 3.3 $0009
DOS3.20r3.1 $000A
Apple 11 Pascal $000B

Macintosh (MFS)
Macintosh (HFS)

device not found
invalid device request
/O error

no device connected
write-protected disk
parameter out of range
file system not available
invalid FST ID

$000C

8/31/88

LISA

Apple CP/M
reserved
MS/DOS
High Sierra
ISO 9660

$000D-$FFFF reserved

Appendix A: GS/OS ProDOS 16 Calls 249

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0028

Description

dataBuffer

Errors

GET_BOOT_VOL

This call returns the volume name of the volume from which the file G§/OS was
last loaded and executed. The volume name retumned by this call is equivalent to
the prefix specified by */.

Offset Size and type
$00

. dataBuffer

C Longword INPUT pointer

Longword input pointer: Points to a buffer in which GS/OS returns a Pascal
string containing the boot volume name.

$4F buffer too smail

250 Volume 1: Applications and GS/OS Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0020 GET_DEV_NUM

Description This call returns the device number of a device identified by device name or
volume name. Only block devices may be identified by volume name, and then
only if the named volume is mounted, Most other device calls refer to devices
by device number.

GS/OS assigns device numbers at boot time, The numbers are 2 series of
consecutive integers beginning with 1. There is no algorithm for determining the
device number for a particular device.

Because a device may hold different volumes and because volumes may be
moved from one device to another, the device number returned for a particular
volume name may be different at different times.

Parameters
Offset Size and type
S0 | -
- devName —_ .
Longword INPUT pointer
s04 [TevNam Word RESULT value
devName Longword input pointer: Points to a Pascal string that represents the device
name or volume name (for a block device).
devNum Word result value: The device reference number of the specified device.
Errors

$10 device not found

$11 invalid device request

$40 invalid device or volume name syntax
$45 volume not found

Appendix A: G§/OS ProDOS 16 Calls 251

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

$001C GET_DIR_ENTRY

Description This call returns information about a directory entry in the volume directory or a
subdirectory. Before executing this call, the application must open the
directory or subdirectory. The call allows the application to step forward or
backward through file entries or to specify absolute entries by entry number.

Parameters
Offset Size and type

$00| refNum Word INPUT value
$0z|_ flags - Word RESULT value
S04 base = Word INPUT value

$06 displacement — word INPUT value

$08(-

- nameBuffer Longword INPUT pointer

g

- entryNum Word RESULT value
$CE ;

L fileType Longword RESULT value
$10 B _

. endOfFile _ Longword RESULT value
$14(-

. blockCount _ Longword RESULT value

L -

§18

252 Volume 1: Applications and GS/CS Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

refNum

flags

base

$18_]
| createrime | Double longword RESULT value
m = e
| modTime | Double longword RESULT value
8| — | Word RESULT value
s2a” 5
- auxType _| Longword RESULT value
SB[filesystp | Word RESULT value

Word input value: The identifying number assigned to the directory or
subdirectory by the OPEN call.

Word resuit value: Flags that indicate various attributes of the file.

file is an extended file (the file may have
both 2 data fork and 2 resource fork) = 1
file is not an extended file = 0

Word input value: A value that tells how to interpret the displacement field, as
follows:

$0000 displacement gives an absolute entry number
$0001 displacement is added to current displacement to get next entry
number :

Appendix A: GS/OSProDOS 16 Calls 253

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

displacement

nameBuffer

entryNum

fileType
endOfFile
blockCount

createTime

modTime

access
auxType

fileSysID

$0002 displacement is subtracted from current displacement to get next
entry number

Word input value: In combination with the base parameter, the displacement
specifies the directory entry whose information is to be retumed. When the
directory is first opened, GS/OS sets the current displacement value to $0000.
The current displacement value is updated on every GET_DIR_ENTRY call.

If the base and displacement fields are both zero, GS/OS returns a 2-byte value
in the ent ryNumbe r parameter that specifies the total number of active
entries in the subdirectory. In this case, GS/OS also resets the current
displacement to the first entry in the subdirectory.

To step through the directory entry by entry, you should set both the base and
displacement parametess to $0001.

Longword input pointer: Points to a buffer in which GS/OS returns a Pascal
string containing the name of the file or subdirectory represented in this
directory entry.

Word result value: The absolute entry number of the entry whose information is
being retumed. This field is provided so that a program can obtain the absolute
entry number even if the base and displacement parameters specify a
relative entry,

Longword result value: The value of the file type field of the directoi'y entry.
Longword result value: Value of the EQF field of the directory entry.
Longword result value: The value of the blocks used field of the directory entry.

Double longword result value: The value of the creation date/time field of the
directory entry.

Double longword result value: The value of the modification date/time field of
the directory entry. .

Word result value: Value of the access attribute field of the directory entry.
Longword result value: Value of the auxiliary type field of the directory entry.

Word result value: File system identifier of the file system on the volume
containing the file. Values of this field are described under the VOLUME call.

2% Volume 1: Applications and GS/OS Appendixes

GS/0S Reference (Volume 1)

Errors

$10
$27
$4A
$4B
$4F
$52
$53
$58
$61

Draft 3 (APDA)

device not found

I/O error

version error
unsupported storage type
buffer too small
unsupported volume type
invalid parameter

not a block device

end of directory

Appendix A: GS/OS ProDOS 16 Calls 255

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0019

Description

Parameters

refNum

eof

Errors

GET_EOF

This function returns the current logical size of a specified file. See also the
SET_EOF call in this appendix.

Offset Size and type
W eofRefNum - Word INPUT value
sa2 =

% eofPosition _| Longword RESULT value

Word input value: The identifying number assigned to the file by the OPEN call.

Longword resuit value: The current logical size of the file, in bytes.

$43 invalid reference number

2% Volume 1: Applications and GS/OS Appendixes

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0006

Description

Parameters

GET_FILE_INFO

This call returns certain file attributes of an existing open or closed block file.

Important A GET_FILE_INFO call following a SET_FILE_INFO call on an open
file may not return the values set by the SET_FILE_INFO call. To
guarantee recording of the attributes specified in a
SET_FILE_INFO call, you must first close the file.

See also the SET_FILE_INFO call in this appendix.

Offset Size and type
$00| -
B pathoane 7] Longword INPUT pointer
$04
~ fAccess “| Word RESULT value
306
- fileTyPe < wod RESULT value
$08
— -

i RIETYPS ~| Longword RESULT value

soc | storageType

Word RESULT value
$0E
- createDats Word RESULT value
§$10 i
L. createTime Word RESULT value
$12 -
e modDate Word RESULT value
§14 i
modTime =1 Word RESULT value
$16| -
L. blockaUsed

Longword RESULT value

Appendix A: G§/0S ProDOS 16 Calls 257

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

pathname

fAccess

fileType
auxType

storageType

createDate

createTime

modDate

modTime

blocksUsed

Longword input pointer: Points to a Pascal string representing the pathname of
the file whose file information is to be retrieved.

Word result value: Value of the file’s access attribute, which is described under
the CREATE call.

Word result value: Value of the file’s file type attribute.
Longword result value: Value of the file's auxiliary type attribute.

Word result value: Value indicating the storage type of the file, as follows:

$01 standard file
$05 extended file
$0D volume directory or subdirectory file

Word result value: Value for the file’s creation date attribute which is described
under the CREATE call.

Word result value: Value for the file’s creation time attribute, which is described
under the CREATE call.

Word result value: Value for the file’s modification date attribute. The format is
the same as the createDate parameter.

Word result value: Value for the file’s modification time attribute. Format is the
same 1S the createTime parameter.

Longword result value: For a standard file, this field gives the total number of
blocks used by the file. For an extended file, this field gives the number of
blocks used by the file’s data fork.

For a subdirectory or volume directory file, this field is undefined.

258 Volume 1: Applications and GS/OS Appendixes

GS/0S Reference (Volume 1)

Errors

$10
$27
$40
$44
$45
$46

$4B
$52
$53
$58

Draft 3 (APDA)

device not found

/O error

invalid pathname syntax
path not found

volume not found

file not found

version error
unsupported storage type
unsupported volume type
invalid parameter

not a block device

Appendix A: GS/0S ProDOS 16 Calls 259

8/31/88

GS/CS Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0021

Description

Parameters

devNum

GET_LAST_DEV

This call returns the device number of the last accessed device. The last
accessed device is defined as the last device to which any device command was
directed by GS/OS as the result of a GS/OS call.

A program that uses this call must take into account that the last device value
can change at any time due to a device-accessing GS/OS call made by an
asynchronously executed process such as a desk accessory or interrupt handler.

To insure that the GET_LAST_DEV call returns the last device accessed by the
given program, the program must:

1. Disable interrupts.

2. Make the GS/OS call that accesses the device (for example, OPEN, READ).
3. Make the GET_LAST_DEV call.

4. Restore the interrupt state that was current before step 1.

Unfortunately, this sequence locks out interrupts for more than the maximum
recommended interrupt disable time. Therefore, system integrity cannot be
guaranteed, especially in a networked environment, where rapid interrupt
handling is crucial.

Important Because of this danger to system integrity, use this call with
caution, if at all.

Offset Size and type

L devNum Word RESULT value

Word result value: Device number of the last accessed device.

20 Volume 1: Applications and GS/0S Appendixes

GS0S Reference (Volume 1)

Errors

$01

$07
$59

Draft 3 (APDA)

bad system call number
parameter count out of range
GS/0S is busy

invalid file level

Appendix A: GS/OS ProDOS 16 Calls

%1

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$001B GET_LEVEL
Description This function retums the current value of the system file level. See also the
SET_LEVEL call in this appendix.
Parameters
Offset Stze and type
0 level - Word RESULT value
level Word result value: The value of the system file level.
Errors

$01 bad system call number

$04 parameter count out of range
$07 GS/OS is busy

$59 invalid file level

22 Volume 1: Applications and GS/OS Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0017

Description

Parameters

markRefNum

position

Errors

GET_MARK

This function returns the current file mark for the specified file. See also the
SET_MARK call in this appendix.

Offset Size and type
90/ markrefNum - Word INPUT value
$02

_ |

= position = Llongword RESULT valye

Word input value: The identifying number assigned to the file by the OPEN call.

Longword result value: The current value of the file mark, in bytes, refative to the
beginning of the file.

$43 invalid reference number

Appendix A: GS/OS ProDOS 16 Calls 263

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0027

Description

Parameters

dataBuffer

Errors

GET_NAME

Returns the filename (not the complete pathname) of the currently running
application program.

To get the complete pathname of the current application, concatenate prefix 1/
with the filename retumed by this call. Do this before making any change in
prefix 1/.

