Accessing Pervasive Status
Codes From Applications

A White Paper From

{:} GULDSTAR

www.GoldstarSoftware.com

For more information, see our web site at
http://www.goldstarsoftware.com



Accessing Pervasive Status Codes From Applications

Last Updated: 05/26/2009

One of the most frequent types of questions that we get from application users and developers
alike is about the various Pervasive Status Codes. Currently, Pervasive has hundreds of distinct
status codes, and there is no way for a user (or even a developer) to remember them all.
Further, the responsible developer will want to provide lots of good information to the user
about a status code so that when an error occurs, the user will be able to use that information
to find a solution. The net result is a shorter time to resolution, which should result in a happier
user!

Simplest Solution: Nothing

The simplest solution is to do nothing -- just report "Btrieve Error" and blue-screen the machine.
If this is your idea of a top-notch "user abusive interface", then | have a drink for you. (Ignore
the faint smell of cyanide, it's really very tasty!)

Simple Solution: Use the Documentation

The most obvious solution is to direct the user to the Pervasive documentation. This
documentation is already being updated by Pervasive with each new version, and it should
always represent the most current information about the database product that the user is
running. Further, this documentation has already been compiled and formatted for easy access
from a typical end user, and no special processing or coding is required. This combination
makes this solution VERY attractive for most developers.

There are, however, several downsides to this solution:

e Users may not know how to get to the Pervasive documentation. This is complicated by
the fact that the Documentation used to be a separate item in the Program List, but it is
available within PSQLv10 as part of the PCC only. As such, you must provide customized
instructions (by PSQL version) telling the user how to find the documentation.

e Users may not have the needed tools or documentation installed. For an ISV creating a
compact installation image, these tools and documentation are commonly omitted from
the installation, making it impossible for some users to even find the information they
need. For a PSQLv10 user without the PCC, the docs are simply unavailable.

Information Provided By Goldstar Software Inc.
http://www.goldstarsoftware.com
Page 2 of 7




e [f you install and refer to the PDF files, then you must have a PDF reader available. For
most people, this is not an issue, but for servers or some basic applications, PDF readers
may not be installed on the machine.

e Theinterface is far from seamless, and it appears very "kludgey" to the user.

Moderate Solution: Use the Web

Another viable solution that some have experimented with is to provide direct links right to a
web site, whether it be a Google Search Window, the Pervasive documentation library site itself,
the Pervasive knowledgebase, or even a developer-controlled site. Again, with a minimal
amount of coding, you can now provide detailed and up-to-date information about ANY status
code directly within a web browser window.

There are still some pitfalls to watch out for:

e Web sites and internet connections may be temporarily unavailable, making the query
fail and leaving the user in even more of a quandary then when he started.

e Browser limitations, security configurations, antivirus applications, firewalls, proxy
passwords, and other mechanisms commonly used to secure our environments today
may block web requests generated from inside an application.

e Web sites can (and do) frequently change structure, making URLs that may work just
fine today be completely invalid tomorrow. This can completely date an application and
make for a miserable user experience with the dreaded "404 - Page Not Found" error.

e Linking to a search service (like the Pervasive Knowledgebase or a Google window) may
provide far too many possible options and unrelated solutions, making it somewhat less
than useful to a novice user.

Complicated Solution: Application-Provided Messages

The most complicated solution for developers is to create a customized message system that
displays the related text for each specific error code. This is the most complicated solution
because it relies on the developer either coding up a lot of static messages or creating some
huge look-up table. Itis by far the best option for the user since the error message and possible
resolutions can be directly integrated into the application, presenting the user with both the
error and the possible solutions to that error at the same time.

Like the other solutions, this one also has some major problems:

Information Provided By Goldstar Software Inc.
http://www.goldstarsoftware.com
Page 3 of 7




e There are a LOT of status codes in the Pervasive environment, and it would take a
developer a substantial amount of time to hand-code each of these. If the developer
skips the deprecated or less common status codes, though, then the random user who
DOES get such an odd error is left in the cold.

e Maintaining this information separately from Pervasive seems like a waste of time, and
the result is a lot of extra work that's already been done by one developer after another
with little expected gain.

e Internationalization of the messages (i.e. translating to different languages) may be
difficult for all developers, and will again lead to an extensive amount of work for
potentially little value or payback.

Proposed Idea: Application-Provided Messages via a System Table

Goldstar Software would like to propose a solution that could become a standard among
Pervasive developers to address the issues presented above and improve both the usability of
Pervasive applications as well as the productivity of Pervasive developers. This solution is
comprised of a series of system-defined tables that contain the core status codes
documentation, along with some basic access methods that expose these tables to the
developers who need them. The net result will be a consistent way for developers to access this
information, a reduction of the development workload, and almost immediate
internationalization of the status codes data for all applications.

The first step to making this happen is creating the system table. The system table can be
created very easily from a simple CREATE statement that can be implemented during the same
Pervasive System Stored Procedures pre-load process that takes place at installation time. The
following SQL statements will suffice:

CREATE TABLE PervasiveSysDB.StatusCodesEN (
StatusCode INTEGER NOT NULL,
ShortDescription VARCHAR(250),
LongDescription LONGVARCHAR

);

CREATE UNIQUE INDEX Codeslndex ON
PervasiveSysDB.StatusCodesEN(StatusCode);

Note that the last two characters on the table name include a language code, EN for English, DE
for German, and so on. Most languages already have a two-character abbreviation, so this is a
simple extension. By segregating each language into its own file, it will be possible for Pervasive

Information Provided By Goldstar Software Inc.
http://www.goldstarsoftware.com
Page 4 of 7




(or developers) to still keep their installation image to a minimum and yet be completely
expandable with new languages as the translations are completed. It is also possible, therefore,
to extend this to include a table (say "StatusCodes_AppName") which contains user-defined
extensions in which the long description is blank, allowing the developer to provide messages
specific to their specific application.