Offset Size and type
$00 = =
. dataBuffer Longwo d INPUT pointer

Longword input pointer: Points to a buffer in which GS/OS returns a Pascal
string containing the filename.

$4F buffer too small

24 Volume 1: Applications and G§/OS Appendixes

G&/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$000A

Description

Parameters

prefixNum

prefix

Errors

GET_PREFIX

This function returns the current value of any one of the numbered prefixes. The
retumed prefix string always starts and ends with a separator. If the requested
prefix is null, it is returned as a string with the length field set to 0. This call
should not be used to get the boot volume prefix (*/). See also the SET_PREFIX
call in this appendix.

Offset Size and type
WL prefixdum - Word INPUT value
m pamts. -y
- prefix — Longword INPUT pointer

Word input value: Binary value of the prefix number for the prefix to be
returned.

Longword input pointer: Points to a buffer in which GS/OS returns a Pascal
string containing the prefix value.

$4F buffer too small
$53 invalid parameter

Appendix A: G8/0S ProDOS 16 Calls 265

GS0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$002A

Description

Parameters

version

Errors

GET_VERSION

This call returns the version number of the GS/OS operating system. This value
can be used by application programs to condition version-dependent
operations.

Offset Size and type
$00

version = Word RESULT value

Word result value: Version number of the operating system, in the following
format:

[1s]a4] 3] 2] 1]aof o[7{6]s]4]3]2]1]0]

prototype release = |
final release = 0 i

major release number

minor rejease number —

(none except general system errors)

%6 Volume 1: Applications and G§/OS Appendixes

GS/OS Reference (Volume 1) Draft 3 (APDA)
$0011 NEWLINE
Description This function enables or disables the newline read mode for an open file and,

Parameters

newLRe £fNum

enableMask

when enabling newline read mode, specifies the newline enable mask and
newline character or characters.

When newline mode is disabled, a READ call terminates only after it reads the
requested number of characters or encounters the end of file. When newline
mode is enabled, the read also terminates if it encounters one of the specified
newline characters.

When a READ call is made while newline mode is enabled and another character
is in the file, GS/OS performs the following operations:

1. Transfers next character to user's buffer.

2. Performs a logical AND between the character and the low order byte of the
newline mask specified in the last NEWLINE call for the open file.

3. Compares the resulting byte with the newline character or charactess.
If there is a match, terminates the read; otherwise continues at step 1.

Offset Size and type
$0] pewLRefNum Word INPUT value
%2 enableMask -] ord INPUT value
S04 - newlineChar - Word INPUT value

Word input value: The identifying number assigned to the file access path by the
OPEN call.

Word input value: If the value of this field is $0000, newline mode is disabled. If
the value is greater than $0000, the low-order byte becomes the newline mask.
GS/0S performs a logical AND of each input character with the newline mask
before comparing it to the newline characters.

Appendix A: G&/OS ProDOS 16 Calls 267

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

newlineChar

Errors

Word input value: The low-order byte of this field is the newline character.
When disabling newline mode (enableMask = $0000), this parameter is
ignored.

$43 invalid reference number

%8 Volume 1: Applications and GS/0S | Appendixes

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0010 OPEN

Description This call causes GS/OS to establish an access path to a file. Once an access path
is established, the user may perform file READ and WRITE operations and other
related operations on the file.

Parameters
Offset Size and type
ol openRefNum - Word RESULT value
$02] -
. openPathname Longword INPUT pointer
$06

ioBufferx -\ Reserved

openRefNum Word result value: A reference number assigned by GS/OS to the access path. All
other file operations (READ, WRITE, CLOSE, and so on) refer to the access path

by this number.

openPathname Longword input pointer: Points to a Pascal string that represents the pathname
of the file to be opened.

ioBuffer This field is reserved and must be set to $00000000.

Appendix A G§/0S ProDOS 16 Calls 269

GS/0S Reference (Volume 1)

$27
$28
$2E
$40
$44
$45
$46

$4B
$4E

$50
$52
$58

Draft 3 (APDA)

1/0 error

no device connected
disk switched

invalid pathname syntax
path not found

volume not found

file not found

version error
unsupported storage type
access not allowed

buffer too small

open file

unsupported volume type
not a block device

Z0 Volume 1: Applications and GS/OS

Appendixes

&/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0029

Description

Parameters

quitPathname

flags

QUIT

This call terminates the running application. It also closes all open files, sets the
system file level to 0, initializes certain components of the Apple IIGS and the
operating system, and then launches the next application.

For more information about quitting applications, see Chapter 2, “GS/CS and
Its Environment.”

Offset Size and type
m p— -
= GEREtRRGN o Longword INPUT pointer
$04
i Faga = Word INPUT value

Longword input pointer: Points to a Pascal string that represents the pathname
of the program to run next. Ifthe quitPathname parameter is null or the
pathname itself has length 0, GS/OS chooses the next application, as described
in Chapter 2.

Word input value: Two Boolean flags that give information about how to handle
the program executing the QUIT call, as follows:

Place suate information about the quitting j
program on the Quit refurn stack so that
it will be automatically restarted later = |
Do net stack the quitting program = 0

The quitting program is capable of being ~
restarted from its dormant memory image = |
The quitting program must be reloaded from

disk if it is restarted = 0 reserved —

Appendix A: GS/OS ProDOS 16 Calls 271

GS/OS Reference (Volume 1) Draft 3 (APDA) - 8/31/88

Comments Only one error condition causes the QUIT call to return to the caller: error $07
(GS/0S busy). All other errors are managed within the GS/OS program
dispatcher.

Errors

$07 GS/OS is busy

272 Volume 1: Applications and GS/OS Appendixes

GY0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0012

Description

Parameters

fileRefNum

READ

This function attempts to transfer the number of bytes given by the
requestCount parameter, starting at the current mark, from the file specified
by the re £Num parameter into the buffer pointed to by the dataBuffer
parameter. The function updates the file mark to reflect the new file position
after the read.

Because of two situations that can cause the READ function to transfer fewer
than the requested number of bytes, the function returns the actual number of
bytes transferred in t ransferCount. If GS/OS reaches the end of file before
transferring the number of bytes specified in requestCount, it stops reading
and sets transferCount to the number of bytes actually read.

If newline mode is enabled and a newline character is encountered before the
requested number of bytes have been read, GS/OS stops the transfer and sets
transferCount {0 the number of bytes actally read, including the newline
character.

Offset Size and type
$00 fileRefNum
L —~ Word INPUT value
$02| -
— dataBuffer _ [ongword INPUT pointer
$05

requestCount — [ongword INPUT value

T T
|

| transferCount _| Longword RESULT value

Word input value: The identifying number assigned to the file by the OPEN call.

Appendix A: GS/OS ProDOS 16 Calls 273

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

dataBuffer Longword input pointer: Points to a2 memory area large enough to hold the
requested data.

requestCount Longword input value: The number of bytes to be read.
transferCount Longword result value: The number of bytes actually read.

Errors

$27 1/O error

$2E disk switched

$43 invalid reference number
$4C eof encountered

$4E access not allowed

274 Volume 1: Applications and GS/0S Appendixes

GS/OS Reference (Volume 1)- Draft 3 (APDA) 8/31/88

$0022 READ_BLOCK

Description This call reads one 512-byte block of information to a disk specified by device
number.

Normally, you should use D_READ and D_WRITE for all direct device [/O.
READ_BLOCK deals only with 512-byte blocks and devices with a maximum of
65,536 blocks, is valid only for the ProDOS FST, and exists only for
compatibility with ProDOS 16.

Parameters
Offset Size and type
$00 L~ DblockDevNum - Word INPUT value
$02| "
—-blockDataBuffer |ongword INPUT pointer
$06

- - Longword INPUT value

= klockNum -

blockDevNum Word input value: The reference number assigned to the device.

blockDataBuffer Longword input pointer: Points to a data buffer large enough to hold the data
to be read.

blockNum Longword input value: The number of the block to be read.

Errors

$11 invalid device request
$27 /O error

$28 no device connected
$2B write-protected disk
$53 invalid parameter

Appendix A: GS/OS ProDQS 16 Calls 275

GS/OS Reference (Volume 1) Draft 3 (APDA)
$0018 SET_EOF
Description This call sets the logical size of an open file to a specified value which may be

Parameters

eofRefNum

ecfPositicon

Errors

either larger or smaller than the current file size. The EOF value cannot be
changed unless the file is write-enabled. If the specified EOF is less than the
current EOF, the system may—but need not—free blocks that are no longer
needed to represent the file. See also the GET_EOF call.

Offset Size and type
%01 eofRefNum - Word INPUT value
soz| -
__ eofPosition _ Longword INPUT value

Word input value: The identifying number assigned to the file by the OPEN call.

Longword input value: The new logical size of the file, in bytes.

$27 /O eror

$2B disk is write protected
$43 invalid reference number
$4D position out of range

$4E file not write-enabled
$5A block number out of range

276 Volume 1: Applications and GS/0OS Appendixes

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0005

Description

Parameters

SET_FILE_INFO

This call sets certain file attributes of an existing open or closed block file, This
call immediately modifies the file information in the file’s directory entry
whether the file is open or closed. It does not affect the file information seen
by previously open access paths to the same file.

Important A GET_FILE_INFOQ call following a SET_FILE_INFO call on an open
file may not return the values set by the SET_FILE_INFO call. To
guarantee recording of the attributes specified in a
SET_FILE_INFO call, you must first close the file.

See also the GET_FILE_INFO call.

Offset ‘ Sz ansppe
o - _
= pathname 7| Longword INPUT pointer
§041 fAccess =1 Word INPUT value
e B U e e———
$o8 N
| auxType 7| Longword RESULT value
sc| <null> | Word INPUT value
$0E -~ createDate Word INPUT value
ML createTime o o
s12(modDate Word INPUT value
$14] modTime “| Word INPUT value

 Appendix A: GS/05 ProDOS 16 Calls 277

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

pathname

fAccess

fileType
auxType
<null>

createDate

createTime

modDate

modTime

Longword input pointer: Points to a Pascal string that represents the pathname
of the file whose file information is to be set.

Word input value: Value for the file’s access attribute, which is described under
the CREATE call.

Word input value: Value for the file’s file type attribute.
Longword result value: Value of the file's auxiliary type attribute.
Word input value: This field is unused and must be set to zero.

Word input value: Value for the file’s creation date attribute, which is described
under the CREATE call. If the value of this field is zero, GS/OS does not change
the creation date.

Word input value: Value for the file’s creation time attribute, which is described
under the CREATE call. If the value of this field is zero, GS/OS does not change
the creation time.

Word input value: Value for the file's modification date attdbute. Format is the
same as for the createDate parameter. If the value of this field is zero,
GS/OS supplies the date from the system clock.

Word input value: Value for the file’s modification time attribute. Format is the
same as for the createTime parameter. If the value of this field is zero,
GS/0S supplies the time from the system clock.

278 Volume 1: Applications and GS/0S Appendixes

GS/0S Reference (Volume 1)

Errors

$10
$27
$2B
$40
$44
$45
$46

$4B
$4E
$52
$53
$58

Draft 3 (APDA)

device not found

1/0 error

disk is write protected
invalid pathname syntax
path not found

volume not found

file not found

version error

unsupported storage type
access: file not destroy-enabled
unsupported volume type
invalid parameter

not a block device

Appendix A: GS/OS ProDOS 16 Calls 279

8/31/88

GS/OS Reference (Volume 1) - Draft 3 (APDA) 8/31/88

$001A

Description

Parameters

level

Errors

SET_LEVEL

This function sets the current value of the system file level,

Whenever a file is opened, GS/OS assigns it a file level equal to the current
system file level. A CLOSE call with a refNum parameter of $0000 closes all files
with file level values at or above the current system file level. Similady, a FLUSH
call with a refNum parameter of $0000 flushes all files with file level values at or
above the current system file level, See also the GET_LEVEL call in this
appendix. |

Offset Size ang type
$00

e level -~ Word INPUT value

Word input value: The new value of the system file level. Must be in the range
$0000-$0OFF.

$59 invalid file level

20 Volume 1: Applications and GS/OS Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0016 SET_MARK

Description This call sets the file mark (the position from which the next byte will be read or
to which the next byte will be written) to a specified value. The value can never
exceed EOF, the current size of the file, See also the GET_MARK call in this

appendix.
Parameters
Offset Size and type
$00
- markRefNum ‘\yord INPUT value
so2| "
L. positien — Longword INPUT value

markRefNum Word input value: The identifying number assigned to the file by the OPEN call.

position Longword input value: The value assigned to the mark. It is the position (in
bytes) relative to the beginning of the file at which the next read or write will
begin.

Errors
$27 1/O error

$43 invalid reference number
$4D position out of range
$5A block number out of range

Appendix A: GS/OS ProDOS 16 Calls 281

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0009

Description

Parameters

prefixNum

prefix

Comments

SET_PREFIX

This call sets one of the numbered pathname prefixes to a specified value. The
input to this call can be any of the following pathnames:

a full pathname

e 2 partial pathname beginning with a numeric prefix designator

¢ 2 partial pathname beginning with the special prefix designator /"

¢ 2 partial pathname without an initial prefix designator.

The SET_PREFIX call is unusual in the way it treats partial pathnames without
initial prefix designators. Normally, GS/OS uses the prefix 0/ in the absence of
an explicit designator,. However, only in the SET_PREFIX call, it uses the prefix

n/where n is the value of the prefixNun field described below. See also the
GET_PREFIX call in this appendix.

L]

Offset Size and type
$of prefixNum - Word INPUT value
$02| .
- prefix = Longword INPUT pointer

Word input value: A prefix number that specifies the prefix to be set.

Longword input pointer: Points to a Pascal string representing the pathname to
which the prefix is to be set. If this field is not given, the prefix is set to the null
string.

~ Specifying a pathname with length 0 or whose syntax is illegal sets the

designated prefix to null.

GS/0S does not verify that the designated prefix corresponds to an existing
subdirectory or file.

The boot volume prefix (*/) cannot be changed using this call.

22 Volume 1: Applications and GS/OS Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA)

Errors

$40 invalid pathname syntax
$53 invalid parameter

Appendix A: G&/0S ProDOS 16 Galls 283

8/31/88

GS§/OS Reference (Volume 1)

Draft 3 (APDA) 8/31/88

$0008 VOLUME

Description Given the name of a block device, this call returns the name of the volume
mounted in the device along with other information about the volume.

Parameters
Offset Size and type
m i —
— deviceName — isnoword INPUT pointer
“] et
- velMame = longword INPUT pointer
w — —
. totalBlocks . I | RESULT value
homs -
m — —
— freeBlocks loog RESULT vilug
$10[filesystp | Word RESULT value
deviceName Longword input pointer: Points to a Pascal string that contains the name of a
block device.
volName Longword input pointer: Points to a buffer in which GS/OS places a Pascal string

containing the volume name of the volume mounted in the device.

totalBlocks Longword result vaiue: Total number of blocks contained in the volume.

freeBlocks Longword result value: The number of free (unallocated) blocks in the volume.

24 Volume 1: Applications and GS/0S

Appendixes

GS/0S Reference (Volume 1)

fileSysID

Errors

Draft 3 (APDA) 8/31/88

Word result value: Identifies the file system contained in the volume, as follows:

$0000
$0001
$0002
$0003
$0004
$0005
$0006

$10
$11
$27
$28
$2E
$45
$4A
$52
$53
$57
$58

reserved
ProDQOS/SQOS
DOS 33
DOS§3.20r3.1
Apple II Pascal
Macintosh (MFS)
Macintosh (HFS)

device not found
invalid device request
/O error

no device connected
disk switched
volume not found
version error
unsupported volume type
invalid parameter
duplicate volume

not a block device

$0007 LISA

$0008 Apple CP/M
$0009 reserved
$000A MS/DQOS
$000B High Sierra
$000C I1SO 9660

$000D~$FFFF reserved

Appendix A: GS/OS ProDOS 16 Calls 285

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0013 WRITE

Description This call attempts to transfer the number of bytes specified by the
requestCount parameter from the application’s buffer to the file specified
by the £ileRefNum parameter, starting at the cument file mark.

The call returns the number of bytes actually transferred. It also updates the file
mark to indicate the new file position and extends the EOF, if necessary, to
accommodate the new data.

Parameters
Offset Size and type
$00
~ fileRefNum — Word INPUT value
$o2f -
- dataBuffer - [ongword INPUT pointer
$06(-
- requestCount Longword INPUT value
$0A [-
. transferCount | Longword RESULT value

fileRefNum Word input value: The identifying number assigned to the file by the OPEN call.

dataBuffer Longword input pointer: Points to the area of memory containing the data to
be written to the file,

requestCount Longword input value: The number of bytes to write.

transferCount Longword result value: The number of bytes actually written.

286 Volume 1: Applications and G§/0S Appendixes

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

$27 /O error

$2B write-protected disk

$2E disk switched

$43 invalid reference number
$48 volume full

$4E access not allowed

$5A block number out of range

Appendix A: GS/OS ProDOS 16 Calls 287

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

$0023 WRITE_BLOCK

Description This call writes one 512-byte block of information to a disk specified by device
number.

Normally, you should use D_READ and D_WRITE for all direct device I/O.
WRITE_BLOCK deals only with 512-byte blocks and devices with a maximum of
65,536 blocks, is valid only for the ProDOS FST, and exists only for
compatibility with ProDOS 16.

Parameters
Offset Size and type

¥ plockDevNum - Word INPUT value
$02

—~blockDataBuffer— [ongword INPUT pointer

- —

- blockNum — Longword INPUT value

b —

blockDevNum Word input value: The reference number assigned to the device.

blockDataBuffer Longword input pointer: Points to a data buffer that holds the data to be
written.

blockNum Longword input value: The block number of the destination disk block.

Errors

$11 invalid device request
$27 /O error

$28 no device connected

$2B write-protected disk

$53 invalid parameter

28 Volume 1: Applications and GS/0S Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Appendix B ProDOS 16 Calls and FSTs

This appendix discusses how individual GS/OS file system translators handle
ProDOS 16 (= GS/OS class 0) calls. It shows only the differences in each FST’s
call handling from what is presented in Appendix A, *GS/OS ProDOS 16 Calls.”
See that appendix for the standard way to make ProDOS 16 calls to GS/OS.

Appendix B: ProDOS 16 Calls and FSTs 289

GS/0S Reference (Volume 1) Draft 3 (APDA)

The ProDOS FST

The ProDOS FST translates ProDOS 16 calls to the format used by the ProDOS file system. Actually,
because that is already the file system that ProDOS 16 calls are designed to access, no translation is
necessary. All GS/OS ProDOS 16 calls that pass through the ProDOS FST function exactly as
described in Appendix A.

See Chapter 9 of this volume for more information on the ProDOS FST. For further information on
ProDOS 16, see the Apple ITGs ProDOS 16 Reference.

The High Sierra FST

The main difference between the High Sierra FST and other FSTs is that High Sierra does not support
writing to a file. CD-ROM:is a read-only medium.

Table B-1 lists the ProDOS 16 calls, both meaningful and not meaningful, that the High Siecra FST
supports. A description of each call's differences from its standard meaning (described in Appendix
A) follows.

See Chapter 10 of this volume for more information on the High Sierra file system translator.

20 Volume 1: Applications and GS/0S Appendixes

8/31/88

GY/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Table B1 High Sierra FST ProDOS 16 calls

Meaningful Not meaningful

$06 GET_FILE_INFO $01 CREATE

$08 VOLUME $02 DESTROY

$10 OPEN $04 CHANGE_PATH
$12 READ $05 SET_FILE_INFO
$14 CLOSE $13 WRITE

$16 SET_MARK $15 FLUSH

$17 GET_MARK $18 SET_EOF

$19 GET_EOF $0B CLEAR_BACKUP_BIT
$1C GET_DIR_ENTRY $22 ERASE_DISK
$20 GET_DEV_NUM $24 FORMAT

With the exception of the FLUSH call, all calls on the right side of Table B-1 do nothing and return
error $2B (write-protected). The FLUSH call also does nothing, but it returns no error (carry flag =
clear). '

The following sections describe how the High Sierra FST's handling of some of the calls listed on the
left side of Table B-1 is different from standard ProDOS 16 practice. Calls listed on the left side of
Table B-1 that are not described below are handled exactly as documented in Appendix A.

GET_FILE_INFO ($06)

GET_FILE_INFO retumns certain attributes of an existing block file. The file may be open or closed.
Parameter differences

fileType This word output value equals $000F if the file is a directory; otherwise, it is

$0000 (unknown)—unless the filename extension matches an entry in the file-
type mapping table. See the FSTSpecific call description in Chapter 10, “The

High Sierra FST.”
modDate This word output value always has the same value as createbDate.
modTime This word output value always has the same value a5 createTime.

Appendix B: ProDOS 16 Calls and FSTs 291

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

blocksUsed This longword output value is always the same as the totalBlocks parameter
retumed from a Volume call.

VOLUME ($08)

Given the name of a block device, this call returns the name of the volume mounted in that device
and other information about the volume.

Parameter differences

freeBlocks This longword output value is aways $0000.