The second step is to populate the table. This can be done with a large set of INSERT
statements, or from an import script (just like DEMODATA is populated). The ideal source for
this data would be Pervasive Software, as they are already maintaining the primary
documentation, and perhaps they can create a simple text extraction from the existing
documentation to make this a whole lot easier. Goldstar Software has an initial set of comma-
delimited data, provided as a simple extract from the Status Codes Quick Reference Sheet for
PSQLv10. You MUST have a license of PSQL to download this document:

ftp://ftp2.goldstarsoftware.com/statuscodes.csv

This text can then be loaded with the following command:

SQLEXEC DEMODATA "INSERT INTO PervasiveSysDb.StatusCodesEN (StatusCode,
ShortDescription)" /istatuscodes.csv

If you do not have SQLExec, get a 30-day trial copy from www.goldstarsoftware.com/tools.asp.
Be sure the entire command above is provided on one command line. Note that this import file
includes the short description only -- the long text is not yet part of the import. If you do create
a larger file (with the long description included), be sure to update the INSERT statement
accordingly.

Once you've created and populated the table, it can easily be accessed from any SQL-based or
ODBC-based application. To perform a lookup on any given Status Code, use a SQL statement
similar to that shown here:

SELECT * FROM PervasiveSysDB.StatusCodeseEN WHERE StatusCode = X;
Be sure to provide your own status code for the "x" at the end of the statement.

An obvious extension would be to create a System Stored procedure, which accepts as input a
status code and a language code (defaulting to "EN") and builds the necessary SQL query for
you. Such a stored procedure could look like this:

CREATE PROCEDURE psp_status_code (
in :stat _code INTEGER, -- Status Code
in :lang_code CHAR(2) = "EN* -- Language
Information Provided By Goldstar Software Inc.
http://www.goldstarsoftware.com

Page 5 of 7




)

RETURNS (
Status_Code INTEGER, -- Status Code
Short_Description VARCHAR(250), -- Short Description
Long_Description LONGVARCHAR -- Long Description
)
BEGIN
DECLARE :query LONGVARCHAR;

-- If the language is null or blank, then use English

if (:lang_code is null) then
set : lang_code = "EN";

end if;

if (rtrim(:lang_code) = "") then
set : lang_code = "EN";

end if;

set :query = "SELECT * FROM PervasiveSysDB.StatusCodes™ + :lang_code +
" WHERE StatusCode = " + :stat _code + ";";

exec (:query);

END;

Of course, SQL access isn't the only access method, and such a table could be accessed directly
as a Btrieve file, too. Doing this would be very easy through the use of URI's to open the files. A
simple URI could be done like this:

btrv://servername/PervasiveSysDb?table=StatusCodesEN

Once the Btrieve file is opened, a simple GetEqual on Key 0 with the status code in the key
buffer and a 264-byte data buffer will return a Status 0 or 22 (which is ignored) along with the
ShortDescription field and the static values from the LongDescription field, namely the Null
Indicator Byte (NIB), field offset, and field length. If the LongDescription field is also required,
and if the NIB has a value of 0 and if the field length is greater than 0, then the developer can
issue a GetPosition call followed by a GetDirect/Chunk to read the LongDescription field directly
into his own memory buffer. (Optionally, the code can handle even longer LongDescription
fields through the use of GetDirect/Chunk and the Next-In-Record bias.) It would be considered
extremely rare to have a long description exceed 60K in size, so it may also be possible to
exclude the GetDirect/Chunk logic and simply do a 60K record read, ignoring anything that
doesn't fit in that size buffer.

Summary: Does This Solution Really Work?

This type of solution seems to solve most of the major problems on status code reporting, but it
is not without costs. Someone, most likely Pervasive Software, would need to provide the initial
data build to create the import data. Additionally, if translations were completed, these would
again be ideally handled directly at the source, so that when changes are made in the

Information Provided By Goldstar Software Inc.
http://www.goldstarsoftware.com
Page 6 of 7




documentation, they get reflected in the StatusCodes tables as well. It is also possible that two
different applications with similar names might conflict, causing naming problems.

Once these costs are covered, though, the benefits for developers will be far reaching. First, it is
accessible from all of the standard interface API's, including ODBC (and derivatives), SQL (and
derivatives) Btrieve. Second, it could also be accessed via a simple extension to the DTl and DTO
interfaces with minimal additional code, and it could even be implemented as a separate Btrieve
API call, if appropriate, but it will work within the current interface with no extensions needed,
as well. Third, the data is table-driven, meaning that the data can be easily updated, translated,
and extended, even on an application-by-application basis if needed. Fourth, as a common (and
supported) standard built into a future version of Pervasive PSQL (and maintained by Pervasive),
it would offer increased functionality for developers for a limited cost -- and it might help drive
engine upgrades if developers knew that this feature was available to use with their
applications.

It should also be clear that a solution like this can certainly be implemented by each developer
independently, at NO cost to Pervasive. However, if this is done, each developer will be bearing
the costs of reinventing this wheel, and the problem will never resolve itself -- it will simply get
bigger and bigger as every developer starts to create his own solution and make getting to a
common standard in the future a lot more difficult.

Information Provided By Goldstar Software Inc.
http://www.goldstarsoftware.com
Page 7 of 7