GET_DIR_ENTRY ($1C)

This call returns information about a directory entry in the volume directory or a subdirectory.
Before executing this call, the application must open the directory or subdirectory. The call allows
the application to step forward or backward through file entries or to specify absolute entries by
entry number,

The High Sierra FST does not allow READ calls and GET_DIR_ENTRY calls to the same reference
number: if an open file has previously been accessed by GET_DIR_ENTRY, and a READ call is made
with the same reference number, the High Siema FST returns error $4E (invalid access). To avoid the
error, open the directory twice.

Parameter differences

fileType This word output value equals $000F if the file is a directory; otherwise, it is
$0000 ("unknown">—unless the filename extension matches an entry in the file-
type mapping table. See the FSTSpecific call description in Chapter 10, “The
High Sierra FST.”

modDateTime This double longword output value always has the same value as

createDateTime.

auxType This ongword output value is always $0000.

fileSysID This word output value is always $000B for High Sierra or $000C for 15O 9660. If
it has any other value, the High Sierra FST returns error $52 (unsupported volume

type).

22 Volume 1: Applications and GS/0S Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

The Character FST

The Character file system translator (Character FST) provides a file-system-like interface to character
devices such as the console, printers, and modems.

Because the Character FST handles ProDOS 16 calls, all ProDOS 16 applications automatically have
the capability of accessing character devices as files when running under GS/0S. ProDOS 16 itself
does not provide that capability to ProDOS 16 applications.

The Character FST supports this subset of ProDOS 16 calls:

OPEN
NEWLINE
READ
WRITE
CLOSE
FLUSH

Attempting to send any other GS/OS ProDOS 16 call to a character device results in error $58 (not a
block device).

See Chapter 11 for 2 general description of the Character FST.

OPEN ($10)

OPEN establishes an access path to the character file,

Parameter differences

pathname This longword input pointer must point to a character device name.
Errors

In addition to the standard ProDOS 16 OPEN errors, the Character FST can return these errors from an
OPEN call:

$26 driver no resources

$2F driver off line
$54 out of memory

Appendix B: ProDOS 16 Calls and FSTs 293

GS/OS Reference (Volume 1) Draft 3 (APDA)

READ ($12)

The READ call attempts to transfer the requested number of bytes from the specified character file
into the application’s data buffer.

Errors

In addition to the standard ProDOS 16 READ errors, the Character FST can return these efrors from a
READ call;

$23 driver oot open

$2F driver off line

$53 parameter out of range
$54 out of memory

WRITE ($13)

The WRITE call attempts to transfer the requested number of bytes from the application’s data
buffer to the specified character file.

Errors

In addition to the standard ProDOS 16 WRITE errors, the Character FST can return these errors from a
WRITE call:

$23 driver not open
$2F driver off line
$54 out of memory

CLOSE ($14)

The CLOSE call terminates access to the specified (by re £Num) character file. CLOSE also involves
flushing the file (see the FLUSH call) to ensure completion of all data transfer before a character file is
closed.

Errors

In addition to the standard ProDOS 16 CLOSE errors, the Character FST can return these errors from a
CLOSE call:

24 Volume 1: Applications and G§/0S Appendixes

8/31/88

GS/0§ Reference (Volume 1) Draft 3 (APDA) 8/31/88

$23 driver not open
$2F driver off line

FLUSH ($15)

The FLUSH routine completes any pending data transfer to the character file specifed by re fNum. If
the character device is synchronous, all data transfer is by definition completed when the WRITE call
returns, so the FLUSH routine simply returns with no error, If the device is asynchronous (such as
interrupt-driven or DMA), the FLUSH routine waits until all data has been transferred, and then retums.
If the file is multiply opened, all (output) access paths to the character file (not just the one with the
specified refNum) are flushed.

Errors

In addition to the standard ProDOS 16 FLUSH errors, the Character FST can retum these errors from a
FLUSH call:

$23 driver not open
$2F driver off line

ProDOS 16 device calls

The only ProDOS-16 device call is D_INFO, which is handled only by the Device Manager—no FST can
accept this call. Therefore, the standard description of D_INFO in Appendix A is the complete
specification.

See the Introduction and Chapter 1 of Volume 2 for more general information on the Device Manager
and GS5/0S device calls.

Appendix B: ProDOS 16 Calls and FSTs 295

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Appendix C The GS/0S Exerciser

The GS/OS Exerciser is an application that allows you to “exercise” GS/OS by
practicing all its calls from the keyboard. You can learn exactly how each GS$/OS
call works and what its results are before writing it into your programs, The
GS/OS Exerciser is an excellent tool for learning the details of the application
interface to GS/OS.

Appendix C: The GS/OS Exerciser 297

GS/0S Reference (Volume 1)

Draft 3 (APDA)

Starting the Exerciser

Before using the GS/OS Exerciser, be sure to make 2 copy and put the original in a safe place.

Warning! The Exerciser is a powerful program that does not protect you in any way from

Once the program is running, you see the main screen (Figure C-1). Note that the Exerciser uses a text-

destroying data in memory or on any disk you can access. You can easily modify parts of
memory that are already in use, causing a system crash. You can unintentionally overwrite

critical data on disk, even a disk’s directory. Be careful how you use this program/

based display.

Figure C-1

Exerciser main screen

r

GS/0S System Call Exerciser vXX.XX
Copyright 1987,1988 Apple Computer Inc.

10 Aug 1988
All Rights Reserved

$01-Create
$02-Destroy
$03-0SShutdown
$04-ChangePath
505-setFlleInfo
$06-GetFilelInfo
$08-Volume
$09-SetPrefix
$0A-GetPrefix
$0B-ClrBackupbit
50C-SetSysPrefs
$0D=-Null
30E~-ExpandPath

0 Zr4g
LI |

$0F-GetSysPrefs
$10-Open
$1ll-Newline
$12-Read
$13-Write
$14-Close
$15-Flush
$lé6-SetMark
$17~GetMark
$18-SetEQF
$19-GetECOF
$1A-SetLevel

Make inline calls to GS/0S
Catalog a directory

Catalog $00 levels of a directory
Quit back to caller

$1B-GetLevel
$1C~-GetDirEntry
$1D-BeginSession
$1E-EndSession
$1F=-SessionStatus
$20-GetDevNumber
$21-GET_LAST_DEV
$22-READ_BLOCK
$23-WRITE_BLOCK
$24-Format
$25-EraseDisk
$27-GetName

m U=
1

$28-GetBootVol
$29-Quit
$2A-GetVersion
$2B-GetFSTInfo
$2C-DInfo
$2D-DStatus
$2E~-DControl
$2F-DRead
$30-DWrite
$31-BindInt
$32-UnbindInt
$33-FSTSpecific

-~ Make class 0 calls to GS/0S
Modify the contents of memory
Set minimum p_count for all calls
Visit the Monitor

Select command:

8/31/88

28 Volume 1: Applications and GS/0S

Appendixes

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Call options

The GS/OS Exerciser can make almost any call an application makes, and in several different ways.
Here are some of the options:

* Stack/Inline system calls (J): The Exerciser lets you make a call with either of two methods. The
first is a stack-based call: you push the parameter buffer address and the command number onto the
stack and then call the appropriate GS/OS entry point. The second method is the (more familiar)
inline call: you call the appropriate GS/OS entry point and immediately follow with the command
number and the parameter buffer pointer. (ProDOS 8 uses the inline call method.)

In the Exerciser, you toggle between stack-based calls and inline calls by pressing J.
» System call classes (K): GS/OS includes the concept of call classes. Although up to eight classes

are possible, only classes 0 (ProDOS 16-compatible calls) and 1 (standard GS/OS calls) are currently
defined.

By pressing K followed by either the arrow or number keys, you can select which class of call to make.

* Maximum/Minimum parameter counts (P): Many GS/OS calls accept a variable number of
parameters. For each call, there is 2 minimum and a maximum permitted value for the parameter
count (parameter pCount).

By pressing P at either the main screen or the parameter-setup screen (see Figure C-2), you set the
default pcount to either the minimum or maximum for the call being issued. (Only standard GS/OS
calls use the parameter pCount.) Then, if you want something other than the minimum or maximum,
you can reset pCount to the desired value at the parameter-setup screen.

The lower part of the main screen always displays the current settings for the method, class, and
pCount options, The method and class are also displayed on the top line of the parameter-setup
screen (see Figure C-2).

Making GS/OS calls

You make GS/OS calls from the Exerciser by entering call numbers on the main screen. The number
you enter is displayed at the bottom of the screen. You can clear the number at any time by pressing
zero twice in succession.

Appendix C: The G§/OS Exerciser 209

GS/0S Reference (Volume 1)

Draft 3 (APDA)

After entering the number, press the Return key. The parameter-setup screen for the call you selected
is displayed (Figure C-2). Enter a value (or select the default provided by pressing the Return key) for
each parameter; each time you press Retum, the cursor moves downward one position in the

parameter block. The cursor does not stop at any parameter that is a result-only value (that has no

class 1 inline call

esc: main menu

input
input
result
input
input
result

result
result
result
result
result
result
result
result
result
result
result
result

input value).
Figure C-2 Parameter-setup screen
$1C-Get Dir Entry
p_count: $000F
ref_num: 50006
reserved: $0000
base: $0000
displacement: $0001
name_buffer: $000146AA
FINDER.DEF
entry num: $0001
flle_type: $00C9
eof: $00000000
blocks_used: 500000038
create $57090100
time and date: $03000B1S
modification $58113400
time and date: $04000013
access: $00E3
aux_type: 500000100
file sys_id: $0001
option_list: $00014850

Tu 22Dec8? 901

We 20Jang8 1752

Press return to exlt te maln menL. Error $0000: call successful

s

Note:

returns you to the main screen.

If, while you are entering parameters, you wish to abort the call, press the Escape key—it

Pathnames and other text strings are passed to and from GS/OS in buffers referenced by pointers in
the parameter blocks. Therefore, to enter or read a pathname, you must provide a buffer for GS/OS
to read from or write to. In most cases, the Exerciser sets up a default buffer, pointed to by a default

pointer parameter (see, for example, the Create call). The contents of the location referenced by

that pointer are displayed on the screen, below the parameter block. For convenience, you can
directly edit the displayed string on the screen; you needn't access the memory location itself.

* 300 Volume 1: Applications and GS/OS

Appendixes

8/31/88

GS/OS Reference (Volume 1) - Draft 3 (APDA) 8/31/88

After you have entered all the required parameters, press the Return key once more to execute the
call. If everything has gone right, the parameter list now contains any results returned by GS/OS, and
the message " $0000 call successful® appears at the bottom of the screen. If a GS/OS emor occurs, the
proper error number and message are displayed instead. In addition, if an error occurs, a small "c"
appears at the lower right comner of the screen, which indicates that the microprocessor’s carry bit has
been set.

Other commands

The Exerciser has several other useful features.

» List Directory (L,N): There are two items on the main screen that help you catalog a disk. The first
is the List command, which catalogs either a target directory or all online devices (see next item).
The second is the N option, which allows you to specify how many levels to display of subdirectories
and files within the target directory.

From the main screen, select the levels you want by pressing N and then using the number keys or
vertical arrow keys 10 specify the desired number of levels. You can select any number from $00 to
$40. Press Retum to enter your selection. '

Pressing L repeatedly toggles the List command between listing a directory and listing devices. Press
L until “Catalog a directory” appears after “L - " on the main screen. Then press Return to execute the
command (press Escape to abort it).

s List Online: Devices (L): The List Online Devices command allows you quick access to the device
numbers, device names, and volume names of any devices currently connected to the system.

Pressing L repeatedly toggles the List command between listing a directory and listing devices. Press
L until “List Devices Online” appears after “L - " on the main screen. Then press Return to execute the

command (press Escape to abort it). The device-list screen appears (Figure C-3).

Dev # on the screen is the actual hex value that you would use for devNum in the parameter list for a
device call. Device Name and Volume Name are the names as known to the system. If the device
is a drive with a volume that has been removed, the status field will read “Offline”.

Appendix C: The GS/0S Exerciser 301

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88
Figure C-3 Device-list screen
r N
L = List Devices Online esc: main menu
Dev # Device Name Volume Name Status
$0001 .APPLEDISK3.5A :SYSTEM.DISK
$0002 ,APPLEDISK3.5B :SYSTEM, TOCLS
$0003 .CONSOLE
$0004 .APPLEDISKS5.25A Offline
50005 .APPLEDISKS.25B Offline
50006 .SCSI1 :SCUSI
$0007 .DEV2
$0008 .DEV3
Press return to continue: §
J

s Modify Memory (M): By using the Modify Memory command, you can inspect and change the

contents of any memory location.

When you press M the Exerciser prompts you for a full three-byte address. Enter it and press Retum;
the Exerciser gives you an 80-column display of one memory page (256 bytes), with 16 bytes of data
per line (Figure C4). The page contains the address you entered, and the inverse-video cursor
highlights the byte at that address. Using the arrow keys, you can move through the display; pressing

>or <displays the next or previous page.

To modify the contents of a memory location, move the cursor to it and retype the hexadecimal
value you want it to contain. Table C-1 lists the hexadecimal values for all ASCII characters.

Press U to undo a keypress that has modified the data in memory.

32 Volume 1: Applications and G&/OS

Appendies

GS/0S Reference (Volume 1)

Figure C4

Modify-memory screen

Drajt 3 (APDA)

8/31/88

M - Modify the contents of memory

esc: maln menu

01/4600~-
01/4610-
0l1/4620~
01/4630-
0l1/4640-
01/4650-
01/4660-
01/4670-
01/4680-
01/4690~
01/46A0~
01/46B0-
01/46C0-
01/46D0~-
01/46EQ=-
01/46F0-

20
20
20
20
20
20
20
20
20
20
20
4E
20
20
20
20

20
20
20
20
20
20
29
20
20
20
20
44
20
20
20
20

data_buffer:

20
20
20
20
20
20
20
20
20
20
20
45
20
20
20
20

$000146AA

20
20
20
20
20
20
20
20
20
20
20
52
20
20
20
20

QaQ
20
20
20
20
20
20
20
20
20
20
2E
20
20
20
20

Q0
20
20
20
20
20
20
20
20
20
20
44
20
20
20
20

00
20
20
20
20
20
20
20
20
00
20
45
20
20
20
20

value

00
20
20
20
20
20
20
20
20
Q0
20
46
20
20
20
20

9A
20
20
20
20
20
20
20
20
00
20
20
20
20
20
20

00
20
20
20
20
20
20
20
20

0o B

20
20
20
20
20
20

00
20
20
20
20
20
20
20
20

20
20
20
20
20
20

+]1]
20
20
20
20
20
20
20
20
00
20
20
20
20
20
20

20
20
20

20
20
20
20
20
0A
20
20
20
20
20

20
20
20
20
20
20
20
20
20
Qo
20
20
20
20
20
20

20
20
20
20
20
20
20
20
20
46
20
20
20
20
20
20

20
20
20
20
20
20
20
20
20
49
20
20
20
20
20
20

NDER.DEF

Commands:

arrow keys,

>

< U

0.

.F

* Visit the Monitor (R): The Monitor program is 2 firmware tool for debugging and executing
programs. It is described in the Apple IIGS Firmware Reference. With the Monitor, you can inspect and
modify the contents of memory, assemble and disassemble code in a limited manner, and execute
code in memory.,

You can temporarily leave the Exerciser to use the Monitor program by pressing R from the main
screen. The command functions exactly like the Control Panel “Visit Monitor” command and the
BASIC command “call -151”. When you are ready to return to the Exerciser, press Control-Y.

* Quit the Exerciser (Q): To leave the Exerciser—and return to the Finder or other startup program—
press Q from the main screen. Of course, you can also quit by selecting the GS/0S Quit call ($29 on
the main screen), filling out its parameters on the parameter-setup screen, and executing it.

Appendix C: The GS/OS Exerciser 303

GS/0S Reference (Volume 1) Draft 3 (APDA)
Table C-1 ASCII table
A = ASCIl character; D = decimal value H = hexadecimal value: B = binary value
A _D H B A_D H] A D H B A_D H B
ml 0 0 00000000 sp 32 20 00100000 @ 64 40 01000000 T 96 60 01100000
sch 1 1 00000001 ! 33 21 00100001 2 97 61 01100001
s 2 2 00000010 * 34 22 00100010 A 65 41 01000001 b 98 62 01100010
ex 3 3 00000011 B 66 42 01000010 c 99 63 01100011
eot 4 4 00000100 # 35 23 00100011 C 67 43 01000011
$ 3 24 00100100 D 68 44 01000100 d 100 64 01100100
enq 5 5 00000101 % 37 25 00100101 E 69 45 01000101 e 101 65 01100101
ack 6 & 00000110 & 38 26 00100110 f 102 66 01100110
bel 7 7 00000111 ' 39 27 00100111 F 70 46 01000110 g 103 67 01100111
bs 8 & 00001000 G 71 47 01000111 h 104 68 01101000
h 9 9 00001001 (40 28 00101000 H 72 48 01001000
) 41 29 00101001 I 73 49 01001001 i 105 69 01101001
IF 10 A 00001010 * 42 2A 00101010] 74 4A 01001010 j 106 6A 01101010
vt 11 B 00001011 + 43 2B 00101011 k 107 6B 01101011
f 12 C 00001100 , 44 2C 00101100 K 75 4B 01001011 1 108 6C 01101100
e 13 D 00001101 L 76 4C 01001100 m 109 6D 01101101
so 14 E 00001110 - 45 2D 00101101 M 77 4D 01001101
. 46 2B 00101110 N 78 4E 01001110 n 110 6E 01101110
si 15 F 00001111 / 47 2F 00101111 O 79 4F 01001111 o 111 6F ol101111
dle 16 10 00010000 0 48 30 00110000 p 112 70 01110000
del 17 11 00010001 .1 49 31 00110001 P 80 S0 01010000 q 113 71 01110001
de2 18 12 00010010 Q 81 51 01010001 r 114 72 01110010
de3 19 13 00010011 2 50 32 00110010 R 82 52 01010010
3 51 33 00110011 S 83 53 01010011 s 115 73 01110011
ded 20 14 00010100 4 52 34 00110100 T 84 54 01010100 t 116 74 01110100
nak 21 15 00010101 S 53 35 00110101 u 117 75 01110101
syn 22 16 00010110 6 54 36 00110110 U 85 55 01010101 v 118 76 01110110
etb 23 17 00010111 vV 86 56 01010110 w 119 77 01110111
an 24 18 00011000 7 S5 37 00110111 W 87 §7 01010111
8 56 38 00111000 X 88 S8 01011000 x 120 78 01111000
em 25 19 00011001 9 57 39 00111001 Y 89 59 01011001 y 121 79 01111001
sub 26 1A 00011010 : 58 3A 00111010 z 122 7A 01111010
esc 27 1B 00011011 ;59 3B 00111011 Z 90 SA 01011010 { 123 78 o1111011
fs 28 1C 00011100 [91 sSB 01011011 1 124 7C 01111100
28 1D 00011101 < 60 3C 00111100 \ 92 5C 01011100
= 61 3D 00111101] 93 sD 01011101 } 125 7D 01111101
s 30 1E 00011110 > 62 3B 00111110 A 94 SE 01011110 - 126 7B 01111110
us 31 1F 00011111 ? 63 3F 00111111 del 127 7F 01111111
- 95 SF 01011111
34 Volume 1: Applications and GS/OS Appendixes

8/31/88

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Appendix D GS/OS System Disks and Startup

This appendix lists the directories and principal files that make up a GS/OS
system disk for the Apple IIgs computer. A typical system disk has all of these
files plus others, which may be applications, desk accessories, utilities,
initialization files, documents, or other data files.

In some very restricted instances, it may be possible to fit an application and
its required system files onto a 800K diskette; most applications, however,
require two 800K diskettes.

Appendix D: GS/OS System Disks and Startup 305

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Application system disks

Fach application program or group of related programs comes on its own application system disk.
The disk has all of the system files needed to run that application, but it may not have all the files
present on a complete system disk, Different applications may have different system files on their
application system disks.

Table 2-1 shows the files that must be present on all application system disks.

Table D-1 Directories and files on a GS/OS system disk
Direct File Contents
Prodos Required: A simple loader that loads the START.GS.OS file and
executes it
Appletalk/ Conuins AppleTalk setup files
Icons/ Contains Finder-related information
Finder.icons Icons used by the Finder
Finder.def Data used by the Finder
System/ Required: Contains GS/OS and other important system files
GS.0S Required: The GS/OS operating system and the System Loader
START.GS.0S Required: The GS/OS loader and program dispatcher
FSTS/ Required: Contains all File System Translators
System.setup/ Required: Contains setup files that execute at system startup
Tool.setup Required: Initializes tool sets at startup
Drivers/ Contains GS/0S device drivers
Tools/ Contains RAM-based tool sets: required if RAM-based tools are
needed
Fonts/ Contains font files: required if fonts are needed
Desk.accs/ Conuains desk accessories: required if desk accessories are
provided
Start The program automatically executed at startup; this should usually
be the Finder
Error.msg Required: GS/OS error messages
P8 Required if ProDOS 8 applications will be run from GS/OS

306 Volume 1: Applications and GS/OS

Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

System startup from ProDOS volumes

Disk blocks 0 and 1 on an Apple IIGS system disk contain the boot code. The boot code is functions
identically for ProDOS 8, ProDOS 16 and GS/OS system disks. This allows ProDOS 8 system disks to
boot on an Apple 11Gs, and it also means that the initial part of the bootstrap procedure is identical
for all three operating systems.

First, the boot firmware in ROM reads the boot code (blocks 0 and 1) inte memory and executes it.
For a system disk with a volume name represented by */,

1,

2.

The boot code searches the disk’s volume directory for the first file named PRODOS with the file
type $FF.

If the file is found, it is loaded and executed.

From this point on, the three operating systems behave differently. On a ProDOS 8 system disk, the
file named PRODOS is the ProDOS 8 operating system. On a ProDOS 16 system disk, the PRODOS
file is not the operating system itself; it is the operating system loader and program dispatcher. On a
GS/0S system disk, the PRODOS file contains only a startup routine and file-system-specific
routines that are used by the operating system loader and program dispatcher. The operating system
loader and program dispatcher are contained in the file */SYSTEM/START.GS.OS.

When it receives control from the boot code, */PRODOS performs the following tasks -

1
2.

3.

Checks to make sure it's running on an Apple 1IGS with ROM version 01 or greater.
Loads the file */SYSTEM/START.GS.OS.

The START.GS.OS file is divided into two parts: GLoader and GQuit. GLoader is the operating
system loader. It's temporary and is used only during system startup. GQuit is the program
dispatcher. It contains the code used for starting and quitting ProDQOS 8 and GS/OS applications.

Transfers control to GLoader.

When it receives control, GLoader performs the following tasks:

Puts up the GS/OS splash screen and initializes the Apple IIGS tools and the Memory Manager.

Relocates the GS/OS program dispatcher to an area in memory where it will reside permanently and
relocates part of the */PRODOS file to an area in memory where it will reside permanently.

Gets the name of the boot volume and the name of the start FST.

Loads the GS/OS operating system and Apple IIGS System Loader (file */SYSTEM/GS.0S) and then
installs the System Loader.

Loads the file */SYSTEM/ERROR.MSG.

Appendix D: GS/0S System Disks and Startup 307

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

¢ loads the start FST. The start FST must reside in the */SYSTEM/FSTS subdirectory, must have a file
type of $BD, and must have the high bit of its auxiliary type set to 0.

¢ [Initializes GS/OS and installs the start FST.

» Loads and instalis the rest of the FSTs in the */SYSTEM/FSTS subdirectory. The files must be Apple
1IGS load files of type $BD. If bit 15 of a file’s auxiliary type is 1, the FST is not loaded.

» Sets prefix 0 to the boot volume name, and prefix 2 to */SYSTEM/LIBS.
* GLoader selects the application to run by taking the following steps:
a. It first looks for a type $B3 file named */SYSTEM/START. Typically, that file should be the
Finder, but it could be any Apple IIGS application. If START is found, it is selected.

b. If there is no START file, GLoader searches the boot volume directory for a file that is either one
of the following types:

e 2 ProDOS 8 system program (type $FF) with the filename extension .SYSTEM
* 3 GS/0S application (type $B3) with the filename extension .SYS16
Whichever is found first is selected.

Note 1f a ProDOS 8 system program is found first, but the ProDOS 8 operating system (file
*/SYSTEM/P8) is not on the boot volume, GLoader then searches for and selects the first
ProDOS 16 application,

* Executes the file */SYSTEM/SYSTEM.SETUP/TOOL.SETUP. The TOOL.SETUP file must have file
type $B6, and executes, in turn, every file (other than TOOL.SETUP) that it finds in the
*/SYSTEM/SYSTEM.SETUP subdirectory. The files must be Apple IIGS load files of type $B6 or $B7.
If the high bit of a file’s auxiliary type is 1, the setup file is not executed.

o Installs all desk accessories it finds in the */SYSTEM/DESK.ACCS subdirectory. The files must be
Apple TIGS load files of type $B8 or B9. If Bit 15 of a file’s auxiliary type is 1, the desk accessory is
not loaded.

Finally, GLoader makes a standard GS/OS Quit call to launch the selected application. It is GQuit,
not GLoader, that actually loads and launches the selected application.

System startup from non-ProDOS volumes

GS/0S supports booting from non-ProDOS volumes. Special boot blocks have to be written out to
the boot volumes, as well as a boot file containing the startup routine and the file-system-specific
routines required by GLoader and GQuit. The boot file is a replacement for the file PRODOS, which
is used when booting from ProDOS volumes.

38 Volume 1: Applications and GS/OS Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

The boot blocks must load the boot file at location $2000 in bank $00 and then execute the boot file
by doing a JMP $2000. The boot blocks must make sure that MSLOT ($07f8) is set up to contain the
slot number of the boot device since this value will be needed by the boot file and GLoader, The
boot file must contain the following routines: Startup, ReadlnFile, GetBootName and GetFstName.
These routines are described in the following sections.

The boot file must begin with a jump table that looks like this:

jump_table start
jmp startup ¢ 3 bytes
nop 7 1 byte of padding
dec i2'readinfile" ;y offset into table = 4
T de 12*gethootname’ ; offset into table = 6
de i2'getfstname’ ; offset into table = 8
de 12 ' xxxx-Jump_table’ ; offset into table = 10
aux_value ds 2 ; offset into table = 12
end

The jump table must be the first thing in the boot file so that when the boot file is loaded, the table
begins at location $2000. GLoader and GQuit use the table to call the routines in the boot file.

The entry at offset 10 must contin the size, in bytes, of the permanent part of the boot file. The
permanent part of the boot file consists of the jump table, the ReadInFile routine, the GetBootName
routine and any internal routines and/or data required by ReadInFile and GetBootName. The Startup
and GetFstName routines are only used during boot time and so are temporary.

The boot file must be organized with the permanent code and data at the beginning of the load file
and the temporary code and data at the end of the load file. GQuit uses the size specified in the
jump table to determine how much of the boot file (beginning at location $2000) to save in memory
for later use. When GQuit is quitting from a ProDOS 8 application into a GS/OS application, it needs
to reload GS/OS. In order to do this, it relocates the saved portion of the boot file to location
$2000, calls the GetBootName routine to verify that the boot volume is in the boot drive, and then
calls the ReadInFile routine to read in the necessary files.

The entry at offset 12 must be set up by the Startup routine to contain the auxiliary type of the
START.GS.OS file. GLoader uses this value when it puts up the splash screen.

Startup (boot file routine)

The Startup routine must perform the following tasks:

1. Determine that it is running on an Apple IGS with ROM version 01 or greater, and if not, report a fatal
error.

2. Setthe e, m, and x flags in the processor status register to zero to enable full native mode.

Appendix D: GS/0S System Disks and Startup 309

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

3. Set the bank register to $00, set the direct register to $0000, and set the stack register to $O1FF.

4. Obtain the boot slot aumber from MSLOT ($07f8) and save it in the permanent code area for later use
by ReadInFile and GetBootName. Note that GLoader also uses MSLOT, so its contents must still be
valid when control is transferred to GLoader.

5. Load the file */SYSTEM/START.GS.0S at location $6800 in bank $00.
6. Store the auxiliary type of the START.GS.OS file at offset 12 in the jump table.
7. Transfer control to GLoader by doing a JMP $6800.

The startup routine from the ProDOS boot file is included in this appendix as an example.

ReadInFile (boot file routine)

This routine finds the requested file, reads it into memory at the location specified, and returns the
eof, file type and auxiliary type. The pathname of the requested file is returned as a GS/OS string;
that is, it begins with a length word and the filenames are separated by colons. There is no leading or
trailing colon.

_ The pathname does not include the volume name since this routine is called only to read from the
boot volume. Also, the Startup routine should have saved the boot slot number in the permanent
dara area. For example, to load the file */SYSTEM/GS.0S, GLoader will call this routine with the
partial pathname "SYSTEM:GS.OS".

Entry and exit are in full native mode. The direct register, data bank register, and language card state
must be preserved.
The input parameters are as follows:

4 bytes space for EOF result

2 bytes space for auxiliary type result

2 bytes space for file type result

4 bytes pointer to partial pathname of file to read

4 bytes pointer to buffer to read file into

2 bytes return address

The output parameters are as follows:
4 bytes EOF
2 bytes auxiliary type

310 Volume 1. Applications and GS/0S Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

2 bytes file type
¢ = 0 if successful, ¢ = 1 if error
A - contains error code if ¢ = 1

GetBootName (boot file routine)

The GetBootName routine returns the name of the boot volume. The retumed string must begin with
a length word and must contain a leading colon but not a trailing colon. The maximum length of the
volume name is 32 characters. if the volume name is longer than 32 characters, an error shouid be
returned.

Entry and exit are in full native mode. The direct register, data bank register, and language card state
must be preserved.
The input parameters are as follows:

4 bytes pointer to space for volume name

2 bytes retumn address

The output parameters are as follows:
¢ = 0 if successful, ¢ = 1 if error
A - contains error code if ¢ =1

GetFSTName (boot file routine)

The GetFstName routine returns the filename of the FST that is associated with this boot file. For
example, the ProDOS boot file returns the name "PRO.FST", which is the filename of the ProDOS

FST. The retumned string must begin with a length word and must not contain any separators. The

maximum allowed length of the filename is 32 characters.

Entry and exit are in full native mode. The direct register, data bank register and language card state
must be preserved.

The input parameters are as follows:
4 bytes pointer to space for FST name
2 bytes return address

The output parameters are as follows:

Appendix D: GS/OS System Disks and Startup 311

GS/0S Reference (Volume 1) Draft 3 (APDA)

none

Sample boot file startup routine

The following sample code shows part of the ProDOS boot file startup routine.

startup start
using pb_data
longa on
longi on

At cnset, we don't know what machine we are being run on.
; If we're not being run on an Apple //GS we must hang with an
error message.

The followlng code will run on both the 65816 and 6502
processors to ensure 8-bit processing.

e e

tsx :save stack pointer

lda #$3030

nop ;required filler

pha ;push $30 on stack

plp ;and retrieve for full 8-bit mode

longa off
longi off

txs srestore stack

; The above code looks like the following for a 6502...
;7 (this code essentially does nothing on a 6502)

; tsx

: lda $530

; bmi nop ;will never be taken

; pha

; plp

; txs
lda romin jbank in rom
sec ;go into //GS id routine with c set
jsr idroutine ;are we on a //GS?
bcs show_err ;no
cpy #S01 7ls rom revision 01 or greater?
bee show_err ;no

; At this point we must be in emulation meode on a //GS.

pea 30000 jensure direct page at $0000
rld

phk ;set data bank to bank $6C
plb

312 Volume 1: Applications and GS/OS Appendixes

8/31/88

GS/0S Reference (Volume 1)

Draft 3 (APDA)

;The 1d sp routine reads MSLOT and sets up information used by ReadInFile

read ok

r

Now transfer control tc START.GS.0S

isr

clc
xce
rep
longa
longi

lda
tcs

rha
pha
pha
pha

pea
pea
ldx
jsl

anop
pla
pla
sta
pla
pla

id_sp

#3530
on
on

#50LEE

.; Now read in the */SYSTEM/START.GS.0S file.

start_path|-16

start_path
o]
start_loc
readinfile
read ok

50000
startup_err
#51503
$el0000

{aux_value

jmp start_loc
show_err anop

longa off

longi cff
; Enter this routine

i

Enter this

;begin native mode
;begin l6-bit mode

;jset stack to SOLff

;push 8 bytes for results

;push polinter to partial pathname
;jof file to be loaded

;push address of where file should
tbe loaded

;find the file and read it in
ijbranch if no error

;push error number

:push address of

;jerror message

;call SysFailMgr tool call to
;report the error - docesn't return

;ignore filetype

rget auxtype

;and store at end of jump table
;}ignore eof

with c=1 for wrong system error.

routine with c=0 for wrong rom error.

php
lda
sta
sta
sta

romin
clr80vid
clraltchar
clr80col

;save 'c' around setup stuff

;rom in for monitor's home routine
;disable 80 column hardware
;sWwiten in primary character set
;disable 80 column store

Appendix D: GS/OS System Disks and Startup

313

8/31/88

Draft 3 (APDA)

8/31/88

jtext pg 1, text mode, 40 col window
;jdoes a 'pr#0' (puts in coutl in csw)
swhite chars on black background
;clear screen

;which message gets shown?

yget length of message

iget length of message

;get character

;get character

;store directly to screen

;done

GS/0S Reference (Volume 1)
jsr init
isr setvid
isr setnorm
isr home
plp
ldy not_a_gs
bes print_it
ldy wrong_rom
print_it anop
lda not_a gs,y
bes print_it2
1lda wrong_rom,y
print_it2 anop
sta screen,y
dey
bne print_it
hang jmp hang
end
pb_data data

;firmware entry points

idroutine equ $felf
setvid equ $fed3
setnorm equ Sfedd
init equ Sfh2f
home equ Sfe58
;soft switches
clr80col equ $c000
clrsovid equ $c00c
clraltchar equ Sc00e
romin equ $co8l
;misc., equates
screen equ 305a8
mslot equ $07f8
start_loc equ $006800
;strings
start_path dc i2'18e

de ¢'SYSTEM:START.GS.05"
fst_name de i2'7

de Cc'PRO.FST'

314 Volume 1: Applications and GS/OS

://GS id routine

;reset output to screen

;normal white text on blk background
;text pg 1, text mode, 40 col window
shome cursor and clear te end of screen

;disable 80 column store
;disable B0 colume hardware
;normal lc, flashing uc
renable rom read

:left center of 40 column screen
;slot # of boot device
:where START,GS5.0S is loaded

;name of start FST

Appendixes

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

startup err dc i1r4o0*
de c'Unable to load START.GS.CS file. Error=$'
msb on
not_a_gs de ilt3s
dc c'GS/0S REQUIRES APPLE IIGS HARDWARE '
Wrong_rom dc i1+38"
de c'GS/CS needs RCM version 01 or greater °
end

Appendix D: GS/OS System Disks and Startup 315

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Appendix E Apple Extensions to ISO 9660

This appendix describes a protocol through which file-type information can be
added to CD-ROM files or other files in the ISO 9660 format (which does not
recognize file typing). With this protocol, ProDOS and Macintosh files can be
stored on compact discs—as valid ISO 9660 files—while retaining all
information related to file type.

You may need to read this appendix if you are

* an Apple Developer working with ISO 9660

¢ 2 publisher of authoring tools for ISO 9660 discs
¢ 2 publisher of ISO 9660 discs

e a publisher of ISO 9660 receiving system software

' High Sierra suppont: 150 9660 is the international file system standard for CD-
ROM; it is based on the original High Sierra format, but is
not identical to it. The protocol described in this
appendix is meant to apply to the ISO 9660 file system;
however, the High Sierra FST (See Chapter 10 of this
volume) supports the protocol for High Sierra-formatted
files also.

Appendix E: Apple Extensions to SO 9660 317

GS/0S Reference (Volume 1) Draft 3 (APDA) /31/88

What the Apple extensions do

Creating an ISO 9660 CD-ROM disc containing ProDOS files or Macintosh hierarchical file system (HFS)
files can have great advantages: the large storage capacity of compact discs means cost savings and
greater convenience when distributing large amounts of data, and the position of ISO 9660 as an
international standard means that the files will be accessible on a large variety of machines. Unfortunately,
both the HFS and ProDOS file systems require information that the ISO 9660 file system does not support:
ProDOS requires a file type and an auxiliary file type, and HFS requires a file type, a file creator, and,
frequently, an icon resource.

This appendix defines a protocol that extends the 1SO 9660 specification. The protocol is designed to
both solve existing compatibility problems and allow for future expansion; at present, it has two principal
features:

e It permits inclusion of HFS-specific or ProDOS-specific information in files, without corrupting the
ISO 9660 structures. Discs created using the protocol are valid ISO 9660 discs and should function
normally on non-Apple receiving systems.

* It defines 2 mechanism for preserving filenames across translations form ProDOS to 1O %660 and
back, and gives suggestions for optimum translations of Macintosh filenames.

The protocol uses the systemIdentifier field in the Primary Volume Descriptor for global
information, and the systemuse field in the directory record for file-specific information.

The protocol identifier

Discs that have been formatted with the Apple extensions to ISO 9660 are identified by their
protocol identifier, which has the following characteristics:

Location: Systemidentifier field in the Primary Volume Descriptor.

Size: 32 bytes. It is the entire contents of the SystemIdentifier field.

318 Volume 1: Applications and GS/OS Appendixes

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Contents: "APPLE COMPUTER, INC., TYPE: " followed by the protocol flags. In
hexadecimal, the protocol identifier looks like this:

41 50 50 4C 45 20 43 4F 4D 50 55 54 45 52 2C 20
49 4E 43 2E 2C 20 54 59 50 45 3A 20 3x 3x 3x 3x

The protocol identifier is considered valid if its first 28 bytes match the first 28
characters above.

Protocol flags: 4 bytes of nibble-encoded information (represented as “3x” in the previous
example). Nibble encoding is necessary in order to guarantee that the bytes
represent legal ISO 9660 a-characters (printable characters). The flag bytes are
numbered 0-3; flag-byte 0 is the byte following the space ($20). The bits of
each flag byte are numbered 07, 0 being the least significant. The flag bytes are
presently defined as follows:

flag-byte 0:

must be 1

reserved —
Perform ProDOS filename transformation —

Appendix E: Apple Extensions 10 IS0 9660 319

GS/OS Reference (Volume 1) Draft 3 (APDA)

flag-byte 3:

(rlefsf4f3f2fr]o]

—' [
must be 0 J

mmust be 0
must be 1
must be 1

Apple Extensions version number —

(1 indicates this version)

The Directory Record SystemUse Field

Directory records in the ISO 9660 specification have the following format:

320 Volume 1: Applications and GS/OS Appendixes

8/31/88

GS/0S Reference (Yolume 1) Draft 3 (APD4)
byte DirectoryRedLength

byte XARlength

struct ExtentLocation

struct DataLength

struct RecordingDateTime

byte FileFlags

byte FileUnitSize

byte InterleaveGapSize

long VolumeSequenceNum

byte FileNameLength

char FileName [FileNameLength]
byte RecordPad

char SystemUse [SystemUselLength]

The Recordpad field is present only if needed to make DirectoryRedLength an even
number. If RecordPad is present, its value must be zero (§00).

The systemUse field is an optional field; if it is present, its length (equal to
SystemUseLength) must be an even number,

The systemUse field, when present, must begin with a signature word , followed by a one-byte
systemuseID, followed by file-specific information. The signature word allows a receiving
system to ensure that it can interpret the following data correctly, and the sy stemUseID
determines the type and format of the information that follows.

The Apple signature word (Applesignature) is defined as “B A” ($42 41).

Receiving systems must perform a simple calculation to determine if the Sy stemuse field is
present in any given directory record. It is present if

DirectoryRcdlength-FileNamelLength >34

Receiving systems should first verify that the systemuse field is present, then check for
AppleSignature before interpreting the SystemUselD.

Appendix E: Apple Extensions to ISO 9660

32

8/31/88

GS/0S Reference (Voiume 1) Draft 3 (APDA) 8/31/88

SystemUselD

SystemUseID can have the values shown in Table E-1.

Table E-1 Defined values for systemuseID

Value Meaning

$00 (reserved)

$01 ProDOS file_type and aux_type follow

$02 HFS fileType and fileCreator follow

$03 HFS fileType, fileCreator follow (bundle bit set)

$04 HFS fileType, fileCreator, and ICN# resource (128-byte icon) follow
$05 HFS fileType, fileCreator, ICN# resource follow (bundle bit set)

$06 HFS fileType, fileCreator, Finder flags follow

$07-FF (reserved)

Table E-2 defines the contents of the systemuUse field for each defined value of systemuserp.

Table E-2 Contents of systemuUse field for each value of systemuseIn

Offset __Contents

SystemUselD=01 (ProDOS):

$00-01 $42 41 (AppleSignature)

$02 $01 (SystemUseID)

$03 ProDOS file type

$04-05 ProDOS aux type (LSB-MSB)’
SystemUseID=02 (HFS):

$00-01 $42 41 (AppleSignature)

$02 $02 (SystemUseID)

$03-06 HFS fileType (MSB-LSB)
$07-0A - HPS fileCreator (MSB-LSB)’
$0B (Padding for even length)

32 Volume 1: Applications and GS/OS- Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

SystemUseID=03 (HFS, bundle bit set):

$00-01 $42 41 (AppleSignature)
$02 $03 (SystemUseID)

$03-06 HFS fileType (MSB-LSB)’
£07-0A HFS fileCreator (MSB-LSB)'
$0B (Padding for even length)

SystemUselD=04 (HFS, icon):

$00-01 $42 41 (AppleSignature)

$02 $04 (SystemUseID)

$03-06 HFS fileType (MSB-LSB)"
$07-0A HFS fileCreator (MSB-LSB)"
$0B-8A HFS ICN# resource (MSB-LSB)
$8B (Padding for even length)
SystemUselD=05 (HFS, icon, bundle bit set):
$00-01 $42 41 (AppleSignature)

$02 $05 (SystemUseID)

$03-06 HFS fileType (MSB-LSB)’
$07-0A HFS fileCreator (MSB-LSB)"
$0B-8A HFS ICN# resource (MSB-LSB)
$8B (Padding for even length)

SystemUselD=06 (HFS, Finder flags)":

$00-01 $42 41 (AppleSignature)

$02 $05 (SystemUseID)

$03-06 HFS fileType (MSB-LSB)"
$07-0A HFS fileCreator (MSB-LSB)’
$0B-0C HFS Finder flags (MSB-LSB)’

"(MSB-LSB) = the most significant byte occupies the lowest address, the least significant byte, the highest address;
(LSB-MSB) = the least significant byte occupies the lowest address, the most significant byte, the highest address.

“To fill the Finder flags field here, premastering software can simply copy the finder flags as retrieved by the HFS call

GetFInfo. Only bits 5 (always switch-launch), 12 (system file), 13 (bundle bit), and 15 (locked) are used. All other bits
are either ignored or always set by the FST, See Macintosh technical note #40 for more details abour the Finder flags.

Appendix E: Apple Extensions to ISO 9660 323

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Filename transformations

The rules governing permissible filenames are different under 1SO 9660 than under either ProDOS or
Macintosh HFS. Therefore, one problem with putting ProDOS or HFS files on an ISO 9660 disc is how
to rename them. Ideally there should be a simple, reversible transformation that can be applied to a
filename to make it a legal ISO 9660 name, and reversed to restore the original ProDOS or HFS name.

Such a transformation exists for ProDOS and is given here. There is none for HFS, but guidelines to
minimize changes during transformation are listed.

ProDOS

Legal ProDOS filenames differ from legal filenames under ISO 9660 in these ways:
» ProDOS filepames allow multiple periods; ISO 9660 filenames do not.

* SO 9660 requires that both of the separators period () and semicolon (;) occur in each filename, and
that the semicolon be followed by a version number. (This requirement is for nondirectory files only.)

The following steps constitute a reversible transformation that preserves ProDOS filename syntax. That
means that an authoring tool can apply the transformation to any ProDOS file to get a legal ISO 9660
filename, and that a receiving system can reverse the transformation to hide from an application the fact
that a transformation has occurred. A user can therefore access the file using its original ProDOS
filename. '

When creating an ISO 9660 disc from ProDOS source files, the authoring tool must perform the following
transformation on a/f filenames:

1. Replace all periods in the ProDOS filename with underscores. If the file is a directory file, that
completes the transformation.

2. [If the file is not a directory file, append the characters ;1" to the filename. It is now a valid ISO
9660 filename,

After all filenames have been transformed, the authoring tool must set the ProDOS transformation bit in
the protocol identifier, described earlier in this appendix.

Table E-3 shows some examples of the transformation.

324 Volume 1: Applications and GS/0S Appendixes

GS/0S Reference (Volume 1) Draft 3 (APDA) 8/31/88

Table E-3 ProDOS-to-ISO 9660 filename transformations

ProDOS filename kind of file 1SO 9660 filename
PRODOS standard PRODOS.;1
BASIC.SYSTEM standard BASIC_SYSTEM.;1
SYSTEM directory SYSTEM
DESK.ACCS directory DESK_ACCS
START.GS.0S standard START_GS_0S.:1

Volume name: The ProDOS volume name becomes the ISO 9660 Volume Identifier in the Primary
Volume Descriptor. It is a filename and, therefore, must be transformed like other
ProDOS filenames. It must be transformed as a directory name (periods replaced with
underscores).

In use, the receiving system can inspect the ProDOS transformation bit in the protocol identifier, and
handle the necessary conversions such that the original ProDOS filenames can be used to refer to all files
and directories on the volume. The receiving system performs the above transformation on user-supplied
filenames before searching for them on disc, and reverses the transformation before presenting filenames
to the user.

Remember that this transformation cannot be done on a file-by-file basis; it must be applied to every
file and directory on a disc.

Macintosh HFS

Because HFS file naming rules are very flexible, most HFS filenames are illegal in the ISO 9660
specification. Furthermore, no reversibie transformation is possible without degrading
performance; unlike with ProDOS, there is no simple conversion from all valid Macintosh HFS
filenames to valid ISO 9660 filenames, To make the transformations as consistent as possible,
however, Apple recommends that authoring tools and receiving systems follow these guidelines
when performing HFS-to-ISO 9660 transformations:

1. Convert all lowercase characters to uppercase.

2. Replace all illegal characters, including periods, with underscrores.

3. If the filename needs to be shortened, truncate the rightmost characters.

4. If the file is not a directory file, append the characters “.;1” to the filename.

Such a transformation is not reversible, but if it is followed the results, will at least be consistent
across all files and discs.

Appendix E: Apple Extensions to [SO 9660 325

GS/OS Reference (Volume 1) Draft 3 (APDA) - 8/31/88

ISO 9660 associated files

An associated file under ISO 9660 is analogous to the resource fork of an HFS file. The format of
associated files is defined in the ISO 9660 specification; the Apple extensions do not change the
format in any way. For clarity, however, this section restates the definition and gives an example.

An associated file has these characteristics:

s It is one of two identically named files in a directory; the associated file has exactly the same file
identifier as its counterpart,

¢ It resides immediately before its counterpart in the directory.

o It has the associated bit set in the file flags byte of the directory record.

The associated file is equivalent to the resource fork of an HFS file; its counterpart is equivalent to
the data fork of the same HFS file,

For example, if the file *ANYFILE.;1* has an associated file, two adjacent directory records will be

named “ANYFILE.;1*. The first one (the resource fork) will have the associated bit set, the second
one (the data fork) will have the associated bit clear.

3% Volume 1: Applications and GS/OS Appendixes

GS/OS Reference (Volume 1) Dmaft 3 (APDA) - 8/31/88

Appendix F GS/OS Error Codes and Constants

This appendix lists and describes the the errors that an application can receive
as a result of making a G$/0S call.

Appendix F: G§/OS Emor Codes and Constants 327

GS/0S Reference (Volume 1)

Column 1 in Table F-1 lists the GS/OS error codes that an application can receive. Column 2 lists the
predefined constants whose values are equal to the error codes; the constants are defined in the
GS/0S interface files supplied with development systems. Column 3 gives a brief description of what

Draft 3 (APDA)

s

each eror means.

Table F-1 GS/0S errors

Code Constant Description

$01 badSystemCall bad GS/OS call number

$04 invalidPcount parameter count out of range
$07 gsosActive GS/0S is busy

$10 devNotFound device not found

$11 invalidbevNum invalid device number (request)
$20 drvrBadReq invalid request ‘

$21 drvrBadCode invalid control or status code
$22 drvrBadParm bad call parameter

$23 drvrNotOpen character device not open
$24 drvrPriorOpen character device already open
$25 irgrableFull interrupt table full

$26 drvrNoResrc resources not available

$27 drvrIOError 1/0 error

$28 drvrNoDevice no device connected

$29 drvrBusy driver is busy

$2B drvrWrtProt device is write protected
$2C drvrBadCount invalid byte count

$2D drvrBadBlock invalid block address

$2E drvrDiskSwitch disk has been switched

38 Volume 1: Applications and GS/OS

Appendixes

8/31/88

" Draft 3 (4PDA) N

GY/0S Reference (Volume 1)

Table F-1 GS/0S errors (continued)

Code Constant Description _

$2F drvrOffLine device off line or no media present it
$40 badPathSynta;: ,_l invalid pathname syntax , J
$43 invalidRefNum invalid reference number B _
$44 pathNotFound subdirectory does not exist ' o
$45 volNotFound volume not found

$46 fileNotFound file not found

$47 dupPathname create or rename with existing name

$48 volumeFull volume full error

$49 volDirFull volume directory full

$4A badFileFormat version error {incompatible file format)

$4B badstoreType unsupported (or incosrect) storage type

$4C eofEncountered end-of-file encountered. . .

$4D outOfRange position out of range , st
$4E invalidAccess access not allowed

$4F buffTooSmall buffer too small

$50 fileBusy file is already open

$51 dirError directory error

$52 unknownVol unknown volume type .

$53 paramRangeErr parameter out of range s
$54 outOfMem out of memory
$57 dupVolume duplicate volume name

$58 notBlockDev not a block device

$59 invalidLevel specified level outside legal range

$5A damagedBitMap block number too large

$5B badPathNames invalid path names for ChangePath

$5C notSystemFile not an executable file

Appendix F: GS/OS Error Codes and C 'ts 329#

GS/0S Reference (Volume 1)

stack: A list in which entries are added
(pushed) and removed (pulled) at one end
only (the top of the stack), causing them to
be removed in last-in, first-out (LIFO) order.
The term the stack usually refers to the
particular stack pointed to by the 65C816
stack pointer.

standard Apple II: Any Apple II computer
that is not an Apple IIGS. Since previous
members of the Apple II family share many
characteristics, it is useful to distinguish them
as a group from the Apple IIGS. A standard
Apple Il may also be called an §-bit Apple II,
because of the 8-bit registers in its 6502 or
65C02 microprocessor.

standard file: A named collection of data
consisting of a single sequence of bytes.
Compare extended file, directory file.

standard GS/OS calls: Also called class 1
calls or simply GS/OS cails, the primary set of
application-level calls in GS/OS. They
provide the full range of GS/OS capabilities
accessible to applications. Besides GS/OS
calls, the other application-level calls avaitable
in GS/0S are ProDOS 16-compatible calls.

System Loader: the program that loads all
other programs into memory and prepares
them for execution.

system service calls: Low-level calls in a
common format used by intemal components
of GS/0S (such as FSTs), and also between
GS/0S and device drivers.

unclaimed interrupt: An interrupt that is

not recognized and acted upon by any
interrupt handlers.

36 Volume 1: Applications and G§/OS

Draft 3 (APDA) &8/31/88

volume name: The name of the volume
directory file on a disk or other medium. All
pathnames on a volume start with the volume
name. Vohume names follow the same rules as
other filenames, except that a volume name
always starts with a pathname separator.

zero page: The first page (256 bytes) of
memory in a standard Apple [T computer (or in
the Apple IIGS computer when ruaning a
standard Apple II program.). Because the
high-order byte of any address in this part of
memory is zero, only a single byte is needed to
specify a zero-page address. Compare

direct page.

